package tezos-protocol-020-PsParisC
Tezos protocol 020-PsParisC package
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/tezos_raw_protocol_020_PsParisC/full_staking_balance_repr.ml.html
Source file full_staking_balance_repr.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
(*****************************************************************************) (* *) (* SPDX-License-Identifier: MIT *) (* Copyright (c) 2023 Nomadic Labs, <contact@nomadic-labs.com> *) (* *) (*****************************************************************************) (** This module is responsible for the construction, observation and encoding of full staking balances that are maintained to be used at cycle end to compute staking rights. The module will handle a lazy migration starting at protocol P that adds two new fields to the balance, the minimal delegated balance over the cycle and the last level at which it has been modified. As there is no trivial default value for Level_repr, the level_of_min_delegated is optional but the module must preserve the invariant that if a min_delegated_in_cycle has been stored, a level is stored with it. *) type t = { own_frozen : Tez_repr.t; staked_frozen : Tez_repr.t; delegated : Tez_repr.t; min_delegated_in_cycle : Tez_repr.t; level_of_min_delegated : Level_repr.t option; } let cycle_of_min_delegated (level_of_min_delegated : Level_repr.t option) = match level_of_min_delegated with | None -> Cycle_repr.root | Some l -> l.cycle let init ~own_frozen ~staked_frozen ~delegated ~current_level = { own_frozen; staked_frozen; delegated; min_delegated_in_cycle = delegated; level_of_min_delegated = Some current_level; } let encoding = let open Data_encoding in (* This encoding is backward-compatible with the encoding used in Oxford, so as to avoid a stitching in P. It will act as a lazy migration. The case in which [added_in_p] is [None] happen only for pre-existing values in the storage. For them, using [(delegated, None)] and using Cycle_repr.root when no level is set will behave correctly. *) let added_in_p = obj2 (req "min_delegated_in_cycle" Tez_repr.encoding) (req "level_of_min_delegated" (option Level_repr.encoding)) in conv (fun { own_frozen; staked_frozen; delegated; min_delegated_in_cycle; level_of_min_delegated; } -> ( own_frozen, staked_frozen, delegated, Some (min_delegated_in_cycle, level_of_min_delegated) )) (fun (own_frozen, staked_frozen, delegated, added_in_p_opt) -> let min_delegated_in_cycle, level_of_min_delegated = added_in_p_opt |> Option.value ~default:(delegated, None) in { own_frozen; staked_frozen; delegated; min_delegated_in_cycle; level_of_min_delegated; }) (obj4 (req "own_frozen" Tez_repr.encoding) (req "staked_frozen" Tez_repr.encoding) (req "delegated" Tez_repr.encoding) (varopt "min_delegated_in_cycle_and_level" added_in_p)) let voting_weight { own_frozen; staked_frozen; delegated; min_delegated_in_cycle = _; level_of_min_delegated = _; } = let open Result_syntax in let* frozen = Tez_repr.(own_frozen +? staked_frozen) in let+ all = Tez_repr.(frozen +? delegated) in Tez_repr.to_mutez all let apply_slashing ~percentage { own_frozen; staked_frozen; delegated; min_delegated_in_cycle; level_of_min_delegated; } = let remaining_percentage = Percentage.neg percentage in let own_frozen = Tez_repr.mul_percentage ~rounding:`Down own_frozen remaining_percentage in let staked_frozen = Tez_repr.mul_percentage ~rounding:`Down staked_frozen remaining_percentage in { own_frozen; staked_frozen; delegated; min_delegated_in_cycle; level_of_min_delegated; } let own_frozen { own_frozen; staked_frozen = _; delegated = _; min_delegated_in_cycle = _; level_of_min_delegated = _; } = own_frozen let staked_frozen { own_frozen = _; staked_frozen; delegated = _; min_delegated_in_cycle = _; level_of_min_delegated = _; } = staked_frozen let total_frozen { own_frozen; staked_frozen; delegated = _; min_delegated_in_cycle = _; level_of_min_delegated = _; } = Tez_repr.(own_frozen +? staked_frozen) let current_delegated { own_frozen = _; staked_frozen = _; delegated; min_delegated_in_cycle = _; level_of_min_delegated = _; } = delegated (* The minimum over the cycle is either: - the current delegated value if it didn't change during the cycle, i.e. [cycle_of_min_delegated] is not the current cycle; - or the stored [min_delegated_in_cycle] otherwise. *) let min_delegated_in_cycle ~current_cycle { own_frozen = _; staked_frozen = _; delegated; min_delegated_in_cycle; level_of_min_delegated; } = let cycle_of_min_delegated = cycle_of_min_delegated level_of_min_delegated in if Cycle_repr.(cycle_of_min_delegated < current_cycle) then delegated else ( assert (Cycle_repr.(cycle_of_min_delegated = current_cycle)) ; min_delegated_in_cycle) let current_total { own_frozen; staked_frozen; delegated; min_delegated_in_cycle = _; level_of_min_delegated = _; } = let open Result_syntax in let* total_frozen = Tez_repr.(own_frozen +? staked_frozen) in Tez_repr.(total_frozen +? delegated) let allowed_staked_frozen ~adaptive_issuance_global_limit_of_staking_over_baking ~delegate_limit_of_staking_over_baking_millionth { own_frozen; staked_frozen; delegated = _; min_delegated_in_cycle = _; level_of_min_delegated = _; } = let global_limit_of_staking_over_baking_millionth = Int64.( mul 1_000_000L (of_int adaptive_issuance_global_limit_of_staking_over_baking)) in let limit_of_staking_over_baking_millionth = Compare.Int64.min global_limit_of_staking_over_baking_millionth (Int64.of_int32 delegate_limit_of_staking_over_baking_millionth) in match Tez_repr.mul_ratio ~rounding:`Down own_frozen ~num:limit_of_staking_over_baking_millionth ~den:1_000_000L with | Ok max_allowed_staked_frozen -> Tez_repr.min staked_frozen max_allowed_staked_frozen | Error _max_allowed_staked_frozen_overflows -> staked_frozen let own_ratio ~adaptive_issuance_global_limit_of_staking_over_baking ~delegate_limit_of_staking_over_baking_millionth ({ own_frozen; staked_frozen = _; delegated = _; min_delegated_in_cycle = _; level_of_min_delegated = _; } as t) = if Tez_repr.(own_frozen = zero) then (0L, 1L) else let allowed_staked_frozen = allowed_staked_frozen ~adaptive_issuance_global_limit_of_staking_over_baking ~delegate_limit_of_staking_over_baking_millionth t in if Tez_repr.(allowed_staked_frozen = zero) then (1L, 1L) else let own_frozen = Tez_repr.to_mutez own_frozen in let allowed_staked_frozen = Tez_repr.to_mutez allowed_staked_frozen in (own_frozen, Int64.add own_frozen allowed_staked_frozen) let has_minimal_frozen_stake ~minimal_frozen_stake full_staking_balance = let own_frozen = own_frozen full_staking_balance in Tez_repr.(own_frozen >= minimal_frozen_stake) (* The set of delegates to consider [Active_delegates_with_minimal_stake] is an over-approximation of participating delegates. It is maintained by {!Stake_storage}. To avoid having to do any maintenance at cycle end, we have to rely on values that do not change when crossing cycle boundaries: the current amount works, the minimal in a given cycle wouldn't. *) let has_minimal_stake_to_be_considered ~minimal_stake full_staking_balance = match current_total full_staking_balance with | Error _total_overflows -> true (* If the total overflows, we are definitely over the minimal stake. *) | Ok staking_balance -> Tez_repr.(staking_balance >= minimal_stake) let remove_delegated ~(current_level : Level_repr.t) ~amount { own_frozen; staked_frozen; delegated; min_delegated_in_cycle = old_min_delegated_in_cycle; level_of_min_delegated; } = let open Result_syntax in let+ delegated = Tez_repr.(delegated -? amount) in let cycle_of_min_delegated = cycle_of_min_delegated level_of_min_delegated in let current_cycle = current_level.cycle in let min_delegated_in_cycle, level_of_min_delegated = if Cycle_repr.(cycle_of_min_delegated < current_cycle) then (* after decrease *) (delegated, Some current_level) else ( assert (Cycle_repr.(cycle_of_min_delegated = current_cycle)) ; let minimum = Tez_repr.min delegated old_min_delegated_in_cycle in ( minimum, if Tez_repr.(minimum = old_min_delegated_in_cycle) then level_of_min_delegated else Some current_level )) in { own_frozen; staked_frozen; delegated; min_delegated_in_cycle; level_of_min_delegated; } let remove_own_frozen ~amount { own_frozen; staked_frozen; delegated; min_delegated_in_cycle; level_of_min_delegated; } = let open Result_syntax in let+ own_frozen = Tez_repr.(own_frozen -? amount) in { own_frozen; staked_frozen; delegated; min_delegated_in_cycle; level_of_min_delegated; } let remove_staked_frozen ~amount { own_frozen; staked_frozen; delegated; min_delegated_in_cycle; level_of_min_delegated; } = let open Result_syntax in let+ staked_frozen = Tez_repr.(staked_frozen -? amount) in { own_frozen; staked_frozen; delegated; min_delegated_in_cycle; level_of_min_delegated; } let add_delegated ~(current_level : Level_repr.t) ~amount { own_frozen; staked_frozen; delegated; min_delegated_in_cycle = old_min_delegated_in_cycle; level_of_min_delegated; } = let open Result_syntax in let cycle_of_min_delegated = cycle_of_min_delegated level_of_min_delegated in let current_cycle = current_level.cycle in let min_delegated_in_cycle, level_of_min_delegated = if Cycle_repr.(cycle_of_min_delegated < current_cycle) then (* before increase *) (delegated, Some current_level) else ( assert (Cycle_repr.(cycle_of_min_delegated = current_cycle)) ; (old_min_delegated_in_cycle, level_of_min_delegated)) in let+ delegated = Tez_repr.(delegated +? amount) in { own_frozen; staked_frozen; delegated; min_delegated_in_cycle; level_of_min_delegated; } let add_own_frozen ~amount { own_frozen; staked_frozen; delegated; min_delegated_in_cycle; level_of_min_delegated; } = let open Result_syntax in let+ own_frozen = Tez_repr.(own_frozen +? amount) in { own_frozen; staked_frozen; delegated; min_delegated_in_cycle; level_of_min_delegated; } let add_staked_frozen ~amount { own_frozen; staked_frozen; delegated; min_delegated_in_cycle; level_of_min_delegated; } = let open Result_syntax in let+ staked_frozen = Tez_repr.(staked_frozen +? amount) in { own_frozen; staked_frozen; delegated; min_delegated_in_cycle; level_of_min_delegated; } module Internal_for_tests_and_RPCs = struct let min_delegated_in_cycle { own_frozen = _; staked_frozen = _; delegated = _; min_delegated_in_cycle; level_of_min_delegated = _; } = min_delegated_in_cycle let level_of_min_delegated { own_frozen = _; staked_frozen = _; delegated = _; min_delegated_in_cycle = _; level_of_min_delegated; } = level_of_min_delegated end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>