package tezos-protocol-020-PsParisC
Tezos protocol 020-PsParisC package
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/tezos_raw_protocol_020_PsParisC/merkle_list.ml.html
Source file merkle_list.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
(*****************************************************************************) (* *) (* Open Source License *) (* Copyright (c) 2022 Nomadic Labs <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) type error += Merkle_list_invalid_position let max_depth ~count_limit = (* We assume that the Merkle_tree implementation computes a tree in a logarithmic size of the number of leaves. *) let log2 n = Z.numbits (Z.of_int n) in log2 count_limit let () = register_error_kind `Temporary ~id:"Merkle_list_invalid_position" ~title:"Merkle_list_invalid_position" ~description:"Merkle_list_invalid_position" ~pp:(fun ppf () -> Format.fprintf ppf "%s" "Merkle_list_invalid_position") Data_encoding.empty (function Merkle_list_invalid_position -> Some () | _ -> None) (fun () -> Merkle_list_invalid_position) module type T = sig type t type h type elt type path val dummy_path : path val pp_path : Format.formatter -> path -> unit val nil : t val empty : h val root : t -> h val snoc : t -> elt -> t val snoc_tr : t -> elt -> t val of_list : elt list -> t val compute : elt list -> h val path_encoding : path Data_encoding.t val bounded_path_encoding : ?max_length:int -> unit -> path Data_encoding.t val compute_path : t -> int -> path tzresult val check_path : path -> int -> elt -> h -> bool tzresult val path_depth : path -> int val elt_bytes : elt -> Bytes.t module Internal_for_tests : sig val path_to_list : path -> h list val equal : t -> t -> bool val to_list : t -> h list end end module Make (El : sig type t val to_bytes : t -> bytes end) (H : S.HASH) : T with type elt = El.t and type h = H.t = struct type h = H.t type elt = El.t let elt_bytes = El.to_bytes (* The goal of this structure is to model an append-only list. Its internal representation is that of a binary tree whose leaves are all at the same level (the tree's height). To insert a new element in a full tree t, we create a new root with t as its left subtree and a new tree t' as its right subtree. t' is just a left-spine of the same height as t. Visually, t = / \ t' = / snoc 4 t = / \ /\ /\ / / \ / 0 1 2 3 4 /\ /\ / 0 1 2 3 4 Then, this is a balanced tree by construction. As the key in the tree for a given position is the position's binary decomposition of size height(tree), the tree is dense. For that reason, the use of extenders is not needed. *) type tree = Empty | Leaf of h | Node of (h * tree * tree) (* The tree has the following invariants: A node [Node left right] if valid iff 1. [right] is Empty and [left] is not Empty, or 2. [right] is not Empty and [left] is full Additionally: [t.depth] is the height of [t.tree] and [t.next_pos] is the number of leaves in [t.tree] *) type t = {tree : tree; depth : int; next_pos : int} type path = h list let dummy_path = [] let pp_path ppf = Format.fprintf ppf "%a" (Format.pp_print_list ~pp_sep:(fun fmt () -> Format.fprintf fmt ";@ ") H.pp) let empty = H.zero let root = function Empty -> empty | Leaf h -> h | Node (h, _, _) -> h let nil = {tree = Empty; depth = 0; next_pos = 0} let hash_elt el = H.hash_bytes [elt_bytes el] let leaf_of el = Leaf (hash_elt el) let hash2 h1 h2 = H.(hash_bytes [to_bytes h1; to_bytes h2]) let node_of t1 t2 = Node (hash2 (root t1) (root t2), t1, t2) (* to_bin computes the [depth]-long binary representation of [pos] (left-padding with 0s if required). This corresponds to the tree traversal of en element at position [pos] (false = left, true = right). Pre-condition: pos >= 0 /| pos < 2^depth Post-condition: len(to_bin pos depth) = depth *) let to_bin ~pos ~depth = let rec aux acc pos depth = let pos', dir = (pos / 2, pos mod 2) in match depth with | 0 -> acc | d -> aux (Compare.Int.(dir = 1) :: acc) pos' (d - 1) in aux [] pos depth (* Constructs a tree of a given depth in which every right subtree is empty * and the only leaf contains the hash of el. *) let make_spine_with el = let rec aux left = function | 0 -> left | d -> (aux [@tailcall]) (node_of left Empty) (d - 1) in aux (leaf_of el) let snoc t (el : elt) = let rec traverse tree depth key = match (tree, key) with | Node (_, t_left, Empty), true :: _key -> (* The base case where the left subtree is full and we start * the right subtree by creating a new tree the size of the remaining * depth and placing the new element in its leftmost position. *) let t_right = make_spine_with el (depth - 1) in node_of t_left t_right | Node (_, t_left, Empty), false :: key -> (* Traversing left, the left subtree is not full (and thus the right * subtree is empty). Recurse on left subtree. *) let t_left = traverse t_left (depth - 1) key in node_of t_left Empty | Node (_, t_left, t_right), true :: key -> (* Traversing right, the left subtree is full. * Recurse on right subtree *) let t_right = traverse t_right (depth - 1) key in node_of t_left t_right | _, _ -> (* Impossible by construction of the tree and of the key. * See [tree] invariants and [to_bin]. *) assert false in let tree', depth' = match (t.tree, t.depth, t.next_pos) with | Empty, 0, 0 -> (node_of (leaf_of el) Empty, 1) | tree, depth, pos when Int32.(equal (shift_left 1l depth) (of_int pos)) -> let t_right = make_spine_with el depth in (node_of tree t_right, depth + 1) | tree, depth, pos -> let key = to_bin ~pos ~depth in (traverse tree depth key, depth) in {tree = tree'; depth = depth'; next_pos = t.next_pos + 1} type zipper = Left of zipper * tree | Right of tree * zipper | Top let rec rebuild_tree z t = match z with | Top -> t | Left (z, r) -> (rebuild_tree [@tailcall]) z (node_of t r) | Right (l, z) -> (rebuild_tree [@tailcall]) z (node_of l t) let snoc_tr t (el : elt) = let rec traverse (z : zipper) tree depth key = match (tree, key) with | Node (_, t_left, Empty), true :: _key -> let t_right = make_spine_with el (depth - 1) in rebuild_tree z (node_of t_left t_right) | Node (_, t_left, Empty), false :: key -> let z = Left (z, Empty) in (traverse [@tailcall]) z t_left (depth - 1) key | Node (_, t_left, t_right), true :: key -> let z = Right (t_left, z) in (traverse [@tailcall]) z t_right (depth - 1) key | _, _ -> (* Impossible by construction of the tree and of the key. * See [tree] invariants and [to_bin]. *) assert false in let tree', depth' = match (t.tree, t.depth, t.next_pos) with | Empty, 0, 0 -> (node_of (leaf_of el) Empty, 1) | tree, depth, pos when Int32.(equal (shift_left 1l depth) (of_int pos)) -> let t_right = make_spine_with el depth in (node_of tree t_right, depth + 1) | tree, depth, pos -> let key = to_bin ~pos ~depth in (traverse Top tree depth key, depth) in {tree = tree'; depth = depth'; next_pos = t.next_pos + 1} let rec tree_to_list = function | Empty -> [] | Leaf h -> [h] | Node (_, t_left, t_right) -> tree_to_list t_left @ tree_to_list t_right let path_encoding = Data_encoding.(list H.encoding) let bounded_path_encoding ?max_length () = match max_length with | None -> path_encoding | Some max_length -> Data_encoding.((list ~max_length) H.encoding) (* The order of the path is from bottom to top *) let compute_path {tree; depth; next_pos} pos = let open Result_syntax in if Compare.Int.(pos < 0 || pos >= next_pos) then tzfail Merkle_list_invalid_position else let key = to_bin ~pos ~depth in let rec aux acc tree key = match (tree, key) with | Leaf _, [] -> return acc | Node (_, l, r), b :: key -> if b then aux (root l :: acc) r key else aux (root r :: acc) l key | _ -> tzfail Merkle_list_invalid_position in aux [] tree key let check_path path pos el expected_root = let open Result_syntax in let depth = List.length path in if Compare.Int.(pos >= 0) && Compare.Z.(Z.of_int pos < Z.shift_left Z.one depth) then let key = List.rev @@ to_bin ~pos ~depth in let computed_root = List.fold_left (fun acc (sibling, b) -> if b then hash2 sibling acc else hash2 acc sibling) (hash_elt el) (List.combine_drop path key) in return (H.equal computed_root expected_root) else tzfail Merkle_list_invalid_position let path_depth path = List.length path let breadth_first_traversal ~leaf_func ~node_func ~empty ~res l = let rec aux ~depth l = let rec pairs acc = function | [] -> List.rev acc | [x] -> List.rev (node_func x empty :: acc) | x :: y :: xs -> pairs (node_func x y :: acc) xs in match pairs [] l with | [] -> res depth empty | [t] -> res depth t | pl -> aux ~depth:(depth + 1) pl in aux (List.map leaf_func l) ~depth:0 let compute = breadth_first_traversal ~leaf_func:hash_elt ~node_func:hash2 ~empty ~res:(fun _ x -> x) let of_list l = let depth, tree = breadth_first_traversal ~leaf_func:leaf_of ~node_func:node_of ~empty:Empty ~res:(fun d l -> (d + 1, l)) l in {tree; depth; next_pos = List.length l} let root t = root t.tree module Internal_for_tests = struct let path_to_list x = x let to_list tree = tree_to_list tree.tree let equal t1 t2 = let rec eq_tree t1 t2 = match (t1, t2) with | Empty, Empty -> true | Leaf h1, Leaf h2 -> H.equal h1 h2 | Node (h1, l1, r1), Node (h2, l2, r2) -> H.equal h1 h2 && eq_tree l1 l2 && eq_tree r1 r2 | _ -> false in Compare.Int.equal t1.depth t2.depth && Compare.Int.equal t1.next_pos t2.next_pos && eq_tree t1.tree t2.tree end end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>