package timere
OCaml date time reasoning library
Install
Dune Dependency
Authors
Maintainers
Sources
v0.7.0.tar.gz
sha256=1fee8b8201899be96982918c17a4fa2952b18343f91d97b90743a38e4eb8b792
doc/src/timere/time.ml.html
Source file time.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
open Time_ast exception Invalid_timestamp exception Interval_is_invalid exception Interval_is_empty exception Intervals_are_not_sorted exception Intervals_are_not_disjoint type inc_exc = [ `Inc | `Exc ] let one_ns = Timedesc.Span.make ~ns:1 () module Interval' = struct include Timedesc.Interval module Check = struct let is_valid ((start, end_exc) : t) : bool = Timedesc.Span.(start <= end_exc) let is_not_empty ((start, end_exc) : t) : bool = not Timedesc.Span.(start = end_exc) let check_if_valid (x : t) : t = if is_valid x then x else raise Interval_is_invalid let check_if_not_empty (x : t) : t = if is_not_empty x then x else raise Interval_is_empty end let join (ts1 : t) (ts2 : t) : t option = let open Timedesc.Span in let aux (start1, end_exc1) (start2, end_exc2) = if start2 <= end_exc1 then Some (start1, max end_exc1 end_exc2) else None in let start1, end_exc1 = Check.check_if_valid ts1 in let start2, end_exc2 = Check.check_if_valid ts2 in if start1 <= start2 then aux (start1, end_exc1) (start2, end_exc2) else aux (start2, end_exc2) (start1, end_exc1) let overlap_of_a_over_b ~(a : t) ~(b : t) : t option * t option * t option = let open Timedesc.Span in let a_start, a_end_exc = Check.check_if_valid a in let b_start, b_end_exc = Check.check_if_valid b in if a_start = a_end_exc then (None, None, None) else if a_end_exc <= b_start then (Some a, None, None) else if b_end_exc <= a_start then (None, None, Some a) else if a_start < b_start then if a_end_exc <= b_end_exc then (Some (a_start, b_start), Some (b_start, a_end_exc), None) else (Some (a_start, b_start), Some b, Some (b_end_exc, a_end_exc)) else if a_end_exc <= b_end_exc then (None, Some (a_start, a_end_exc), None) else (None, Some (a_start, a_end_exc), Some (b_end_exc, a_end_exc)) end module Intervals = struct module Check = struct let check_if_valid (intervals : Interval'.t Seq.t) : Interval'.t Seq.t = Seq.map Interval'.Check.check_if_valid intervals let check_if_valid_list (intervals : Interval'.t list) : Interval'.t list = List.map Interval'.Check.check_if_valid intervals let check_if_not_empty (intervals : Interval'.t Seq.t) : Interval'.t Seq.t = Seq.map Interval'.Check.check_if_not_empty intervals let check_if_sorted (intervals : Interval'.t Seq.t) : Interval'.t Seq.t = Seq_utils.check_if_f_holds_for_immediate_neighbors ~f:Timedesc.Interval.le ~f_exn:(fun _ _ -> Intervals_are_not_sorted) intervals let check_if_sorted_rev (intervals : Interval'.t Seq.t) : Interval'.t Seq.t = Seq_utils.check_if_f_holds_for_immediate_neighbors ~f:Timedesc.Interval.ge ~f_exn:(fun _ _ -> Intervals_are_not_sorted) intervals let check_if_disjoint (intervals : Interval'.t Seq.t) : Timedesc.Interval.t Seq.t = Seq_utils.check_if_f_holds_for_immediate_neighbors ~f:(fun x y -> match Interval'.overlap_of_a_over_b ~a:y ~b:x with | None, None, None | Some _, None, None | None, None, Some _ -> true | _ -> false) ~f_exn:(fun _ _ -> Intervals_are_not_disjoint) intervals let check_if_normalized (intervals : Interval'.t Seq.t) : Interval'.t Seq.t = intervals |> check_if_valid |> check_if_not_empty |> check_if_sorted |> check_if_disjoint end module Filter = struct let filter_invalid (intervals : Interval'.t Seq.t) : Interval'.t Seq.t = Seq.filter Interval'.Check.is_valid intervals let filter_invalid_list (intervals : Interval'.t list) : Interval'.t list = List.filter Interval'.Check.is_valid intervals let filter_empty (intervals : Interval'.t Seq.t) : Interval'.t Seq.t = Seq.filter Interval'.Check.is_not_empty intervals let filter_empty_list (intervals : Interval'.t list) : Interval'.t list = List.filter Interval'.Check.is_not_empty intervals end module Sort = struct let sort_intervals_list ?(skip_check = false) (intervals : Interval'.t list) : Interval'.t list = intervals |> (fun l -> if skip_check then l else l |> CCList.to_seq |> Check.check_if_valid |> CCList.of_seq) |> List.sort Timedesc.Interval.compare let sort_uniq_intervals_list ?(skip_check = false) (intervals : Interval'.t list) : Interval'.t list = intervals |> (fun l -> if skip_check then l else l |> CCList.to_seq |> Check.check_if_valid |> CCList.of_seq) |> List.sort_uniq Timedesc.Interval.compare let sort_uniq_intervals ?(skip_check = false) (intervals : Interval'.t Seq.t) : Interval'.t Seq.t = intervals |> (fun s -> if skip_check then s else Check.check_if_valid s) |> CCList.of_seq |> List.sort_uniq Timedesc.Interval.compare |> CCList.to_seq let sort_intervals ?(skip_check = false) (intervals : Interval'.t Seq.t) : Interval'.t Seq.t = intervals |> (fun s -> if skip_check then s else Check.check_if_valid s) |> CCList.of_seq |> List.sort Timedesc.Interval.compare |> CCList.to_seq end module Join_internal = struct let join (intervals : Interval'.t Seq.t) : Interval'.t Seq.t = let rec aux cur intervals = match intervals () with | Seq.Nil -> Seq.return cur | Seq.Cons ((start, end_exc), rest) -> ( match Interval'.join cur (start, end_exc) with | Some x -> aux x rest | None -> (* cannot be merged, add time slot being carried to the sequence *) fun () -> Seq.Cons (cur, aux (start, end_exc) rest)) in let aux' intervals = match intervals () with | Seq.Nil -> Seq.empty | Seq.Cons ((start, end_exc), rest) -> aux (start, end_exc) rest in aux' intervals end let join ?(skip_check = false) intervals = intervals |> (fun s -> if skip_check then s else s |> Check.check_if_valid |> Check.check_if_sorted) |> Join_internal.join let normalize ?(skip_filter_invalid = false) ?(skip_filter_empty = false) ?(skip_sort = false) intervals = intervals |> (fun s -> if skip_filter_invalid then s else Filter.filter_invalid s) |> (fun s -> if skip_filter_empty then s else Filter.filter_empty s) |> (fun s -> if skip_sort then s else Sort.sort_uniq_intervals s) |> Join_internal.join module Slice_internal = struct let slice_start ~start (intervals : Interval'.t Seq.t) : Interval'.t Seq.t = let open Timedesc.Span in let rec aux start intervals = match intervals () with | Seq.Nil -> Seq.empty | Seq.Cons ((ts_start, ts_end_exc), rest) -> if start <= ts_start then (* entire time slot is follow start, do nothing *) intervals else if ts_start < start && start < ts_end_exc then (* time slot spans across the start mark, split time slot *) fun () -> Seq.Cons ((start, ts_end_exc), rest) else (* time slot is before start mark, move to next time slot *) aux start rest in aux start intervals let slice_end_exc ~end_exc (intervals : Interval'.t Seq.t) : Interval'.t Seq.t = let open Timedesc.Span in let rec aux end_exc intervals = match intervals () with | Seq.Nil -> Seq.empty | Seq.Cons ((ts_start, ts_end_exc), rest) -> if end_exc <= ts_start then (* entire time slot is follow end_exc mark, drop everything *) aux end_exc Seq.empty else if ts_start < end_exc && end_exc < ts_end_exc then (* time slot spans across the end_exc mark, split time slot, skip remaining slots *) fun () -> Seq.Cons ((ts_start, end_exc), aux end_exc Seq.empty) else (* time slot is before end_exc, add to sequence and move to next time slot *) fun () -> Seq.Cons ((ts_start, ts_end_exc), aux end_exc rest) in aux end_exc intervals end module Slice = struct let slice ?(skip_check = false) ?start ?end_exc intervals = intervals |> (fun s -> if skip_check then s else s |> Check.check_if_valid |> Check.check_if_sorted) |> (fun s -> match start with | None -> s | Some start -> Slice_internal.slice_start ~start s) |> fun s -> match end_exc with | None -> s | Some end_exc -> Slice_internal.slice_end_exc ~end_exc s end let relative_complement ?(skip_check = false) ~(not_mem_of : Interval'.t Seq.t) (mem_of : Interval'.t Seq.t) : Interval'.t Seq.t = let rec aux mem_of not_mem_of = match (mem_of (), not_mem_of ()) with | Seq.Nil, _ -> Seq.empty | _, Seq.Nil -> mem_of | ( Seq.Cons (mem_of_ts, mem_of_rest), Seq.Cons (not_mem_of_ts, not_mem_of_rest) ) -> ( let mem_of () = Seq.Cons (mem_of_ts, mem_of_rest) in let not_mem_of () = Seq.Cons (not_mem_of_ts, not_mem_of_rest) in match Interval'.overlap_of_a_over_b ~a:mem_of_ts ~b:not_mem_of_ts with | None, None, None -> (* mem_of_ts is empty, drop mem_of_ts *) aux mem_of_rest not_mem_of | Some _, None, None -> (* mem_of_ts is before not_mem_of_ts entirely, output mem_of *) fun () -> Seq.Cons (mem_of_ts, aux mem_of_rest not_mem_of) | None, None, Some _ -> (* not_mem_of_ts is before mem_of entirely, drop not_mem_of_ts *) aux mem_of not_mem_of_rest | Some (start, end_exc), Some _, None -> fun () -> Seq.Cons ((start, end_exc), aux mem_of_rest not_mem_of) | None, Some _, None -> aux mem_of_rest not_mem_of | None, Some _, Some (start, end_exc) -> let mem_of () = Seq.Cons ((start, end_exc), mem_of_rest) in aux mem_of not_mem_of_rest | Some (start1, end_exc1), _, Some (start2, end_exc2) -> let mem_of () = Seq.Cons ((start2, end_exc2), mem_of_rest) in fun () -> Seq.Cons ((start1, end_exc1), aux mem_of not_mem_of_rest) ) in let mem_of = if skip_check then mem_of else mem_of |> Check.check_if_valid |> Check.check_if_sorted in let not_mem_of = if skip_check then not_mem_of else not_mem_of |> Check.check_if_valid |> Check.check_if_sorted in aux mem_of not_mem_of let invert ?(skip_check = false) ~start ~end_exc (intervals : Interval'.t Seq.t) : Interval'.t Seq.t = relative_complement ~skip_check ~not_mem_of:intervals (Seq.return (start, end_exc)) module Inter = struct let inter ?(skip_check = false) (intervals1 : Interval'.t Seq.t) (intervals2 : Interval'.t Seq.t) : Interval'.t Seq.t = let open Timedesc.Span in let rec aux intervals1 intervals2 : Interval'.t Seq.t = match (intervals1 (), intervals2 ()) with | Seq.Nil, _ -> Seq.empty | _, Seq.Nil -> Seq.empty | ( Seq.Cons ((start1, end_exc1), rest1), Seq.Cons ((start2, end_exc2), rest2) ) -> if end_exc1 < start2 then (* 1 is before 2 entirely, drop 1, keep 2 *) aux rest1 intervals2 else if end_exc2 < start1 then (* 2 is before 1 entirely, keep 1, drop 2 *) aux intervals1 rest2 else (* there is an overlap or touching *) let overlap_start = max start1 start2 in let overlap_end_exc = min end_exc1 end_exc2 in let s1 = if end_exc1 <= overlap_end_exc then rest1 else intervals1 in let s2 = if end_exc2 <= overlap_end_exc then rest2 else intervals2 in if overlap_start < overlap_end_exc then (* there is an overlap *) fun () -> Seq.Cons ((overlap_start, overlap_end_exc), aux s1 s2) else aux s1 s2 in let intervals1 = if skip_check then intervals1 else intervals1 |> Check.check_if_valid |> Check.check_if_sorted in let intervals2 = if skip_check then intervals2 else intervals2 |> Check.check_if_valid |> Check.check_if_sorted in aux intervals1 intervals2 let inter_multi_seq ?(skip_check = false) (interval_batches : Interval'.t Seq.t Seq.t) : Interval'.t Seq.t = match Seq.fold_left (fun acc intervals -> match acc with | None -> Some intervals | Some acc -> Some (inter ~skip_check acc intervals)) None interval_batches with | None -> Seq.empty | Some s -> s end module Merge = struct let merge ?(skip_check = false) (intervals1 : Interval'.t Seq.t) (intervals2 : Interval'.t Seq.t) : Interval'.t Seq.t = let rec aux intervals1 intervals2 = match (intervals1 (), intervals2 ()) with | Seq.Nil, s | s, Seq.Nil -> fun () -> s | Seq.Cons (x1, rest1), Seq.Cons (x2, rest2) -> if Interval'.le x1 x2 then fun () -> Seq.Cons (x1, aux rest1 intervals2) else fun () -> Seq.Cons (x2, aux rest2 intervals1) in let intervals1 = if skip_check then intervals1 else intervals1 |> Check.check_if_valid |> Check.check_if_sorted in let intervals2 = if skip_check then intervals2 else intervals2 |> Check.check_if_valid |> Check.check_if_sorted in aux intervals1 intervals2 let merge_multi_seq ?(skip_check = false) (interval_batches : Interval'.t Seq.t Seq.t) : Interval'.t Seq.t = Seq.fold_left (fun acc intervals -> merge ~skip_check acc intervals) Seq.empty interval_batches end module Union = struct let union ?(skip_check = false) (intervals1 : Interval'.t Seq.t) (intervals2 : Interval'.t Seq.t) : Interval'.t Seq.t = Merge.merge ~skip_check intervals1 intervals2 |> normalize ~skip_filter_invalid:true ~skip_sort:true let union_multi_seq ?(skip_check = false) (interval_batches : Interval'.t Seq.t Seq.t) : Interval'.t Seq.t = Seq.fold_left (fun acc intervals -> union ~skip_check acc intervals) Seq.empty interval_batches end (* module Round_robin = struct * let collect_round_robin_non_decreasing ?(skip_check = false) * (batches : Interval'.t Seq.t list) : Interval'.t option list Seq.t = * batches * |> List.map (fun s -> * if skip_check then s * else s |> Check.check_if_valid |> Check.check_if_sorted) * |> Seq_utils.collect_round_robin ~f_le:Interval'.le * * let merge_multi_list_round_robin_non_decreasing ?(skip_check = false) * (batches : Interval'.t Seq.t list) : Interval'.t Seq.t = * collect_round_robin_non_decreasing ~skip_check batches * |> Seq.flat_map (fun l -> CCList.to_seq l |> Seq.filter_map CCFun.id) * |> normalize ~skip_filter_invalid:true ~skip_sort:true * * let merge_multi_seq_round_robin_non_decreasing ?(skip_check = false) * (batches : Interval'.t Seq.t Seq.t) : Interval'.t Seq.t = * batches * |> CCList.of_seq * |> merge_multi_list_round_robin_non_decreasing ~skip_check * end *) let chunk ?(skip_check = false) ?(drop_partial = false) ~chunk_size (intervals : Interval'.t Seq.t) : Interval'.t Seq.t = let open Timedesc.Span in let rec aux intervals = match intervals () with | Seq.Nil -> Seq.empty | Seq.Cons ((start, end_exc), rest) -> let size = end_exc - start in if size < chunk_size then if drop_partial then aux rest else fun () -> Seq.Cons ((start, end_exc), aux rest) else if size = chunk_size then fun () -> Seq.Cons ((start, end_exc), aux rest) else let chunk_end_exc = start + chunk_size in let rest () = Seq.Cons ((chunk_end_exc, end_exc), rest) in fun () -> Seq.Cons ((start, chunk_end_exc), aux rest) in if chunk_size <= zero then invalid_arg "chunk: chunk size is <= zero" else intervals |> (fun s -> if skip_check then s else s |> Check.check_if_valid) |> aux end module Range = struct exception Modulo_is_invalid exception Range_is_invalid type 'a range = [ `Range_inc of 'a * 'a | `Range_exc of 'a * 'a ] let map ~(f_inc : 'a * 'a -> 'b * 'b) ~(f_exc : 'a * 'a -> 'b * 'b) (t : 'a range) : 'b range = match t with | `Range_inc (x, y) -> let x, y = f_inc (x, y) in `Range_inc (x, y) | `Range_exc (x, y) -> let x, y = f_exc (x, y) in `Range_exc (x, y) let int_range_of_range (type a) ~(to_int : a -> int) (x : a range) : int range = let f (x, y) = (to_int x, to_int y) in map ~f_inc:f ~f_exc:f x let int_inc_range_of_range (type a) ~(to_int : a -> int) (x : a range) : int * int = match x with | `Range_inc (x, y) -> (to_int x, to_int y) | `Range_exc (x, y) -> (to_int x, y |> to_int |> pred) let int_exc_range_of_range (type a) ~(to_int : a -> int) (x : a range) : int * int = match x with | `Range_inc (x, y) -> (to_int x, y |> to_int |> succ) | `Range_exc (x, y) -> (to_int x, to_int y) let inc_range_of_range (type a) ~(to_int : a -> int) ~(of_int : int -> a) (x : a range) : a * a = match x with | `Range_inc (x, y) -> (x, y) | `Range_exc (x, y) -> (x, y |> to_int |> pred |> of_int) let exc_range_of_range (type a) ~(to_int : a -> int) ~(of_int : int -> a) (x : a range) : a * a = match x with | `Range_inc (x, y) -> (x, y |> to_int |> succ |> of_int) | `Range_exc (x, y) -> (x, y) let timestamp_pair_of_int_pair (x, y) : Timedesc.timestamp * Timedesc.timestamp = (Timedesc.Span.make ~ns:x (), Timedesc.Span.make ~ns:y ()) let int_pair_of_timestamp_pair ((x, y) : Timedesc.timestamp * Timedesc.timestamp) : int * int = (Timedesc.Span.get_ns_offset x, Timedesc.Span.get_ns_offset y) let join (type a) ~(to_int : a -> int) ~(of_int : int -> a) (x : a range) (y : a range) : a range option = let x = int_exc_range_of_range ~to_int x |> timestamp_pair_of_int_pair in let y = int_exc_range_of_range ~to_int y |> timestamp_pair_of_int_pair in Interval'.join x y |> CCOption.map (fun (x, y) -> `Range_exc ( of_int @@ Timedesc.Span.get_ns_offset x, of_int @@ Timedesc.Span.get_ns_offset @@ y )) let is_valid (type a) ~(modulo : int option) ~(to_int : a -> int) (t : a range) : bool = match modulo with | None -> ( match int_range_of_range ~to_int t with | `Range_inc (x, y) -> x <= y | `Range_exc (x, y) -> x <= y) | Some _ -> true module Flatten = struct let flatten_into_seq (type a) ~(modulo : int option) ~(to_int : a -> int) ~(of_int : int -> a) (t : a range) : a Seq.t = match t with | `Range_inc (start, end_inc) -> ( let start = to_int start in let end_inc = to_int end_inc in if start <= end_inc then OSeq.(start -- end_inc) |> Seq.map of_int else match modulo with | None -> raise Range_is_invalid | Some modulo -> if modulo <= 0 then raise Modulo_is_invalid else OSeq.append OSeq.(start --^ modulo) OSeq.(0 -- end_inc) |> Seq.map of_int) | `Range_exc (start, end_exc) -> ( let start = to_int start in let end_exc = to_int end_exc in if start <= end_exc then OSeq.(start --^ end_exc) |> Seq.map of_int else match modulo with | None -> raise Range_is_invalid | Some modulo -> if modulo <= 0 then raise Modulo_is_invalid else OSeq.append OSeq.(start --^ modulo) OSeq.(0 --^ end_exc) |> Seq.map of_int) let flatten_into_list (type a) ~(modulo : int option) ~(to_int : a -> int) ~(of_int : int -> a) (t : a range) : a list = flatten_into_seq ~modulo ~to_int ~of_int t |> CCList.of_seq end module type B = sig type t val modulo : int option val to_int : t -> int val of_int : int -> t end module type S = sig type t val int_range_of_range : t range -> int range val int_inc_range_of_range : t range -> int * int val int_exc_range_of_range : t range -> int * int val inc_range_of_range : t range -> t * t val exc_range_of_range : t range -> t * t val join : t range -> t range -> t range option val is_valid : t range -> bool module Flatten : sig val flatten_into_seq : t range -> t Seq.t val flatten_into_list : t range -> t list end end module Make (B : B) : S with type t := B.t = struct open B let int_range_of_range (x : t range) : int range = int_range_of_range ~to_int x let int_inc_range_of_range (x : t range) : int * int = int_inc_range_of_range ~to_int x let int_exc_range_of_range (x : t range) : int * int = int_exc_range_of_range ~to_int x let inc_range_of_range (x : t range) : t * t = inc_range_of_range ~to_int ~of_int x let exc_range_of_range (x : t range) : t * t = exc_range_of_range ~to_int ~of_int x let join (x : t range) (y : t range) : t range option = join ~to_int ~of_int x y let is_valid (x : t range) : bool = is_valid ~modulo ~to_int x module Flatten = struct let flatten_into_seq (t : t range) : t Seq.t = Flatten.flatten_into_seq ~modulo ~to_int ~of_int t let flatten_into_list (t : t range) : t list = Flatten.flatten_into_seq ~modulo ~to_int ~of_int t |> CCList.of_seq end end end module Range_utils = struct let option_range_get (x : 'a option Range.range) : 'a Range.range option = match x with | `Range_inc (x, y) -> ( match (x, y) with | Some x, Some y -> Some (`Range_inc (x, y)) | _, _ -> None) | `Range_exc (x, y) -> ( match (x, y) with | Some x, Some y -> Some (`Range_exc (x, y)) | _, _ -> None) end module Ranges = struct let normalize (type a) ?(skip_filter_invalid = false) ?(skip_filter_empty = false) ?(skip_sort = false) ~(modulo : int option) ~(to_int : a -> int) ~(of_int : int -> a) (s : a Range.range Seq.t) : a Range.range Seq.t = match modulo with | None -> s |> Seq.map (Range.int_exc_range_of_range ~to_int) |> Seq.map Range.timestamp_pair_of_int_pair |> Intervals.normalize ~skip_filter_invalid ~skip_filter_empty ~skip_sort |> Seq.map Range.int_pair_of_timestamp_pair |> Seq.map (fun (x, y) -> (of_int x, y |> pred |> of_int)) |> Seq.map (fun (x, y) -> `Range_inc (x, y)) | Some _ -> (* not sure what would be a reasonable normalization procedure when domain is a field *) s let get_inc (type a) ~(to_int : a -> int) ~(of_int : int -> a) (s : a Range.range Seq.t) : (a * a) Seq.t = Seq.map (fun x -> match x with | `Range_inc (x, y) -> (x, y) | `Range_exc (x, y) -> (x, y |> to_int |> pred |> of_int)) s let get_exc (type a) ~(to_int : a -> int) ~(of_int : int -> a) (s : a Range.range Seq.t) : (a * a) Seq.t = Seq.map (fun x -> match x with | `Range_inc (x, y) -> (x, y |> to_int |> succ |> of_int) | `Range_exc (x, y) -> (x, y)) s module Check = struct let seq_is_valid (type a) ~(modulo : int option) ~(to_int : a -> int) (s : a Range.range Seq.t) : bool = OSeq.for_all (Range.is_valid ~modulo ~to_int) s let list_is_valid (type a) ~(modulo : int option) ~(to_int : a -> int) (s : a Range.range list) : bool = List.for_all (Range.is_valid ~modulo ~to_int) s end module Flatten = struct let flatten (type a) ~(modulo : int option) ~(to_int : a -> int) ~(of_int : int -> a) (s : a Range.range Seq.t) : a Seq.t = Seq.flat_map (Range.Flatten.flatten_into_seq ~modulo ~to_int ~of_int) s let flatten_list (type a) ~(modulo : int option) ~(to_int : a -> int) ~(of_int : int -> a) (l : a Range.range list) : a list = l |> CCList.to_seq |> flatten ~modulo ~to_int ~of_int |> CCList.of_seq end module Of_seq = struct let range_seq_of_seq (type a) ?(skip_sort = false) ~(modulo : int option) ~(to_int : a -> int) ~(of_int : int -> a) (s : a Seq.t) : a Range.range Seq.t = s |> Seq.map (fun x -> `Range_inc (x, x)) |> normalize ~skip_filter_invalid:true ~skip_filter_empty:true ~skip_sort ~modulo ~to_int ~of_int let range_list_of_seq (type a) ?skip_sort ~(modulo : int option) ~(to_int : a -> int) ~(of_int : int -> a) (s : a Seq.t) : a Range.range list = range_seq_of_seq ?skip_sort ~modulo ~to_int ~of_int s |> CCList.of_seq end module Of_list = struct let range_seq_of_list (type a) ?(skip_sort = false) ~(modulo : int option) ~(to_int : a -> int) ~(of_int : int -> a) (l : a list) : a Range.range Seq.t = CCList.to_seq l |> Of_seq.range_seq_of_seq ~skip_sort ~modulo ~to_int ~of_int let range_list_of_list (type a) ?(skip_sort = false) ~(modulo : int option) ~(to_int : a -> int) ~(of_int : int -> a) (l : a list) : a Range.range list = CCList.to_seq l |> Of_seq.range_seq_of_seq ~skip_sort ~modulo ~to_int ~of_int |> CCList.of_seq end module type S = sig type t val normalize : ?skip_filter_invalid:bool -> ?skip_filter_empty:bool -> ?skip_sort:bool -> t Range.range Seq.t -> t Range.range Seq.t val get_inc : t Range.range Seq.t -> (t * t) Seq.t val get_exc : t Range.range Seq.t -> (t * t) Seq.t module Check : sig val seq_is_valid : t Range.range Seq.t -> bool val list_is_valid : t Range.range list -> bool end module Flatten : sig val flatten : t Range.range Seq.t -> t Seq.t val flatten_list : t Range.range list -> t list end module Of_seq : sig val range_seq_of_seq : ?skip_sort:bool -> t Seq.t -> t Range.range Seq.t val range_list_of_seq : ?skip_sort:bool -> t Seq.t -> t Range.range list end module Of_list : sig val range_seq_of_list : ?skip_sort:bool -> t list -> t Range.range Seq.t val range_list_of_list : ?skip_sort:bool -> t list -> t Range.range list end end module Make (B : Range.B) : S with type t := B.t = struct open B let normalize ?skip_filter_invalid ?skip_filter_empty ?skip_sort (s : t Range.range Seq.t) = normalize ?skip_filter_invalid ?skip_filter_empty ?skip_sort ~modulo ~to_int ~of_int s let get_inc s = get_inc ~to_int ~of_int s let get_exc s = get_exc ~to_int ~of_int s module Check = struct let seq_is_valid s = Check.seq_is_valid ~modulo ~to_int s let list_is_valid l = Check.list_is_valid ~modulo ~to_int l end module Flatten = struct let flatten (s : t Range.range Seq.t) : t Seq.t = Flatten.flatten ~modulo ~to_int ~of_int s let flatten_list (l : t Range.range list) : t list = Flatten.flatten_list ~modulo ~to_int ~of_int l end module Of_seq = struct let range_seq_of_seq ?(skip_sort = false) (s : t Seq.t) : t Range.range Seq.t = Of_seq.range_seq_of_seq ~skip_sort ~modulo ~to_int ~of_int s let range_list_of_seq ?(skip_sort = false) (s : t Seq.t) : t Range.range list = Of_seq.range_list_of_seq ~skip_sort ~modulo ~to_int ~of_int s end module Of_list = struct let range_seq_of_list ?skip_sort (l : t list) : t Range.range Seq.t = CCList.to_seq l |> Of_seq.range_seq_of_seq ?skip_sort let range_list_of_list ?skip_sort (l : t list) : t Range.range list = CCList.to_seq l |> Of_seq.range_seq_of_seq ?skip_sort |> CCList.of_seq end end end module Second_ranges = Ranges.Make (struct type t = int let modulo = None let to_int x = x let of_int x = x end) module Minute_ranges = Ranges.Make (struct type t = int let modulo = None let to_int x = x let of_int x = x end) module Hour_ranges = Ranges.Make (struct type t = int let modulo = None let to_int x = x let of_int x = x end) module Weekday_tm_int_ranges = Ranges.Make (struct type t = int let modulo = Some 7 let to_int x = x let of_int x = x end) module Weekday_ranges = Ranges.Make (struct type t = Timedesc.weekday let modulo = Some 7 let to_int = Timedesc.Utils.tm_int_of_weekday let of_int x = x |> Timedesc.Utils.weekday_of_tm_int |> CCOption.get_exn_or "Expected successful construction of weekday" end) module Month_day_ranges = Ranges.Make (struct type t = int let modulo = None let to_int x = x let of_int x = x end) module Month_ranges = Ranges.Make (struct type t = int let modulo = None let to_int x = x let of_int x = x end) module Year_ranges = Ranges.Make (struct type t = int let modulo = None let to_int x = x let of_int x = x end) let slice_valid_interval s = Intervals.Slice.slice ~skip_check:true ~start:Timedesc.Timestamp.min_val ~end_exc:Timedesc.Timestamp.max_val s let equal_unary_op op1 op2 = match (op1, op2) with | Not, Not -> true | Shift n1, Shift n2 | Lengthen n1, Lengthen n2 -> n1 = n2 | With_tz tz1, With_tz tz2 -> Timedesc.Time_zone.equal tz1 tz2 | _, _ -> false let equal t1 t2 = let rec aux t1 t2 = match (t1, t2) with | Empty, Empty -> true | All, All -> true | Intervals s1, Intervals s2 -> OSeq.equal ~eq:( = ) s1 s2 | Pattern p1, Pattern p2 -> Pattern.equal p1 p2 | Unary_op (op1, t1), Unary_op (op2, t2) -> equal_unary_op op1 op2 && aux t1 t2 | ( Pattern_intervals { mode = mode1; bound = b1; start = start1; end_ = end_1 }, Pattern_intervals { mode = mode2; bound = b2; start = start2; end_ = end_2 } ) -> mode1 = mode2 && b1 = b2 && Points.equal start1 start2 && Points.equal end_1 end_2 | Inter_seq s1, Inter_seq s2 | Union_seq s1, Union_seq s2 -> OSeq.for_all2 aux s1 s2 | Unchunk c1, Unchunk c2 -> aux_chunked c1 c2 | _, _ -> false and aux_chunked c1 c2 = match (c1, c2) with | Unary_op_on_t (op1, t1), Unary_op_on_t (op2, t2) -> op1 = op2 && aux t1 t2 | Unary_op_on_chunked (op1, c1), Unary_op_on_chunked (op2, c2) -> op1 = op2 && aux_chunked c1 c2 | _, _ -> false in aux t1 t2 let chunk (chunking : chunking) (f : chunked -> chunked) t : t = match chunking with | `Disjoint_intervals -> Unchunk (f (Unary_op_on_t (Chunk_disjoint_interval, t))) | `By_duration chunk_size -> if Timedesc.Span.(chunk_size < zero) then invalid_arg "chunk: duration is negative"; if Timedesc.Span.(chunk_size = zero) then invalid_arg "chunk: duration is zero" else Unchunk (f (Unary_op_on_t (Chunk_by_duration { chunk_size; drop_partial = false }, t))) | `By_duration_drop_partial chunk_size -> if Timedesc.Span.(chunk_size < zero) then invalid_arg "chunk: duration is negative"; if Timedesc.Span.(chunk_size = zero) then invalid_arg "chunk: duration is zero" else Unchunk (f (Unary_op_on_t (Chunk_by_duration { chunk_size; drop_partial = true }, t))) | `At_year_boundary -> Unchunk (f (Unary_op_on_t (Chunk_at_year_boundary, t))) | `At_month_boundary -> Unchunk (f (Unary_op_on_t (Chunk_at_month_boundary, t))) let chunk_again (chunking : chunking) chunked : chunked = match chunking with | `Disjoint_intervals -> Unary_op_on_chunked (Chunk_again Chunk_disjoint_interval, chunked) | `By_duration chunk_size -> if Timedesc.Span.(chunk_size = zero) then invalid_arg "chunk_again: duration is zero" else Unary_op_on_chunked ( Chunk_again (Chunk_by_duration { chunk_size; drop_partial = false }), chunked ) | `By_duration_drop_partial chunk_size -> if Timedesc.Span.(chunk_size = zero) then invalid_arg "chunk_again: duration is zero" else Unary_op_on_chunked ( Chunk_again (Chunk_by_duration { chunk_size; drop_partial = true }), chunked ) | `At_year_boundary -> Unary_op_on_chunked (Chunk_again Chunk_at_year_boundary, chunked) | `At_month_boundary -> Unary_op_on_chunked (Chunk_again Chunk_at_year_boundary, chunked) let shift (offset : Timedesc.Span.t) (t : t) : t = Unary_op (Shift offset, t) let lengthen (x : Timedesc.Span.t) (t : t) : t = if Timedesc.Span.(x < zero) then invalid_arg "lengthen: duration is negative"; Unary_op (Lengthen x, t) let empty = Empty let always = All type inter_pattern_acc = | Uninitialized | Unsatisfiable | Some' of Pattern.t let inter_seq (s : t Seq.t) : t = let flatten s = Seq.flat_map (fun x -> match x with Inter_seq s -> s | _ -> Seq.return x) s in let inter_patterns s = let patterns, rest = OSeq.partition (fun x -> match x with Pattern _ -> true | _ -> false) s in let pattern = Seq.fold_left (fun acc x -> match x with | Pattern pat -> ( match acc with | Uninitialized -> Some' pat | Unsatisfiable -> Unsatisfiable | Some' acc -> ( match Pattern.inter acc pat with | None -> Unsatisfiable | Some pat -> Some' pat)) | _ -> acc) Uninitialized patterns in match pattern with | Uninitialized -> Some rest | Unsatisfiable -> None | Some' pat -> Some (fun () -> Seq.Cons (Pattern pat, rest)) in let s = flatten s in if OSeq.exists (fun x -> match x with Empty -> true | _ -> false) s then empty else match inter_patterns s with None -> empty | Some s -> Inter_seq s let inter (l : t list) : t = match l with [] -> always | _ -> inter_seq (CCList.to_seq l) let union_seq (s : t Seq.t) : t = let flatten s = Seq.flat_map (fun x -> match x with Union_seq s -> s | _ -> Seq.return x) s in let s = s |> flatten |> Seq.filter (fun x -> match x with Empty -> false | _ -> true) in Union_seq s let union (l : t list) : t = union_seq (CCList.to_seq l) let first (c : chunked) : chunked = Unary_op_on_chunked (Take 1, c) let take (n : int) (c : chunked) : chunked = if n < 0 then invalid_arg "take_n: n < 0" else Unary_op_on_chunked (Take n, c) let take_nth (n : int) (c : chunked) : chunked = if n < 1 then invalid_arg "take_nth: n < 1" else Unary_op_on_chunked (Take_nth n, c) let nth (n : int) (c : chunked) : chunked = if n < 0 then invalid_arg "nth: n < 0" else Unary_op_on_chunked (Nth n, c) let drop (n : int) (c : chunked) : chunked = if n < 0 then invalid_arg "skip_n: n < 0" else Unary_op_on_chunked (Drop n, c) let not (a : t) : t = Unary_op (Not, a) let with_tz tz t = Unary_op (With_tz tz, t) let pattern ?(years = []) ?(year_ranges = []) ?(months = []) ?(month_ranges = []) ?(days = []) ?(day_ranges = []) ?(weekdays = []) ?(weekday_ranges = []) ?(hours = []) ?(hour_ranges = []) ?(minutes = []) ?(minute_ranges = []) ?(seconds = []) ?(second_ranges = []) ?(ns = []) ?(ns_ranges = []) () : t = let years = try years @ Year_ranges.Flatten.flatten_list year_ranges with Range.Range_is_invalid -> invalid_arg "pattern: invalid year range" in let months = try months @ Month_ranges.Flatten.flatten_list month_ranges with Range.Range_is_invalid -> invalid_arg "pattern: invalid month range" in let month_days = try days @ Month_day_ranges.Flatten.flatten_list day_ranges with Range.Range_is_invalid -> invalid_arg "pattern: invalid day range" in let weekdays = try weekdays @ Weekday_ranges.Flatten.flatten_list weekday_ranges with Range.Range_is_invalid -> invalid_arg "pattern: invalid weekday range" in let hours = try hours @ Hour_ranges.Flatten.flatten_list hour_ranges with Range.Range_is_invalid -> invalid_arg "pattern: invalid hour range" in let minutes = try minutes @ Minute_ranges.Flatten.flatten_list minute_ranges with Range.Range_is_invalid -> invalid_arg "pattern: invalid minute range" in let seconds = try seconds @ Second_ranges.Flatten.flatten_list second_ranges with Range.Range_is_invalid -> invalid_arg "pattern: invalid second range" in match (years, months, month_days, weekdays, hours, minutes, seconds, ns, ns_ranges) with | [], [], [], [], [], [], [], [], [] -> All | _ -> if Stdlib.not (List.for_all (fun year -> Timedesc.(year min_val) <= year && year <= Timedesc.(year max_val)) years) then invalid_arg "pattern: not all years are valid" else if Stdlib.not (List.for_all (fun x -> 1 <= x && x <= 12) months) then invalid_arg "pattern: not all months are valid" else if Stdlib.not (List.for_all (fun x -> -31 <= x && x <= 31 && x <> 0) month_days) then invalid_arg "pattern: not all days are valid" else if Stdlib.not (List.for_all (fun x -> 0 <= x && x < 24) hours) then invalid_arg "pattern: not all hours are valid" else if Stdlib.not (List.for_all (fun x -> 0 <= x && x < 60) minutes) then invalid_arg "pattern: not all minutes are valid" else if Stdlib.not (List.for_all (fun x -> 0 <= x && x < 60) seconds) then invalid_arg "pattern: not all seconds are valid" else if Stdlib.not (List.for_all (fun x -> 0 <= x && x < Timedesc.Span.ns_count_in_s) ns) then invalid_arg "pattern: invalid ns ranges" else if Stdlib.not (List.for_all (fun x -> match x with | `Range_inc (x, y) -> 0 <= x && x <= y && y < Timedesc.Span.ns_count_in_s | `Range_exc (x, y) -> 0 <= x && x < y && y <= Timedesc.Span.ns_count_in_s) ns_ranges) then invalid_arg "pattern: invalid ns ranges" else let years = Int_set.of_list years in let months = Int_set.of_list months in let month_days = Int_set.of_list month_days in let weekdays = Weekday_set.of_list weekdays in let hours = Int_set.of_list hours in let minutes = Int_set.of_list minutes in let seconds = Int_set.of_list seconds in let intervals_of_ns = List.map (fun x -> Diet.Int.Interval.make x x) ns in let intervals_of_ns_ranges = List.map (fun x -> match x with | `Range_inc (x, y) -> Diet.Int.Interval.make x y | `Range_exc (x, y) -> Diet.Int.Interval.make x (pred y)) ns_ranges in let add l acc = List.fold_left (fun acc x -> Diet.Int.add x acc) acc l in Pattern (Pattern.optimize { Pattern.years; months; month_days; weekdays; hours; minutes; seconds; ns = Diet.Int.empty |> add intervals_of_ns |> add intervals_of_ns_ranges; }) let month_day_ranges_are_valid_strict ~safe_month_day_range_inc day_ranges = let safe_month_day_start, safe_month_day_end_inc = safe_month_day_range_inc in day_ranges |> CCList.to_seq |> Month_day_ranges.Flatten.flatten |> Seq.filter (fun mday -> mday <> 0) |> OSeq.for_all (fun mday -> safe_month_day_start <= mday && mday <= safe_month_day_end_inc) let month_day_ranges_are_valid_relaxed day_range = month_day_ranges_are_valid_strict ~safe_month_day_range_inc:(-31, 31) day_range let years years = pattern ~years () let months months = pattern ~months () let days days = pattern ~days () let weekdays weekdays = pattern ~weekdays () let hours hours = pattern ~hours () let minutes minutes = pattern ~minutes () let seconds seconds = pattern ~seconds () let ns ns = pattern ~ns () let year_ranges year_ranges = pattern ~year_ranges () let month_ranges month_ranges = pattern ~month_ranges () let day_ranges day_ranges = pattern ~day_ranges () let weekday_ranges weekday_ranges = pattern ~weekday_ranges () let hour_ranges hour_ranges = pattern ~hour_ranges () let minute_ranges minute_ranges = pattern ~minute_ranges () let second_ranges second_ranges = pattern ~second_ranges () let ns_ranges ns_ranges = pattern ~ns_ranges () let pattern_intervals ?(inc_exc : inc_exc = `Exc) ?(bound : Timedesc.Span.t option) mode (start : Points.t) (end_ : Points.t) : t = let default_bound start end_ = let open Points in match (start.pick, end_.pick) with | YMDHMSN { year = x; _ }, YMDHMSN { year = y; _ } -> Timedesc.Span.For_human.make_exn ~days:((y - x + 1) * 366) () | _, MDHMSN _ -> Timedesc.Span.For_human.make_exn ~days:366 () | YMDHMSN { month_day = x; _ }, DHMSN { month_day = y; _ } | MDHMSN { month_day = x; _ }, DHMSN { month_day = y; _ } | DHMSN { month_day = x; _ }, DHMSN { month_day = y; _ } -> if x < y then Timedesc.Span.For_human.make_exn ~days:(31 - x) () else Timedesc.Span.For_human.make_exn ~days:31 () | _, HMSN _ -> Timedesc.Span.For_human.make_exn ~hours:26 () | _, MSN _ -> Timedesc.Span.For_human.make_exn ~hours:1 () | _, SN _ -> Timedesc.Span.For_human.make_exn ~minutes:1 () | _ -> failwith "Unexpected case" in let bound = match bound with | None -> default_bound start end_ | Some bound -> if Timedesc.Span.(bound < zero) then invalid_arg "pattern_intervals: bound is negative" else bound in let mode = match (mode, inc_exc) with | `Whole, `Inc -> `Whole_inc | `Whole, `Exc -> `Whole_exc | `Fst, _ -> `Fst | `Snd, _ -> `Snd in if Points.precision start < Points.precision end_ then invalid_arg "pattern_intervals: start is less precise than end_exc"; if CCOption.equal Timedesc.Time_zone_info.equal start.tz_info end_.tz_info then match (start.pick, end_.pick) with | Points.(N ns_start, N ns_end) when ns_start = ns_end -> always | Points.( ( SN { second = second_start; ns = ns_start }, SN { second = second_end; ns = ns_end } )) when second_start = second_end && ns_start = ns_end -> always | Points.( ( MSN { minute = minute_start; second = second_start; ns = ns_start }, MSN { minute = minute_end_exc; second = second_end; ns = ns_end } )) when minute_start = minute_end_exc && second_start = second_end && ns_start = ns_end -> always | Points.( ( HMSN { hour = hour_start; minute = minute_start; second = second_start; ns = ns_start; }, HMSN { hour = hour_end_exc; minute = minute_end_exc; second = second_end_exc; ns = ns_end; } )) when hour_start = hour_end_exc && minute_start = minute_end_exc && second_start = second_end_exc && ns_start = ns_end -> always | _, _ -> Pattern_intervals { mode; bound; start; end_ } else Pattern_intervals { mode; bound; start; end_ } let hms_intervals ?(inc_exc : inc_exc = `Exc) (a : Timedesc.Time.t) (b : Timedesc.Time.t) : t = let module T = Timedesc.Time in pattern_intervals ~inc_exc `Whole (Points.make_exn ~hour:(T.hour a) ~minute:(T.minute a) ~second:(T.second a) ~ns:(T.ns a) ~lean_toward:`Earlier ()) (Points.make_exn ~hour:(T.hour b) ~minute:(T.minute b) ~second:(T.second b) ~ns:(T.ns b) ~lean_toward:`Earlier ()) let sorted_interval_seq ?(skip_invalid : bool = false) (s : Interval'.t Seq.t) : t = let s = s |> Intervals.Filter.filter_empty |> (if skip_invalid then Intervals.Filter.filter_invalid else Intervals.Check.check_if_valid) |> Seq.filter_map (fun (x, y) -> match ( Timedesc.of_timestamp ~tz_of_date_time:Timedesc.Time_zone.utc x, Timedesc.of_timestamp ~tz_of_date_time:Timedesc.Time_zone.utc (Timedesc.Span.pred y) ) with | Some _, Some _ -> Some (x, y) | _, _ -> if skip_invalid then None else raise Interval_is_invalid) |> Intervals.Check.check_if_sorted |> Intervals.normalize ~skip_filter_invalid:true ~skip_sort:true |> slice_valid_interval in match s () with Seq.Nil -> Empty | _ -> Intervals s let sorted_intervals ?skip_invalid (l : Interval'.t list) : t = l |> CCList.to_seq |> sorted_interval_seq ?skip_invalid let intervals ?(skip_invalid : bool = false) (l : Interval'.t list) : t = let s = l |> Intervals.Filter.filter_empty_list |> (if skip_invalid then Intervals.Filter.filter_invalid_list else Intervals.Check.check_if_valid_list) |> CCList.filter_map (fun (x, y) -> match ( Timedesc.of_timestamp ~tz_of_date_time:Timedesc.Time_zone.utc x, Timedesc.of_timestamp ~tz_of_date_time:Timedesc.Time_zone.utc (Timedesc.Span.pred y) ) with | Some _, Some _ -> Some (x, y) | _, _ -> if skip_invalid then None else raise Interval_is_invalid) |> Intervals.Sort.sort_uniq_intervals_list |> CCList.to_seq |> Intervals.normalize ~skip_filter_invalid:true ~skip_sort:true |> slice_valid_interval in match s () with Seq.Nil -> Empty | _ -> Intervals s let interval_seq ?skip_invalid (s : Interval'.t Seq.t) : t = s |> CCList.of_seq |> intervals ?skip_invalid let interval_of_date_time date_time = let x = Timedesc.to_timestamp_single date_time in (x, Timedesc.Span.succ x) let date_time_seq date_times = date_times |> Seq.map interval_of_date_time |> interval_seq let date_times date_times = date_times |> CCList.to_seq |> date_time_seq let sorted_date_time_seq date_times = date_times |> Seq.map interval_of_date_time |> sorted_interval_seq let sorted_date_times date_times = date_times |> CCList.to_seq |> sorted_date_time_seq let date_time date_time = date_times [ date_time ] let interval_of_timestamp_precise ~skip_invalid x = match Timedesc.of_timestamp ~tz_of_date_time:Timedesc.Time_zone.utc x with | Some _ -> Some (x, Timedesc.Span.succ x) | None -> if skip_invalid then None else raise Invalid_timestamp let timestamp_seq ?(skip_invalid = false) timestamps = timestamps |> Seq.filter_map (interval_of_timestamp_precise ~skip_invalid) |> interval_seq let timestamps ?(skip_invalid = false) timestamps = timestamps |> CCList.filter_map (interval_of_timestamp_precise ~skip_invalid) |> intervals let sorted_timestamp_seq ?(skip_invalid = false) timestamps = timestamps |> Seq.filter_map (interval_of_timestamp_precise ~skip_invalid) |> sorted_interval_seq let sorted_timestamps ?(skip_invalid = false) timestamps = timestamps |> CCList.filter_map (interval_of_timestamp_precise ~skip_invalid) |> sorted_intervals let timestamp x = timestamps [ x ] let now () = timestamp (Timedesc.Timestamp.now ()) let before_timestamp timestamp = intervals [ (Timedesc.Timestamp.min_val, timestamp) ] let since_timestamp timestamp = intervals [ (timestamp, Timedesc.Timestamp.max_val) ] let after_timestamp timestamp = intervals [ (Timedesc.Span.succ timestamp, Timedesc.Timestamp.max_val) ] let before dt = before_timestamp Timedesc.(to_timestamp dt |> min_of_local_result) let since dt = since_timestamp Timedesc.(to_timestamp dt |> max_of_local_result) let after dt = after_timestamp Timedesc.(to_timestamp dt |> max_of_local_result) let nth_weekday_of_month (n : int) wday = let first_weekday_of_month wday = pattern ~day_ranges:[ `Range_inc (1, 7) ] ~weekdays:[ wday ] () in let second_weekday_of_month wday = pattern ~day_ranges:[ `Range_inc (8, 14) ] ~weekdays:[ wday ] () in let third_weekday_of_month wday = pattern ~day_ranges:[ `Range_inc (15, 21) ] ~weekdays:[ wday ] () in let fourth_weekday_of_month wday = pattern ~day_ranges:[ `Range_inc (22, 28) ] ~weekdays:[ wday ] () in let fifth_weekday_of_month wday = pattern ~days:[ 29; 30; 31 ] ~weekdays:[ wday ] () in match n with | 0 -> invalid_arg "nth_weekday_of_month: n = 0" | 1 -> first_weekday_of_month wday | 2 -> second_weekday_of_month wday | 3 -> third_weekday_of_month wday | 4 -> fourth_weekday_of_month wday | 5 -> fifth_weekday_of_month wday | _ -> invalid_arg "nth_weekday_of_month: n > 5" let full_string_of_weekday (wday : Timedesc.weekday) : string = match wday with | `Sun -> "Sunday" | `Mon -> "Monday" | `Tue -> "Tuesday" | `Wed -> "Wednesday" | `Thu -> "Thursday" | `Fri -> "Friday" | `Sat -> "Saturday" let weekday_of_full_string s : Timedesc.weekday option = match s with | "Sunday" -> Some `Sun | "Monday" -> Some `Mon | "Tuesday" -> Some `Tue | "Wednesday" -> Some `Wed | "Thursday" -> Some `Thu | "Friday" -> Some `Fri | "Saturday" -> Some `Sat | _ -> None let abbr_string_of_weekday (wday : Timedesc.weekday) : string = String.sub (full_string_of_weekday wday) 0 3 let weekday_of_abbr_string s : Timedesc.weekday option = match s with | "Sun" -> Some `Sun | "Mon" -> Some `Mon | "Tue" -> Some `Tue | "Wed" -> Some `Wed | "Thu" -> Some `Thu | "Fri" -> Some `Fri | "Sat" -> Some `Sat | _ -> None let full_string_of_month (month : int) : string option = match month with | 1 -> Some "January" | 2 -> Some "February" | 3 -> Some "March" | 4 -> Some "April" | 5 -> Some "May" | 6 -> Some "June" | 7 -> Some "July" | 8 -> Some "August" | 9 -> Some "September" | 10 -> Some "October" | 11 -> Some "November" | 12 -> Some "December" | _ -> None let month_of_full_string s : int option = match s with | "January" -> Some 1 | "February" -> Some 2 | "March" -> Some 3 | "April" -> Some 4 | "May" -> Some 5 | "June" -> Some 6 | "July" -> Some 7 | "August" -> Some 8 | "September" -> Some 9 | "October" -> Some 10 | "November" -> Some 11 | "December" -> Some 12 | _ -> None let abbr_string_of_month (month : int) : string option = CCOption.map (fun s -> String.sub s 0 3) (full_string_of_month month) let month_of_abbr_string s : int option = match s with | "Jan" -> Some 1 | "Feb" -> Some 2 | "Mar" -> Some 3 | "Apr" -> Some 4 | "May" -> Some 5 | "Jun" -> Some 6 | "Jul" -> Some 7 | "Aug" -> Some 8 | "Sep" -> Some 9 | "Oct" -> Some 10 | "Nov" -> Some 11 | "Dec" -> Some 12 | _ -> None
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>