package tezos-protocol-017-PtNairob
Tezos protocol 017-PtNairob package
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/tezos_raw_protocol_017_PtNairob/sc_rollup_PVM_sig.ml.html
Source file sc_rollup_PVM_sig.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
(*****************************************************************************) (* *) (* Open Source License *) (* Copyright (c) 2021 Nomadic Labs <contact@nomadic-labs.com> *) (* Copyright (c) 2022 Trili Tech, <contact@trili.tech> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) (** This module introduces the semantics of Proof-generating Virtual Machines. A PVM defines an operational semantics for some computational model. The specificity of PVMs, in comparison with standard virtual machines, is their ability to generate and to validate a *compact* proof that a given atomic execution step turned a given state into another one. In the smart-contract rollups, PVMs are used for two purposes: - They allow for the externalization of rollup execution by completely specifying the operational semantics of a given rollup. This standardization of the semantics gives a unique and executable source of truth about the interpretation of smart-contract rollup inboxes, seen as a transformation of a rollup state. - They allow for the validation or refutation of a claim that the processing of some messages led to a given new rollup state (given an actual source of truth about the nature of these messages). *) (** An input to a PVM is the [message_counter] element of an inbox at a given [inbox_level] and contains a given [payload]. According the rollup management protocol, the payload must be obtained through {!Sc_rollup_inbox_message_repr.serialize} which follows a documented format. *) type inbox_message = { inbox_level : Raw_level_repr.t; message_counter : Z.t; payload : Sc_rollup_inbox_message_repr.serialized; } type reveal_data = | Raw_data of string | Metadata of Sc_rollup_metadata_repr.t | Dal_page of Dal_slot_repr.Page.content option type input = Inbox_message of inbox_message | Reveal of reveal_data let pp_inbox_message fmt {inbox_level; message_counter; _} = Format.fprintf fmt "@[<v 2>level: %a@,message index: %a@]" Raw_level_repr.pp inbox_level Z.pp_print message_counter let pp_reveal_data fmt = function | Raw_data _ -> Format.pp_print_string fmt "raw data" | Metadata metadata -> Sc_rollup_metadata_repr.pp fmt metadata | Dal_page content_opt -> Format.pp_print_option ~none:(fun fmt () -> Format.pp_print_string fmt "<No_dal_data>") (fun fmt _a -> Format.fprintf fmt "<Some_dal_data>") fmt content_opt let pp_input fmt = function | Inbox_message msg -> Format.fprintf fmt "@[<v 2>inbox message:@,%a@]" pp_inbox_message msg | Reveal reveal -> Format.fprintf fmt "@[<v 2>reveal: %a@]" pp_reveal_data reveal (** [inbox_message_encoding] encoding value for {!inbox_message}. *) let inbox_message_encoding = let open Data_encoding in conv (fun {inbox_level; message_counter; payload} -> (inbox_level, message_counter, (payload :> string))) (fun (inbox_level, message_counter, payload) -> let payload = Sc_rollup_inbox_message_repr.unsafe_of_string payload in {inbox_level; message_counter; payload}) (obj3 (req "inbox_level" Raw_level_repr.encoding) (req "message_counter" n) (req "payload" (string Hex))) let reveal_data_encoding = let open Data_encoding in let kind name = req "reveal_data_kind" (constant name) in let case_raw_data = case ~title:"raw data" (Tag 0) (obj2 (kind "raw_data") (req "raw_data" (check_size Constants_repr.sc_rollup_message_size_limit Variable.(string Hex)))) (function Raw_data m -> Some ((), m) | _ -> None) (fun ((), m) -> Raw_data m) and case_metadata = case ~title:"metadata" (Tag 1) (obj2 (kind "metadata") (req "metadata" Sc_rollup_metadata_repr.encoding)) (function Metadata md -> Some ((), md) | _ -> None) (fun ((), md) -> Metadata md) in let case_dal_page = case ~title:"dal page" (Tag 2) (obj2 (kind "dal_page") (req "dal_page_content" (option (bytes Hex)))) (function Dal_page p -> Some ((), p) | _ -> None) (fun ((), p) -> Dal_page p) in union [case_raw_data; case_metadata; case_dal_page] let input_encoding = let open Data_encoding in let kind name = req "input_kind" (constant name) in let case_inbox_message = case ~title:"inbox msg" (Tag 0) (obj2 (kind "inbox_message") (req "inbox_message" inbox_message_encoding)) (function Inbox_message m -> Some ((), m) | _ -> None) (fun ((), m) -> Inbox_message m) and case_reveal_revelation = case ~title:"reveal" (Tag 1) (obj2 (kind "reveal_revelation") (req "reveal_data" reveal_data_encoding)) (function Reveal d -> Some ((), d) | _ -> None) (fun ((), d) -> Reveal d) in union [case_inbox_message; case_reveal_revelation] (** [input_equal i1 i2] return whether [i1] and [i2] are equal. *) let inbox_message_equal a b = let {inbox_level; message_counter; payload} = a in (* To be robust to the addition of fields in [input] *) Raw_level_repr.equal inbox_level b.inbox_level && Z.equal message_counter b.message_counter && String.equal (payload :> string) (b.payload :> string) let reveal_data_equal a b = match (a, b) with | Raw_data a, Raw_data b -> String.equal a b | Raw_data _, _ -> false | Metadata a, Metadata b -> Sc_rollup_metadata_repr.equal a b | Metadata _, _ -> false | Dal_page a, Dal_page b -> Option.equal Bytes.equal a b | Dal_page _, _ -> false let input_equal a b = match (a, b) with | Inbox_message a, Inbox_message b -> inbox_message_equal a b | Inbox_message _, _ -> false | Reveal a, Reveal b -> reveal_data_equal a b | Reveal _, _ -> false module Input_hash = Blake2B.Make (Base58) (struct let name = "Smart_rollup_input_hash" let title = "A smart rollup input hash" let b58check_prefix = "\001\118\125\135" (* "scd1(37)" decoded from base 58. *) let size = Some 20 end) type reveal = | Reveal_raw_data of Sc_rollup_reveal_hash.t | Reveal_metadata | Request_dal_page of Dal_slot_repr.Page.t let reveal_encoding = let open Data_encoding in let kind name = req "reveal_kind" (constant name) in let case_raw_data = case ~title:"Reveal_raw_data" (Tag 0) (obj2 (kind "reveal_raw_data") (req "input_hash" Sc_rollup_reveal_hash.encoding)) (function Reveal_raw_data s -> Some ((), s) | _ -> None) (fun ((), s) -> Reveal_raw_data s) and case_metadata = case ~title:"Reveal_metadata" (Tag 1) (obj1 (kind "reveal_kind")) (function Reveal_metadata -> Some () | _ -> None) (fun () -> Reveal_metadata) in let case_dal_page = case ~title:"Request_dal_page" (Tag 2) (obj2 (kind "reveal_kind") (req "page_id" Dal_slot_repr.Page.encoding)) (function Request_dal_page s -> Some ((), s) | _ -> None) (fun ((), s) -> Request_dal_page s) in union [case_raw_data; case_metadata; case_dal_page] (** The PVM's current input expectations: - [No_input_required] if the machine is busy and has no need for new input. - [Initial] if the machine has never received an input so expects the very first item in the inbox. - [First_after (level, counter)] expects whatever comes next after that position in the inbox. - [Needs_metadata] if the machine needs the metadata to continue its execution. *) type input_request = | No_input_required | Initial | First_after of Raw_level_repr.t * Z.t | Needs_reveal of reveal (** [input_request_encoding] encoding value for {!input_request}. *) let input_request_encoding = let open Data_encoding in let kind name = req "input_request_kind" (constant name) in union ~tag_size:`Uint8 [ case ~title:"No_input_required" (Tag 0) (obj1 (kind "no_input_required")) (function No_input_required -> Some () | _ -> None) (fun () -> No_input_required); case ~title:"Initial" (Tag 1) (obj1 (kind "initial")) (function Initial -> Some () | _ -> None) (fun () -> Initial); case ~title:"First_after" (Tag 2) (obj3 (kind "first_after") (req "level" Raw_level_repr.encoding) (req "counter" n)) (function | First_after (level, counter) -> Some ((), level, counter) | _ -> None) (fun ((), level, counter) -> First_after (level, counter)); case ~title:"Needs_reveal" (Tag 3) (obj2 (kind "needs_reveal") (req "reveal" reveal_encoding)) (function Needs_reveal p -> Some ((), p) | _ -> None) (fun ((), p) -> Needs_reveal p); ] let pp_reveal fmt = function | Reveal_raw_data hash -> Sc_rollup_reveal_hash.pp fmt hash | Reveal_metadata -> Format.pp_print_string fmt "Reveal metadata" | Request_dal_page id -> Dal_slot_repr.Page.pp fmt id (** [pp_input_request fmt i] pretty prints the given input [i] to the formatter [fmt]. *) let pp_input_request fmt request = match request with | No_input_required -> Format.fprintf fmt "No_input_required" | Initial -> Format.fprintf fmt "Initial" | First_after (l, n) -> Format.fprintf fmt "First_after (level = %a, counter = %a)" Raw_level_repr.pp l Z.pp_print n | Needs_reveal reveal -> Format.fprintf fmt "Needs reveal of %a" pp_reveal reveal let reveal_equal p1 p2 = match (p1, p2) with | Reveal_raw_data h1, Reveal_raw_data h2 -> Sc_rollup_reveal_hash.equal h1 h2 | Reveal_raw_data _, _ -> false | Reveal_metadata, Reveal_metadata -> true | Reveal_metadata, _ -> false | Request_dal_page a, Request_dal_page b -> Dal_slot_repr.Page.equal a b | Request_dal_page _, _ -> false (** [input_request_equal i1 i2] return whether [i1] and [i2] are equal. *) let input_request_equal a b = match (a, b) with | No_input_required, No_input_required -> true | No_input_required, _ -> false | Initial, Initial -> true | Initial, _ -> false | First_after (l, n), First_after (m, o) -> Raw_level_repr.equal l m && Z.equal n o | First_after _, _ -> false | Needs_reveal p1, Needs_reveal p2 -> reveal_equal p1 p2 | Needs_reveal _, _ -> false (** Type that describes output values. *) type output = { outbox_level : Raw_level_repr.t; (** The outbox level containing the message. The level corresponds to the inbox level for which the message was produced. *) message_index : Z.t; (** The message index. *) message : Sc_rollup_outbox_message_repr.t; (** The message itself. *) } (** [output_encoding] encoding value for {!output}. *) let output_encoding = let open Data_encoding in conv (fun {outbox_level; message_index; message} -> (outbox_level, message_index, message)) (fun (outbox_level, message_index, message) -> {outbox_level; message_index; message}) (obj3 (req "outbox_level" Raw_level_repr.encoding) (req "message_index" n) (req "message" Sc_rollup_outbox_message_repr.encoding)) (** [pp_output fmt o] pretty prints the given output [o] to the formatter [fmt]. *) let pp_output fmt {outbox_level; message_index; message} = Format.fprintf fmt "@[%a@;%a@;%a@;@]" Raw_level_repr.pp outbox_level Z.pp_print message_index Sc_rollup_outbox_message_repr.pp message module type S = sig (** The state of the PVM denotes a state of the rollup. The life cycle of the PVM is as follows. It starts its execution from an {!initial_state}. The initial state is specialized at origination with a [boot_sector], using the {!install_boot_sector} function. The resulting state is call the “genesis” of the rollup. Afterwards, we classify states into two categories: "internal states" do not require any external information to be executed while "input states" are waiting for some information from the inbox to be executable. *) type state val pp : state -> (Format.formatter -> unit -> unit) Lwt.t (** A [context] represents the executable environment needed by the state to exist. Typically, the rollup node storage can be part of this context to allow the PVM state to be persistent. *) type context (** A [hash] characterizes the contents of a state. *) type hash = Sc_rollup_repr.State_hash.t (** During interactive refutation games, a player may need to provide a proof that a given execution step is valid. The PVM implementation is responsible for ensuring that this proof type has the correct semantics. A proof [p] has four parameters: - [start_hash := proof_start_state p] - [stop_hash := proof_stop_state p] - [input_requested := proof_input_requested p] - [input_given := proof_input_given p] The following predicate must hold of a valid proof: [exists start_state, stop_state. (state_hash start_state == start_hash) AND (Option.map state_hash stop_state == stop_hash) AND (is_input_state start_state == input_requested) AND (match (input_given, input_requested) with | (None, No_input_required) -> eval start_state == stop_state | (None, Initial) -> stop_state == None | (None, First_after (l, n)) -> stop_state == None | (Some input, No_input_required) -> true | (Some input, Initial) -> set_input input_given start_state == stop_state | (Some input, First_after (l, n)) -> set_input input_given start_state == stop_state)] In natural language---the two hash parameters [start_hash] and [stop_hash] must have actual [state] values (or possibly [None] in the case of [stop_hash]) of which they are the hashes. The [input_requested] parameter must be the correct request from the [start_hash], given according to [is_input_state]. Finally there are four possibilities of [input_requested] and [input_given]. - if no input is required, or given, the proof is a simple [eval] step ; - if input was required but not given, the [stop_hash] must be [None] (the machine is blocked) ; - if no input was required but some was given, this makes no sense and it doesn't matter if the proof is valid or invalid (this case will be ruled out by the inbox proof anyway) ; - finally, if input was required and given, the proof is a [set_input] step. *) type proof (** [proof]s are embedded in L1 refutation game operations using [proof_encoding]. Given that the size of L1 operations are limited, it is of *critical* importance to make sure that no execution step of the PVM can generate proofs that do not fit in L1 operations when encoded. If such a proof existed, the rollup could get stuck. *) val proof_encoding : proof Data_encoding.t (** [proof_start_state proof] returns the initial state hash of the [proof] execution step. *) val proof_start_state : proof -> hash (** [proof_stop_state proof] returns the final state hash of the [proof] execution step. *) val proof_stop_state : proof -> hash (** [state_hash state] returns a compressed representation of [state]. *) val state_hash : state -> hash Lwt.t (** [initial_state ~empty] is the initial state of the PVM, before its specialization with a given [boot_sector]. The initial state is built on the [empty] state which must be provided. *) val initial_state : empty:state -> state Lwt.t (** [install_boot_sector state boot_sector] specializes the initial [state] of a PVM using a dedicated [boot_sector], submitted at the origination of the rollup. *) val install_boot_sector : state -> string -> state Lwt.t (** [is_input_state state] returns the input expectations of the [state]---does it need input, and if so, how far through the inbox has it read so far? *) val is_input_state : state -> input_request Lwt.t (** [set_input input state] sets [input] in [state] as the next input to be processed. This must answer the [input_request] from [is_input_state state]. *) val set_input : input -> state -> state Lwt.t (** [eval s0] returns a state [s1] resulting from the execution of an atomic step of the rollup at state [s0]. *) val eval : state -> state Lwt.t (** [verify_proof input p] checks the proof [p] with input [input] and returns the [input_request] before the evaluation of the proof. See the doc-string for the [proof] type. [verify_proof input p] fails when the proof is invalid in regards to the given input. *) val verify_proof : input option -> proof -> input_request tzresult Lwt.t (** [produce_proof ctxt input_given state] should return a [proof] for the PVM step starting from [state], if possible. This may fail for a few reasons: - the [input_given] doesn't match the expectations of [state] ; - the [context] for this instance of the PVM doesn't have access to enough of the [state] to build the proof. *) val produce_proof : context -> input option -> state -> proof tzresult Lwt.t (** [verify_origination_proof proof boot_sector] verifies a proof supposedly generated by [produce_origination_proof]. *) val verify_origination_proof : proof -> string -> bool Lwt.t (** [produce_origination_proof context boot_sector] produces a proof [p] covering the specialization of a PVM, from the [initial_state] up to the genesis state wherein the [boot_sector] has been installed. *) val produce_origination_proof : context -> string -> proof tzresult Lwt.t (** The following type is inhabited by the proofs that a given [output] is part of the outbox of a given [state]. *) type output_proof (** [output_proof_encoding] encoding value for [output_proof]s. *) val output_proof_encoding : output_proof Data_encoding.t (** [output_of_output_proof proof] returns the [output] that is referred to in [proof]'s statement. *) val output_of_output_proof : output_proof -> output (** [state_of_output_proof proof] returns the [state] hash that is referred to in [proof]'s statement. *) val state_of_output_proof : output_proof -> hash (** [verify_output_proof output_proof] returns [true] iff [proof] is a valid witness that its [output] is part of its [state]'s outbox. *) val verify_output_proof : output_proof -> bool Lwt.t (** [produce_output_proof ctxt state output] returns a proof that witnesses the fact that [output] is part of [state]'s outbox. *) val produce_output_proof : context -> state -> output -> (output_proof, error) result Lwt.t (** [check_dissection ~default_number_of_sections ~start_chunk ~stop_chunk chunks] fails if the dissection encoded by the list [[start_chunk] @ chunks @ [stop_chunk]] does not satisfy the properties expected by the PVM. *) val check_dissection : default_number_of_sections:int -> start_chunk:Sc_rollup_dissection_chunk_repr.t -> stop_chunk:Sc_rollup_dissection_chunk_repr.t -> Sc_rollup_dissection_chunk_repr.t list -> unit tzresult (** [get_current_level state] returns the current level of the [state], returns [None] if it is not possible to compute the level. *) val get_current_level : state -> Raw_level_repr.t option Lwt.t module Internal_for_tests : sig (** [insert_failure state] corrupts the PVM state. This is used in the loser mode of the rollup node. *) val insert_failure : state -> state Lwt.t end end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>