package tezos-protocol-017-PtNairob
Tezos protocol 017-PtNairob package
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/tezos_raw_protocol_017_PtNairob/script_repr.ml.html
Source file script_repr.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
(*****************************************************************************) (* *) (* Open Source License *) (* Copyright (c) 2018 Dynamic Ledger Solutions, Inc. <contact@tezos.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) type location = Micheline.canonical_location let location_encoding = Micheline.canonical_location_encoding type annot = Micheline.annot type expr = Michelson_v1_primitives.prim Micheline.canonical type lazy_expr = expr Data_encoding.lazy_t type 'location michelson_node = ('location, Michelson_v1_primitives.prim) Micheline.node type node = location michelson_node let expr_encoding = Micheline.canonical_encoding ~variant:"michelson_v1" Michelson_v1_primitives.prim_encoding type error += Lazy_script_decode (* `Permanent *) let () = register_error_kind `Permanent ~id:"invalid_binary_format" ~title:"Invalid binary format" ~description: "Could not deserialize some piece of data from its binary representation" ~pp:(fun fmt () -> Format.fprintf fmt "Could not deserialize some piece of data from its binary \ representation") Data_encoding.empty (function Lazy_script_decode -> Some () | _ -> None) (fun () -> Lazy_script_decode) let lazy_expr_encoding = Data_encoding.lazy_encoding expr_encoding let lazy_expr expr = Data_encoding.make_lazy expr_encoding expr type t = {code : lazy_expr; storage : lazy_expr} let encoding = let open Data_encoding in def "scripted.contracts" @@ conv (fun {code; storage} -> (code, storage)) (fun (code, storage) -> {code; storage}) (obj2 (req "code" lazy_expr_encoding) (req "storage" lazy_expr_encoding)) module S = Saturation_repr module Micheline_size = struct type t = { nodes : S.may_saturate S.t; string_bytes : S.may_saturate S.t; z_bytes : S.may_saturate S.t; } let make ~nodes ~string_bytes ~z_bytes = {nodes; string_bytes; z_bytes} let zero = {nodes = S.zero; string_bytes = S.zero; z_bytes = S.zero} let add_int acc n = let numbits = Z.numbits n in let z_bytes = S.safe_int ((numbits + 7) / 8) (* Compute the number of bytes in a Z.t *) in { nodes = S.succ acc.nodes; string_bytes = acc.string_bytes; z_bytes = S.add acc.z_bytes z_bytes; } let add_string acc n = let string_bytes = S.safe_int (String.length n) in { nodes = S.succ acc.nodes; string_bytes = S.add acc.string_bytes string_bytes; z_bytes = acc.z_bytes; } let add_bytes acc n = let string_bytes = S.safe_int (Bytes.length n) in { nodes = S.succ acc.nodes; string_bytes = S.add acc.string_bytes string_bytes; z_bytes = acc.z_bytes; } let add_node s = {s with nodes = S.succ s.nodes} (* We model annotations as Seqs of Strings *) let of_annots acc annots = List.fold_left (fun acc s -> add_string acc s) acc annots let rec of_nodes acc nodes more_nodes = let open Micheline in match nodes with | [] -> ( match more_nodes with | [] -> acc | nodes :: more_nodes -> (of_nodes [@ocaml.tailcall]) acc nodes more_nodes) | Int (_, n) :: nodes -> let acc = add_int acc n in (of_nodes [@ocaml.tailcall]) acc nodes more_nodes | String (_, s) :: nodes -> let acc = add_string acc s in (of_nodes [@ocaml.tailcall]) acc nodes more_nodes | Bytes (_, s) :: nodes -> let acc = add_bytes acc s in (of_nodes [@ocaml.tailcall]) acc nodes more_nodes | Prim (_, _, args, annots) :: nodes -> let acc = add_node acc in let acc = of_annots acc annots in (of_nodes [@ocaml.tailcall]) acc args (nodes :: more_nodes) | Seq (_, args) :: nodes -> let acc = add_node acc in (of_nodes [@ocaml.tailcall]) acc args (nodes :: more_nodes) let of_node node = of_nodes zero [node] [] let dot_product s1 s2 = S.add (S.mul s1.nodes s2.nodes) (S.add (S.mul s1.string_bytes s2.string_bytes) (S.mul s1.z_bytes s2.z_bytes)) end (* Costs pertaining to deserialization of Micheline values (bytes to Micheline). The costs are given in atomic steps (see [Gas_limit_repr]). *) module Micheline_decoding = struct (* Cost vector allowing to compute decoding costs as a function of the size of the Micheline term *) let micheline_size_dependent_cost = let traversal_cost = S.safe_int 60 in let string_per_byte_cost = S.safe_int 10 in let z_per_byte_cost = S.safe_int 10 in Micheline_size.make ~nodes:traversal_cost ~string_bytes:string_per_byte_cost ~z_bytes:z_per_byte_cost let bytes_dependent_cost = S.safe_int 20 end (* Costs pertaining to serialization of Micheline values (Micheline to bytes) The costs are given in atomic steps (see [Gas_limit_repr]). *) module Micheline_encoding = struct (* Cost vector allowing to compute encoding cost as a function of the size of the Micheline term *) let micheline_size_dependent_cost = let traversal_cost = S.safe_int 100 in let string_per_byte_cost = S.safe_int 10 in let z_per_byte_cost = S.safe_int 25 in Micheline_size.make ~nodes:traversal_cost ~string_bytes:string_per_byte_cost ~z_bytes:z_per_byte_cost let bytes_dependent_cost = S.safe_int 33 end let expr_size expr = Micheline_size.of_node (Micheline.root expr) (* Compute the cost of serializing a term of given [size]. *) let serialization_cost size = Gas_limit_repr.atomic_step_cost @@ Micheline_size.dot_product size Micheline_encoding.micheline_size_dependent_cost (* Compute the cost of serializing a given term. *) let micheline_serialization_cost v = serialization_cost (expr_size v) (* Compute the cost of deserializing a term of given [size]. *) let deserialization_cost size = Gas_limit_repr.atomic_step_cost @@ Micheline_size.dot_product size Micheline_decoding.micheline_size_dependent_cost (* Estimate the cost of deserializing a term encoded in [bytes_len] bytes. *) let deserialization_cost_estimated_from_bytes bytes_len = Gas_limit_repr.atomic_step_cost @@ S.mul Micheline_decoding.bytes_dependent_cost (S.safe_int bytes_len) (* Estimate the cost of serializing a term from its encoded form, having [bytes_len] bytes. *) let serialization_cost_estimated_from_bytes bytes_len = Gas_limit_repr.atomic_step_cost @@ S.mul Micheline_encoding.bytes_dependent_cost (S.safe_int bytes_len) (* Cost of running [strip_locations] on a term with [size] nodes. Note that [strip_locations] will reallocate a fresh Micheline tree. This only depends on the total number of nodes (not the size of the leaves). *) let cost_micheline_strip_locations size = Gas_limit_repr.atomic_step_cost @@ S.mul (S.safe_int size) (S.safe_int 51) (* TODO: https://gitlab.com/tezos/tezos/-/issues/2049 Plugin benchmarked gas. Replace this definition, copied from [cost_michelines_strip_locations]. *) (* Cost of running [strip_annotations] on a term with [size] nodes. Note that [strip_annotations] will reallocate a fresh Micheline tree. This only depends on the total number of nodes (not the size of the leaves). *) let cost_micheline_strip_annotations size = Gas_limit_repr.atomic_step_cost @@ S.mul (S.safe_int size) (S.safe_int 51) (* This is currently used to estimate the cost of serializing an operation. *) let bytes_node_cost s = serialization_cost_estimated_from_bytes (Bytes.length s) let deserialized_cost expr = Gas_limit_repr.atomic_step_cost @@ deserialization_cost (expr_size expr) let force_decode_cost lexpr = Data_encoding.apply_lazy ~fun_value:(fun _ -> Gas_limit_repr.free) ~fun_bytes:(fun b -> deserialization_cost_estimated_from_bytes (Bytes.length b)) ~fun_combine:(fun _ _ -> Gas_limit_repr.free) lexpr let stable_force_decode_cost lexpr = let has_bytes = Data_encoding.apply_lazy ~fun_value:(fun v -> `Only_value v) ~fun_bytes:(fun b -> `Has_bytes b) ~fun_combine:(fun _v b -> (* When the lazy_expr contains both a deserialized version and a serialized one, we compute the cost from the serialized version because its is cheaper to do. *) b) lexpr in match has_bytes with | `Has_bytes b -> deserialization_cost_estimated_from_bytes (Bytes.length b) | `Only_value v -> (* This code path should not be reached in theory because values that are decoded should have been encoded before. Here we use Data_encoding.Binary.length, which yields the same results as serializing the value and taking the size, without the need to encode (in particular, less allocations). *) deserialization_cost_estimated_from_bytes (Data_encoding.Binary.length expr_encoding v) let force_decode lexpr = match Data_encoding.force_decode lexpr with | Some v -> ok v | None -> error Lazy_script_decode let force_bytes_cost expr = (* Estimating the cost directly from the bytes would be cheaper, but using [serialization_cost] is more accurate. *) Data_encoding.apply_lazy ~fun_value:(fun v -> Some v) ~fun_bytes:(fun _ -> None) ~fun_combine:(fun _ _ -> None) expr |> Option.fold ~none:Gas_limit_repr.free ~some:micheline_serialization_cost let force_bytes expr = Error_monad.catch_f (fun () -> Data_encoding.force_bytes expr) (fun _ -> Lazy_script_decode) let unit = Micheline.strip_locations (Prim (0, Michelson_v1_primitives.D_Unit, [], [])) let unit_parameter = lazy_expr unit let is_unit v = match Micheline.root v with | Prim (_, Michelson_v1_primitives.D_Unit, [], []) -> true | _ -> false let is_unit_parameter = let unit_bytes = Data_encoding.force_bytes unit_parameter in Data_encoding.apply_lazy ~fun_value:is_unit ~fun_bytes:(fun b -> Compare.Bytes.equal b unit_bytes) ~fun_combine:(fun res _ -> res) let rec strip_annotations node = let open Micheline in match node with | (Int (_, _) | String (_, _) | Bytes (_, _)) as leaf -> leaf | Prim (loc, name, args, _) -> Prim (loc, name, List.map strip_annotations args, []) | Seq (loc, args) -> Seq (loc, List.map strip_annotations args) let rec micheline_fold_aux node f acc k = match node with | Micheline.Int (_, _) -> k (f acc node) | Micheline.String (_, _) -> k (f acc node) | Micheline.Bytes (_, _) -> k (f acc node) | Micheline.Prim (_, _, subterms, _) -> micheline_fold_nodes subterms f (f acc node) k | Micheline.Seq (_, subterms) -> micheline_fold_nodes subterms f (f acc node) k and micheline_fold_nodes subterms f acc k = match subterms with | [] -> k acc | node :: nodes -> micheline_fold_nodes nodes f acc @@ fun acc -> micheline_fold_aux node f acc k let fold node init f = micheline_fold_aux node f init (fun x -> x) let micheline_nodes node = fold node 0 @@ fun n _ -> n + 1 let strip_locations_cost node = let nodes = micheline_nodes node in cost_micheline_strip_locations nodes let strip_annotations_cost node = let nodes = micheline_nodes node in cost_micheline_strip_annotations nodes
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>