package tezos-protocol-017-PtNairob
Tezos/Protocol: economic-protocol definition
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-17.3.tar.gz
sha256=7062cd57addd452852598a2214ade393130efa087b99068d53713bdf912b3680
sha512=08e4091144a03ce3c107fb91a66501bd8b65ca3278917c455a2eaac6df3e108ade63f6ab8340a4bb152d60f404326e464d0ec95d26cafe8e82f870465d24a5fc
doc/src/tezos-protocol-017-PtNairob.raw/sc_rollup_arith.ml.html
Source file sc_rollup_arith.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
(*****************************************************************************) (* *) (* Open Source License *) (* Copyright (c) 2021 Nomadic Labs <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) open Sc_rollup_repr module PS = Sc_rollup_PVM_sig (* This is the state hash of reference that both the prover of the node and the verifier of the protocol {!Protocol_implementation} have to agree on (if they do, it means they are using the same tree structure). We have to hard-code this value because the Arith PVM uses Irmin as its Merkle proof verification backend, and the economic protocol cannot create an empty Irmin context. Such a context is required to create an empty tree, itself required to create the initial state of the Arith PVM. Utlimately, the value of this constant is decided by the prover of reference (the only need is for it to be compatible with {!Protocol_implementation}.) Its value is the result of the following snippet {| let*! state = Prover.initial_state ~empty in Prover.state_hash state |} *) let reference_initial_state_hash = State_hash.of_b58check_exn "srs11Z9V76SGd97kGmDQXV8tEF67C48GMy77RuaHdF1kWLk6UTmMfj" type error += | Arith_proof_production_failed | Arith_output_proof_production_failed | Arith_invalid_claim_about_outbox let () = let open Data_encoding in let msg = "Invalid claim about outbox" in register_error_kind `Permanent ~id:"smart_rollup_arith_invalid_claim_about_outbox" ~title:msg ~pp:(fun fmt () -> Format.pp_print_string fmt msg) ~description:msg unit (function Arith_invalid_claim_about_outbox -> Some () | _ -> None) (fun () -> Arith_invalid_claim_about_outbox) ; let msg = "Output proof production failed" in register_error_kind `Permanent ~id:"smart_rollup_arith_output_proof_production_failed" ~title:msg ~pp:(fun fmt () -> Format.fprintf fmt "%s" msg) ~description:msg unit (function Arith_output_proof_production_failed -> Some () | _ -> None) (fun () -> Arith_output_proof_production_failed) ; let msg = "Proof production failed" in register_error_kind `Permanent ~id:"smart_rollup_arith_proof_production_failed" ~title:msg ~pp:(fun fmt () -> Format.fprintf fmt "%s" msg) ~description:msg unit (function Arith_proof_production_failed -> Some () | _ -> None) (fun () -> Arith_proof_production_failed) module type P = sig module Tree : Context.TREE with type key = string list and type value = bytes type tree = Tree.tree val hash_tree : tree -> State_hash.t type proof val proof_encoding : proof Data_encoding.t val proof_before : proof -> State_hash.t val proof_after : proof -> State_hash.t val verify_proof : proof -> (tree -> (tree * 'a) Lwt.t) -> (tree * 'a) option Lwt.t val produce_proof : Tree.t -> tree -> (tree -> (tree * 'a) Lwt.t) -> (proof * 'a) option Lwt.t end module type S = sig include PS.S val parse_boot_sector : string -> string option val pp_boot_sector : Format.formatter -> string -> unit val pp : state -> (Format.formatter -> unit -> unit) Lwt.t val get_tick : state -> Sc_rollup_tick_repr.t Lwt.t type status = | Halted | Waiting_for_input_message | Waiting_for_reveal | Waiting_for_metadata | Parsing | Evaluating val get_status : state -> status Lwt.t val get_outbox : Raw_level_repr.t -> state -> Sc_rollup_PVM_sig.output list Lwt.t type instruction = | IPush : int -> instruction | IAdd : instruction | IStore : string -> instruction val equal_instruction : instruction -> instruction -> bool val pp_instruction : Format.formatter -> instruction -> unit val get_parsing_result : state -> bool option Lwt.t val get_code : state -> instruction list Lwt.t val get_stack : state -> int list Lwt.t val get_var : state -> string -> int option Lwt.t val get_evaluation_result : state -> bool option Lwt.t val get_is_stuck : state -> string option Lwt.t end module Make (Context : P) : S with type context = Context.Tree.t and type state = Context.tree and type proof = Context.proof = struct module Tree = Context.Tree type context = Context.Tree.t type hash = State_hash.t type proof = Context.proof let proof_encoding = Context.proof_encoding let proof_start_state proof = Context.proof_before proof let proof_stop_state proof = Context.proof_after proof let parse_boot_sector s = Some s let pp_boot_sector fmt s = Format.fprintf fmt "%s" s type tree = Tree.tree type status = | Halted | Waiting_for_input_message | Waiting_for_reveal | Waiting_for_metadata | Parsing | Evaluating type instruction = | IPush : int -> instruction | IAdd : instruction | IStore : string -> instruction let equal_instruction i1 i2 = match (i1, i2) with | IPush x, IPush y -> Compare.Int.(x = y) | IAdd, IAdd -> true | IStore x, IStore y -> Compare.String.(x = y) | _, _ -> false let pp_instruction fmt = function | IPush x -> Format.fprintf fmt "push(%d)" x | IAdd -> Format.fprintf fmt "add" | IStore x -> Format.fprintf fmt "store(%s)" x let check_dissection ~default_number_of_sections ~start_chunk ~stop_chunk = let open Sc_rollup_dissection_chunk_repr in let dist = Sc_rollup_tick_repr.distance start_chunk.tick stop_chunk.tick in let section_maximum_size = Z.div dist (Z.of_int 2) in Sc_rollup_dissection_chunk_repr.( default_check ~section_maximum_size ~check_sections_number:default_check_sections_number ~default_number_of_sections ~start_chunk ~stop_chunk) (* The machine state is represented using a Merkle tree. Here is the data model of this state represented in the tree: - tick : Sc_rollup_tick_repr.t The current tick counter of the machine. - status : status The current status of the machine. - stack : int deque The stack of integers. - next_message : string option The current input message to be processed. - code : instruction deque The instructions parsed from the input message. - lexer_state : int * int The internal state of the lexer. - parsing_state : parsing_state The internal state of the parser. - parsing_result : bool option The outcome of parsing. - evaluation_result : bool option The outcome of evaluation. *) module State = struct type state = tree module Monad : sig type 'a t val run : 'a t -> state -> (state * 'a option) Lwt.t val is_stuck : string option t val internal_error : string -> 'a t val return : 'a -> 'a t module Syntax : sig val ( let* ) : 'a t -> ('a -> 'b t) -> 'b t end val remove : Tree.key -> unit t val find_value : Tree.key -> 'a Data_encoding.t -> 'a option t val children : Tree.key -> 'a Data_encoding.t -> (string * 'a) list t val get_value : default:'a -> Tree.key -> 'a Data_encoding.t -> 'a t val set_value : Tree.key -> 'a Data_encoding.t -> 'a -> unit t end = struct type 'a t = state -> (state * 'a option) Lwt.t let return x state = Lwt.return (state, Some x) let bind m f state = let open Lwt_syntax in let* state, res = m state in match res with None -> return (state, None) | Some res -> f res state module Syntax = struct let ( let* ) = bind end let run m state = m state let internal_error_key = ["internal_error"] let internal_error msg tree = let open Lwt_syntax in let* tree = Tree.add tree internal_error_key (Bytes.of_string msg) in return (tree, None) let is_stuck tree = let open Lwt_syntax in let* v = Tree.find tree internal_error_key in return (tree, Some (Option.map Bytes.to_string v)) let remove key tree = let open Lwt_syntax in let* tree = Tree.remove tree key in return (tree, Some ()) let decode encoding bytes state = let open Lwt_syntax in match Data_encoding.Binary.of_bytes_opt encoding bytes with | None -> internal_error "Error during decoding" state | Some v -> return (state, Some v) let find_value key encoding state = let open Lwt_syntax in let* obytes = Tree.find state key in match obytes with | None -> return (state, Some None) | Some bytes -> let* state, value = decode encoding bytes state in return (state, Some value) let children key encoding state = let open Lwt_syntax in let* children = Tree.list state key in let rec aux = function | [] -> return (state, Some []) | (key, tree) :: children -> ( let* obytes = Tree.to_value tree in match obytes with | None -> internal_error "Invalid children" state | Some bytes -> ( let* state, v = decode encoding bytes state in match v with | None -> return (state, None) | Some v -> ( let* state, l = aux children in match l with | None -> return (state, None) | Some l -> return (state, Some ((key, v) :: l))))) in aux children let get_value ~default key encoding = let open Syntax in let* ov = find_value key encoding in match ov with None -> return default | Some x -> return x let set_value key encoding value tree = let open Lwt_syntax in Data_encoding.Binary.to_bytes_opt encoding value |> function | None -> internal_error "Internal_Error during encoding" tree | Some bytes -> let* tree = Tree.add tree key bytes in return (tree, Some ()) end open Monad module Make_var (P : sig type t val name : string val initial : t val pp : Format.formatter -> t -> unit val encoding : t Data_encoding.t end) = struct let key = [P.name] let create = set_value key P.encoding P.initial let get = let open Monad.Syntax in let* v = find_value key P.encoding in match v with | None -> (* This case should not happen if [create] is properly called. *) return P.initial | Some v -> return v let set = set_value key P.encoding let pp = let open Monad.Syntax in let* v = get in return @@ fun fmt () -> Format.fprintf fmt "@[%s : %a@]" P.name P.pp v end module Make_dict (P : sig type t val name : string val pp : Format.formatter -> t -> unit val encoding : t Data_encoding.t end) = struct let key k = [P.name; k] let get k = find_value (key k) P.encoding let set k v = set_value (key k) P.encoding v let entries = children [P.name] P.encoding let mapped_to k v state = let open Lwt_syntax in let* state', _ = Monad.(run (set k v) state) in let* t = Tree.find_tree state (key k) and* t' = Tree.find_tree state' (key k) in Lwt.return (Option.equal Tree.equal t t') let pp = let open Monad.Syntax in let* l = entries in let pp_elem fmt (key, value) = Format.fprintf fmt "@[%s : %a@]" key P.pp value in return @@ fun fmt () -> Format.pp_print_list pp_elem fmt l end module Make_deque (P : sig type t val name : string val encoding : t Data_encoding.t end) = struct (* A stateful deque. [[head; end[] is the index range for the elements of the deque. The length of the deque is therefore [end - head]. *) let head_key = [P.name; "head"] let end_key = [P.name; "end"] let get_head = get_value ~default:Z.zero head_key Data_encoding.z let set_head = set_value head_key Data_encoding.z let get_end = get_value ~default:(Z.of_int 0) end_key Data_encoding.z let set_end = set_value end_key Data_encoding.z let idx_key idx = [P.name; Z.to_string idx] let top = let open Monad.Syntax in let* head_idx = get_head in let* end_idx = get_end in let* v = find_value (idx_key head_idx) P.encoding in if Z.(leq end_idx head_idx) then return None else match v with | None -> (* By invariants of the Deque. *) assert false | Some x -> return (Some x) let push x = let open Monad.Syntax in let* head_idx = get_head in let head_idx' = Z.pred head_idx in let* () = set_head head_idx' in set_value (idx_key head_idx') P.encoding x let pop = let open Monad.Syntax in let* head_idx = get_head in let* end_idx = get_end in if Z.(leq end_idx head_idx) then return None else let* v = find_value (idx_key head_idx) P.encoding in match v with | None -> (* By invariants of the Deque. *) assert false | Some x -> let* () = remove (idx_key head_idx) in let head_idx = Z.succ head_idx in let* () = set_head head_idx in return (Some x) let inject x = let open Monad.Syntax in let* end_idx = get_end in let end_idx' = Z.succ end_idx in let* () = set_end end_idx' in set_value (idx_key end_idx) P.encoding x let to_list = let open Monad.Syntax in let* head_idx = get_head in let* end_idx = get_end in let rec aux l idx = if Z.(lt idx head_idx) then return l else let* v = find_value (idx_key idx) P.encoding in match v with | None -> (* By invariants of deque *) assert false | Some v -> aux (v :: l) (Z.pred idx) in aux [] (Z.pred end_idx) let clear = remove [P.name] end module Current_tick = Make_var (struct include Sc_rollup_tick_repr let name = "tick" end) module Vars = Make_dict (struct type t = int let name = "vars" let encoding = Data_encoding.int31 let pp fmt x = Format.fprintf fmt "%d" x end) module Stack = Make_deque (struct type t = int let name = "stack" let encoding = Data_encoding.int31 end) module Code = Make_deque (struct type t = instruction let name = "code" let encoding = Data_encoding.( union [ case ~title:"push" (Tag 0) Data_encoding.int31 (function IPush x -> Some x | _ -> None) (fun x -> IPush x); case ~title:"add" (Tag 1) Data_encoding.unit (function IAdd -> Some () | _ -> None) (fun () -> IAdd); case ~title:"store" (Tag 2) Data_encoding.(string Plain) (function IStore x -> Some x | _ -> None) (fun x -> IStore x); ]) end) module Boot_sector = Make_var (struct type t = string let name = "boot_sector" let initial = "" let encoding = Data_encoding.(string Plain) let pp fmt s = Format.fprintf fmt "%s" s end) module Status = Make_var (struct type t = status let initial = Halted let encoding = Data_encoding.string_enum [ ("Halted", Halted); ("Waiting_for_input_message", Waiting_for_input_message); ("Waiting_for_reveal", Waiting_for_reveal); ("Waiting_for_metadata", Waiting_for_metadata); ("Parsing", Parsing); ("Evaluating", Evaluating); ] let name = "status" let string_of_status = function | Halted -> "Halted" | Waiting_for_input_message -> "Waiting for input message" | Waiting_for_reveal -> "Waiting for reveal" | Waiting_for_metadata -> "Waiting for metadata" | Parsing -> "Parsing" | Evaluating -> "Evaluating" let pp fmt status = Format.fprintf fmt "%s" (string_of_status status) end) module Required_reveal = Make_var (struct type t = PS.reveal option let initial = None let encoding = Data_encoding.option PS.reveal_encoding let name = "required_reveal" let pp fmt v = match v with | None -> Format.fprintf fmt "<none>" | Some h -> PS.pp_reveal fmt h end) module Metadata = Make_var (struct type t = Sc_rollup_metadata_repr.t option let initial = None let encoding = Data_encoding.option Sc_rollup_metadata_repr.encoding let name = "metadata" let pp fmt v = match v with | None -> Format.fprintf fmt "<none>" | Some v -> Sc_rollup_metadata_repr.pp fmt v end) module Current_level = Make_var (struct type t = Raw_level_repr.t let initial = Raw_level_repr.root let encoding = Raw_level_repr.encoding let name = "current_level" let pp = Raw_level_repr.pp end) type dal_slots_list = Dal_slot_index_repr.t list let dal_slots_list_encoding = Data_encoding.list Dal_slot_index_repr.encoding let pp_dal_slots_list = Format.pp_print_list ~pp_sep:(fun fmt () -> Format.pp_print_string fmt ":") Dal_slot_index_repr.pp type dal_parameters = { attestation_lag : int32; number_of_pages : int32; tracked_slots : dal_slots_list; } module Dal_parameters = Make_var (struct type t = dal_parameters let initial = (* This initial value is, from a semantic point of vue, equivalent to have [None], as no slot is tracked. For the initial values of the fields, only [tracked_slots]'s content matters. Setting it the empty set means that the rollup is not subscribed to the DAL. *) {attestation_lag = 1l; number_of_pages = 0l; tracked_slots = []} let encoding = let open Data_encoding in conv (fun {attestation_lag; number_of_pages; tracked_slots} -> (attestation_lag, number_of_pages, tracked_slots)) (fun (attestation_lag, number_of_pages, tracked_slots) -> {attestation_lag; number_of_pages; tracked_slots}) (obj3 (req "attestation_lag" int32) (req "number_of_pages" int32) (req "tracked_slots" dal_slots_list_encoding)) let name = "dal_parameters" let pp fmt {attestation_lag; number_of_pages; tracked_slots} = Format.fprintf fmt "dal:%ld:%ld:%a" attestation_lag number_of_pages pp_dal_slots_list tracked_slots end) module Dal_remaining_slots = Make_var (struct type t = dal_slots_list let initial = [] let encoding = dal_slots_list_encoding let name = "dal_remaining_slots" let pp = pp_dal_slots_list end) module Message_counter = Make_var (struct type t = Z.t option let initial = None let encoding = Data_encoding.option Data_encoding.n let name = "message_counter" let pp fmt = function | None -> Format.fprintf fmt "None" | Some c -> Format.fprintf fmt "Some %a" Z.pp_print c end) (** Store an internal message counter. This is used to distinguish an unparsable external message and a internal message, which we both treat as no-ops. *) module Internal_message_counter = Make_var (struct type t = Z.t let initial = Z.zero let encoding = Data_encoding.n let name = "internal_message_counter" let pp fmt c = Z.pp_print fmt c end) let incr_internal_message_counter = let open Monad.Syntax in let* current_counter = Internal_message_counter.get in Internal_message_counter.set (Z.succ current_counter) module Next_message = Make_var (struct type t = string option let initial = None let encoding = Data_encoding.(option (string Plain)) let name = "next_message" let pp fmt = function | None -> Format.fprintf fmt "None" | Some s -> Format.fprintf fmt "Some %s" s end) type parser_state = ParseInt | ParseVar | SkipLayout module Lexer_state = Make_var (struct type t = int * int let name = "lexer_buffer" let initial = (-1, -1) let encoding = Data_encoding.(tup2 int31 int31) let pp fmt (start, len) = Format.fprintf fmt "lexer.(start = %d, len = %d)" start len end) module Parser_state = Make_var (struct type t = parser_state let name = "parser_state" let initial = SkipLayout let encoding = Data_encoding.string_enum [ ("ParseInt", ParseInt); ("ParseVar", ParseVar); ("SkipLayout", SkipLayout); ] let pp fmt = function | ParseInt -> Format.fprintf fmt "Parsing int" | ParseVar -> Format.fprintf fmt "Parsing var" | SkipLayout -> Format.fprintf fmt "Skipping layout" end) module Parsing_result = Make_var (struct type t = bool option let name = "parsing_result" let initial = None let encoding = Data_encoding.(option bool) let pp fmt = function | None -> Format.fprintf fmt "n/a" | Some true -> Format.fprintf fmt "parsing succeeds" | Some false -> Format.fprintf fmt "parsing fails" end) module Evaluation_result = Make_var (struct type t = bool option let name = "evaluation_result" let initial = None let encoding = Data_encoding.(option bool) let pp fmt = function | None -> Format.fprintf fmt "n/a" | Some true -> Format.fprintf fmt "evaluation succeeds" | Some false -> Format.fprintf fmt "evaluation fails" end) module Output_counter = Make_var (struct type t = Z.t let initial = Z.zero let name = "output_counter" let encoding = Data_encoding.n let pp = Z.pp_print end) module Output = Make_dict (struct type t = Sc_rollup_PVM_sig.output let name = "output" let encoding = Sc_rollup_PVM_sig.output_encoding let pp = Sc_rollup_PVM_sig.pp_output end) let pp = let open Monad.Syntax in let* status_pp = Status.pp in let* message_counter_pp = Message_counter.pp in let* next_message_pp = Next_message.pp in let* parsing_result_pp = Parsing_result.pp in let* parser_state_pp = Parser_state.pp in let* lexer_state_pp = Lexer_state.pp in let* evaluation_result_pp = Evaluation_result.pp in let* vars_pp = Vars.pp in let* output_pp = Output.pp in let* stack = Stack.to_list in let* current_tick_pp = Current_tick.pp in return @@ fun fmt () -> Format.fprintf fmt "@[<v 0 >@;\ %a@;\ %a@;\ %a@;\ %a@;\ %a@;\ %a@;\ %a@;\ tick : %a@;\ vars : %a@;\ output :%a@;\ stack : %a@;\ @]" status_pp () message_counter_pp () next_message_pp () parsing_result_pp () parser_state_pp () lexer_state_pp () evaluation_result_pp () current_tick_pp () vars_pp () output_pp () Format.(pp_print_list pp_print_int) stack end open State type state = State.state open Monad let initial_state ~empty = let m = let open Monad.Syntax in let* () = Status.set Halted in return () in let open Lwt_syntax in let* state, _ = run m empty in return state let install_boot_sector state boot_sector = let m = let open Monad.Syntax in let* () = Boot_sector.set boot_sector in return () in let open Lwt_syntax in let* state, _ = run m state in return state let state_hash state = let context_hash = Tree.hash state in Lwt.return @@ State_hash.context_hash_to_state_hash context_hash let pp state = let open Lwt_syntax in let* _, pp = Monad.run pp state in match pp with | None -> return @@ fun fmt _ -> Format.fprintf fmt "<opaque>" | Some pp -> let* state_hash = state_hash state in return (fun fmt () -> Format.fprintf fmt "@[%a: %a@]" State_hash.pp state_hash pp ()) let boot = let open Monad.Syntax in let* () = Status.create in let* () = Next_message.create in let* () = Status.set Waiting_for_metadata in return () let result_of ~default m state = let open Lwt_syntax in let* _, v = run m state in match v with None -> return default | Some v -> return v let state_of m state = let open Lwt_syntax in let* s, _ = run m state in return s let get_tick = result_of ~default:Sc_rollup_tick_repr.initial Current_tick.get let is_input_state_monadic = let open Monad.Syntax in let* status = Status.get in match status with | Waiting_for_input_message -> ( let* level = Current_level.get in let* counter = Message_counter.get in match counter with | Some n -> return (PS.First_after (level, n)) | None -> return PS.Initial) | Waiting_for_reveal -> ( let* r = Required_reveal.get in match r with | None -> internal_error "Internal error: Reveal invariant broken" | Some reveal -> return (PS.Needs_reveal reveal)) | Waiting_for_metadata -> return PS.(Needs_reveal Reveal_metadata) | Halted | Parsing | Evaluating -> return PS.No_input_required let is_input_state = result_of ~default:PS.No_input_required @@ is_input_state_monadic let get_status = result_of ~default:Waiting_for_input_message @@ Status.get let get_outbox outbox_level state = let open Lwt_syntax in let+ entries = result_of ~default:[] Output.entries state in List.filter_map (fun (_, msg) -> if Raw_level_repr.(msg.PS.outbox_level = outbox_level) then Some msg else None) entries let get_code = result_of ~default:[] @@ Code.to_list let get_parsing_result = result_of ~default:None @@ Parsing_result.get let get_stack = result_of ~default:[] @@ Stack.to_list let get_var state k = (result_of ~default:None @@ Vars.get k) state let get_evaluation_result = result_of ~default:None @@ Evaluation_result.get let get_is_stuck = result_of ~default:None @@ is_stuck let start_parsing : unit t = let open Monad.Syntax in let* () = Status.set Parsing in let* () = Parsing_result.set None in let* () = Parser_state.set SkipLayout in let* () = Lexer_state.set (0, 0) in let* () = Code.clear in return () (** Compute and set the next Dal page to request if any. Otherwise, request the next inbox message. The value of [target] allows to compute the next page to request: either the first one the PVM is subscribed to, or the one after the given (slot_index, page_index) page. *) let next_dal_page dal_params ~target = let open Monad.Syntax in let open Dal_slot_repr in let module Index = Dal_slot_index_repr in let* case = match (dal_params, target) with | {tracked_slots = []; _}, `First_page _published_level -> (* PVM subscribed to no slot. *) return `Inbox_message | {tracked_slots = index :: rest; _}, `First_page published_level -> (* Initiate the DAL data fetching process with the first page of the first slot. *) let* () = Dal_remaining_slots.set rest in return (`Dal (published_level, index, 0)) | ( {number_of_pages; _}, `Page_after {Page.slot_id = {published_level; index}; page_index} ) -> ( (* We already read some DAL pages for the published level. Try one of the following in this order: - Attempt to move to the next page of the current slot; - In case all pages have been read; attempt to move to the next slot; - In case all slots have been read; request the next inbox message. *) let page_index = page_index + 1 in if Compare.Int.(page_index < Int32.to_int number_of_pages) then return (`Dal (published_level, index, page_index)) else let* remaining_slots = Dal_remaining_slots.get in match remaining_slots with | index :: rest -> let* () = Dal_remaining_slots.set rest in return (`Dal (published_level, index, 0)) | [] -> return `Inbox_message) in match case with | `Dal (published_level, index, page_index) -> let page_id = {Page.slot_id = {published_level; index}; page_index} in let* () = Required_reveal.set @@ Some (Request_dal_page page_id) in Status.set Waiting_for_reveal | `Inbox_message -> let* () = Required_reveal.set None in Status.set Waiting_for_input_message (** Request a Dal page or an input message depending on the value of the given [published_level] argument and on the content of the {Required_reveal.get}. *) let update_waiting_for_data_status = let open Dal_slot_repr in let module Index = Dal_slot_index_repr in fun ?published_level () -> let open Monad.Syntax in let* dal_params = Dal_parameters.get in if List.is_empty dal_params.tracked_slots then (* This rollup doesn't track any DAL slot. *) Status.set Waiting_for_input_message else let* required_reveal = Required_reveal.get in (* Depending on whether [?published_level] is set, and on the value stored in [required_reveal], the next data to request may either be a DAL page or an inbox message. *) match (published_level, required_reveal) with | None, None -> (* The default case is to request an inbox message. *) Status.set Waiting_for_input_message | Some published_level, None -> (* We are explictely asked to start fetching DAL pages. *) next_dal_page dal_params ~target:(`First_page published_level) | Some published_level, Some (Request_dal_page page_id) -> (* We are moving to the next level, and there are no explicit inbox messages in the previous level. *) let* remaining_slots = Dal_remaining_slots.get in assert ( let slot_id = page_id.Page.slot_id in let page_index = page_id.Page.page_index in Compare.Int.( Int32.to_int @@ Raw_level_repr.diff published_level slot_id.published_level = 1 && List.is_empty remaining_slots && page_index = Int32.to_int dal_params.number_of_pages - 1)) ; next_dal_page dal_params ~target:(`First_page published_level) | None, Some (Request_dal_page page_id) -> (* We are in the same level, fetch the next page. *) next_dal_page dal_params ~target:(`Page_after page_id) | _, Some Reveal_metadata -> (* Should not happen. *) assert false | _, Some (Reveal_raw_data _) -> (* Note that, providing a DAC input via a DAL page will interrupt the interpretation of the next DAL pages of the same level, as the content of [Required_reveal] is lost. We should use two distinct states if we don't want this to happen. *) let* () = Required_reveal.set None in Status.set Waiting_for_input_message let set_inbox_message_monadic {PS.inbox_level; message_counter; payload} = let open Monad.Syntax in let deserialized = Sc_rollup_inbox_message_repr.deserialize payload in let* payload = match deserialized with | Error _ -> return None | Ok (External payload) -> return (Some payload) | Ok (Internal (Transfer {payload; destination; _})) -> ( let* () = incr_internal_message_counter in let* (metadata : Sc_rollup_metadata_repr.t option) = Metadata.get in match metadata with | Some {address; _} when Address.(destination = address) -> ( match Micheline.root payload with | Bytes (_, payload) -> let payload = Bytes.to_string payload in return (Some payload) | _ -> return None) | _ -> return None) | Ok (Internal (Protocol_migration _)) -> let* () = incr_internal_message_counter in return None | Ok (Internal Start_of_level) -> let* () = incr_internal_message_counter in return None | Ok (Internal End_of_level) -> let* () = incr_internal_message_counter in return None | Ok (Internal (Info_per_level _)) -> let* () = incr_internal_message_counter in return None in match payload with | Some payload -> let* boot_sector = Boot_sector.get in let msg = boot_sector ^ payload in let* () = Current_level.set inbox_level in let* () = Message_counter.set (Some message_counter) in let* () = Next_message.set (Some msg) in let* () = start_parsing in return () | None -> ( let* () = Current_level.set inbox_level in let* () = Message_counter.set (Some message_counter) in match deserialized with | Ok (Internal Start_of_level) -> ( let* dal_params = Dal_parameters.get in let inbox_level = Raw_level_repr.to_int32 inbox_level in (* the [published_level]'s pages to request is [inbox_level - endorsement_lag - 1]. *) let lvl = Int32.sub (Int32.sub inbox_level dal_params.attestation_lag) 1l in match Raw_level_repr.of_int32 lvl with | Error _ -> (* Too early. We cannot request DAL data yet. *) return () | Ok published_level -> ( let* metadata = Metadata.get in match metadata with | None -> assert false (* Setting Metadata should be the first input provided to the PVM. *) | Some {origination_level; _} -> if Raw_level_repr.(origination_level >= published_level) then (* We can only fetch DAL data that are published after the rollup's origination level. *) Status.set Waiting_for_input_message else (* Start fetching DAL data for this [published_level]. *) update_waiting_for_data_status ~published_level ())) | _ -> Status.set Waiting_for_input_message) let reveal_monadic reveal_data = (* The inbox cursor is unchanged as the message comes from the outer world. We don't have to check that the data is the one we expected as we decided to trust the initial witness. It is the responsibility of the rollup node to check the validity of the [reveal_data] if it does not want to publish a wrong commitment. *) let open Monad.Syntax in match reveal_data with | PS.Raw_data data -> (* Notice that a multi-page transmission is possible by embedding a continuation encoded as an optional hash in [data]. *) let* () = Next_message.set (Some data) in let* () = start_parsing in return () | PS.Metadata metadata -> let* () = Metadata.set (Some metadata) in let* () = Status.set Waiting_for_input_message in return () | PS.Dal_page None -> (* We may either move to the next DAL page or to the next inbox message. *) update_waiting_for_data_status () | PS.Dal_page (Some data) -> let* () = Next_message.set (Some (Bytes.to_string data)) in let* () = start_parsing in return () let ticked m = let open Monad.Syntax in let* tick = Current_tick.get in let* () = Current_tick.set (Sc_rollup_tick_repr.next tick) in m let set_input_monadic input = match input with | PS.Inbox_message m -> set_inbox_message_monadic m | PS.Reveal s -> reveal_monadic s let set_input input = set_input_monadic input |> ticked |> state_of let next_char = let open Monad.Syntax in Lexer_state.( let* start, len = get in set (start, len + 1)) let no_message_to_lex () = internal_error "lexer: There is no input message to lex" let current_char = let open Monad.Syntax in let* start, len = Lexer_state.get in let* msg = Next_message.get in match msg with | None -> no_message_to_lex () | Some s -> if Compare.Int.(start + len < String.length s) then return (Some s.[start + len]) else return None let lexeme = let open Monad.Syntax in let* start, len = Lexer_state.get in let* msg = Next_message.get in match msg with | None -> no_message_to_lex () | Some s -> let* () = Lexer_state.set (start + len, 0) in return (String.sub s start len) let push_int_literal = let open Monad.Syntax in let* s = lexeme in match int_of_string_opt s with | Some x -> Code.inject (IPush x) | None -> (* By validity of int parsing. *) assert false let push_var = let open Monad.Syntax in let* s = lexeme in Code.inject (IStore s) let start_evaluating : unit t = let open Monad.Syntax in let* () = Status.set Evaluating in let* () = Evaluation_result.set None in return () let stop_parsing outcome = let open Monad.Syntax in let* () = Parsing_result.set (Some outcome) in start_evaluating let stop_evaluating outcome = let open Monad.Syntax in let* () = Evaluation_result.set (Some outcome) in (* Once the evaluation of the current input is done, we either request the next DAL page or the next inbox message. *) update_waiting_for_data_status () let parse : unit t = let open Monad.Syntax in let produce_add = let* (_ : string) = lexeme in let* () = next_char in let* () = Code.inject IAdd in return () in let produce_int = let* () = push_int_literal in let* () = Parser_state.set SkipLayout in return () in let produce_var = let* () = push_var in let* () = Parser_state.set SkipLayout in return () in let is_digit d = Compare.Char.(d >= '0' && d <= '9') in let is_letter d = Compare.Char.((d >= 'a' && d <= 'z') || (d >= 'A' && d <= 'Z')) in let is_identifier_char d = is_letter d || is_digit d || Compare.Char.(d = ':') || Compare.Char.(d = '%') in let* parser_state = Parser_state.get in match parser_state with | ParseInt -> ( let* char = current_char in match char with | Some d when is_digit d -> next_char | Some '+' -> let* () = produce_int in let* () = produce_add in return () | Some (' ' | '\n') -> let* () = produce_int in let* () = next_char in return () | None -> let* () = push_int_literal in stop_parsing true | _ -> stop_parsing false) | ParseVar -> ( let* char = current_char in match char with | Some d when is_identifier_char d -> next_char | Some '+' -> let* () = produce_var in let* () = produce_add in return () | Some (' ' | '\n') -> let* () = produce_var in let* () = next_char in return () | None -> let* () = push_var in stop_parsing true | _ -> stop_parsing false) | SkipLayout -> ( let* char = current_char in match char with | Some (' ' | '\n') -> next_char | Some '+' -> produce_add | Some d when is_digit d -> let* (_ : string) = lexeme in let* () = next_char in let* () = Parser_state.set ParseInt in return () | Some d when is_letter d -> let* (_ : string) = lexeme in let* () = next_char in let* () = Parser_state.set ParseVar in return () | None -> stop_parsing true | _ -> stop_parsing false) let output (destination, entrypoint) v = let open Monad.Syntax in let open Sc_rollup_outbox_message_repr in let* counter = Output_counter.get in let* () = Output_counter.set (Z.succ counter) in let unparsed_parameters = Micheline.(Int ((), Z.of_int v) |> strip_locations) in let transaction = {unparsed_parameters; destination; entrypoint} in let message = Atomic_transaction_batch {transactions = [transaction]} in let* outbox_level = Current_level.get in let output = Sc_rollup_PVM_sig.{outbox_level; message_index = counter; message} in Output.set (Z.to_string counter) output let identifies_target_contract x = let open Option_syntax in match String.split_on_char '%' x with | destination :: entrypoint -> ( match Contract_hash.of_b58check_opt destination with | None -> if Compare.String.(x = "out") then return (Contract_hash.zero, Entrypoint_repr.default) else fail | Some destination -> let* entrypoint = match entrypoint with | [] -> return Entrypoint_repr.default | _ -> let* entrypoint = Non_empty_string.of_string (String.concat "" entrypoint) in let* entrypoint = Entrypoint_repr.of_annot_lax_opt entrypoint in return entrypoint in return (destination, entrypoint)) | [] -> fail let evaluate_preimage_request hash = let open Monad.Syntax in match Sc_rollup_reveal_hash.of_hex hash with | None -> stop_evaluating false | Some hash -> let* () = Required_reveal.set (Some (Reveal_raw_data hash)) in let* () = Status.set Waiting_for_reveal in return () let evaluate_dal_parameters dal_directive = let dal_params = (* Dal pages import directive is [dal:<e>:<num_p>:<s1>:<s2>:...:<sn>]. See mli file.*) let open Option_syntax in match String.split_on_char ':' dal_directive with | attestation_lag :: number_of_pages :: tracked_slots -> let* attestation_lag = Int32.of_string_opt attestation_lag in let* number_of_pages = Int32.of_string_opt number_of_pages in let* tracked_slots = let rec aux acc sl = match sl with | [] -> return (List.rev acc) | s :: rest -> let* dal_slot_int = int_of_string_opt s in let* dal_slot = Dal_slot_index_repr.of_int_opt dal_slot_int in (aux [@tailcall]) (dal_slot :: acc) rest in aux [] tracked_slots in Some {attestation_lag; number_of_pages; tracked_slots} | _ -> None in let open Monad.Syntax in match dal_params with | None -> stop_evaluating false | Some dal_params -> let* () = Dal_parameters.set dal_params in Status.set Waiting_for_input_message let remove_prefix prefix input input_len = let prefix_len = String.length prefix in if Compare.Int.(input_len > prefix_len) && String.(equal (sub input 0 prefix_len) prefix) then Some (String.sub input prefix_len (input_len - prefix_len)) else None let evaluate = let open Monad.Syntax in let* i = Code.pop in match i with | None -> stop_evaluating true | Some (IPush x) -> Stack.push x | Some (IStore x) -> ( (* When evaluating an instruction [IStore x], we start by checking if [x] is a reserved directive: - "hash:<HASH>", to import a DAC data; - "dal:<LVL>:<SID>:<PID>", to request a Dal page; - "out" or "<DESTINATION>%<ENTRYPOINT>", to add a message in the outbox. Otherwise, the instruction is interpreted as a directive to store the top of the PVM's stack into the variable [x]. *) let len = String.length x in match remove_prefix "hash:" x len with | Some hash -> evaluate_preimage_request hash | None -> ( match remove_prefix "dal:" x len with | Some dal_directive -> evaluate_dal_parameters dal_directive | None -> ( let* v = Stack.top in match v with | None -> stop_evaluating false | Some v -> ( match identifies_target_contract x with | Some contract_entrypoint -> output contract_entrypoint v | None -> Vars.set x v)))) | Some IAdd -> ( let* v = Stack.pop in match v with | None -> stop_evaluating false | Some x -> ( let* v = Stack.pop in match v with | None -> stop_evaluating false | Some y -> Stack.push (x + y))) let reboot = let open Monad.Syntax in let* () = Status.set Waiting_for_input_message in let* () = Stack.clear in let* () = Code.clear in return () let eval_step = let open Monad.Syntax in let* x = is_stuck in match x with | Some _ -> reboot | None -> ( let* status = Status.get in match status with | Halted -> boot | Waiting_for_input_message | Waiting_for_reveal | Waiting_for_metadata -> ( let* msg = Next_message.get in match msg with | None -> internal_error "An input state was not provided an input." | Some _ -> start_parsing) | Parsing -> parse | Evaluating -> evaluate) let eval state = state_of (ticked eval_step) state let step_transition input_given state = let open Lwt_syntax in let* request = is_input_state state in let error msg = state_of (internal_error msg) state in let* state = match (request, input_given) with | PS.No_input_required, None -> eval state | PS.No_input_required, Some _ -> error "Invalid set_input: expecting no input message but got one." | (PS.Initial | PS.First_after _), Some (PS.Inbox_message _ as input) | ( PS.Needs_reveal (Reveal_raw_data _), Some (PS.Reveal (Raw_data _) as input) ) | PS.Needs_reveal Reveal_metadata, Some (PS.Reveal (Metadata _) as input) | ( PS.Needs_reveal (PS.Request_dal_page _), Some (PS.Reveal (Dal_page _) as input) ) -> (* For all the cases above, the input request matches the given input, so we proceed by setting the input. *) set_input input state | (PS.Initial | PS.First_after _), _ -> error "Invalid set_input: expecting inbox message, got a reveal." | PS.Needs_reveal (Reveal_raw_data _hash), _ -> error "Invalid set_input: expecting a raw data reveal, got an inbox \ message or a reveal metadata." | PS.Needs_reveal Reveal_metadata, _ -> error "Invalid set_input: expecting a metadata reveal, got an inbox \ message or a raw data reveal." | PS.Needs_reveal (PS.Request_dal_page _), _ -> error "Invalid set_input: expecting a dal page reveal, got an inbox \ message or a raw data reveal." in return (state, request) type error += Arith_proof_verification_failed let verify_proof input_given proof = let open Lwt_result_syntax in let*! result = Context.verify_proof proof (step_transition input_given) in match result with | None -> tzfail Arith_proof_verification_failed | Some (_state, request) -> return request let produce_proof context input_given state = let open Lwt_result_syntax in let*! result = Context.produce_proof context state (step_transition input_given) in match result with | Some (tree_proof, _requested) -> return tree_proof | None -> tzfail Arith_proof_production_failed let verify_origination_proof proof boot_sector = let open Lwt_syntax in let before = Context.proof_before proof in if State_hash.(before <> reference_initial_state_hash) then return false else let* result = Context.verify_proof proof (fun state -> let* state = install_boot_sector state boot_sector in return (state, ())) in match result with None -> return false | Some (_, ()) -> return true let produce_origination_proof context boot_sector = let open Lwt_result_syntax in let*! state = initial_state ~empty:(Tree.empty context) in let*! result = Context.produce_proof context state (fun state -> let open Lwt_syntax in let* state = install_boot_sector state boot_sector in return (state, ())) in match result with | Some (proof, ()) -> return proof | None -> tzfail Arith_proof_production_failed (* TEMPORARY: The following definitions will be extended in a future commit. *) type output_proof = { output_proof : Context.proof; output_proof_state : hash; output_proof_output : PS.output; } let output_proof_encoding = let open Data_encoding in conv (fun {output_proof; output_proof_state; output_proof_output} -> (output_proof, output_proof_state, output_proof_output)) (fun (output_proof, output_proof_state, output_proof_output) -> {output_proof; output_proof_state; output_proof_output}) (obj3 (req "output_proof" Context.proof_encoding) (req "output_proof_state" State_hash.encoding) (req "output_proof_output" PS.output_encoding)) let output_of_output_proof s = s.output_proof_output let state_of_output_proof s = s.output_proof_state let output_key (output : PS.output) = Z.to_string output.message_index let has_output output tree = let open Lwt_syntax in let* equal = Output.mapped_to (output_key output) output tree in return (tree, equal) let verify_output_proof p = let open Lwt_syntax in let transition = has_output p.output_proof_output in let* result = Context.verify_proof p.output_proof transition in match result with None -> return false | Some _ -> return true let produce_output_proof context state output_proof_output = let open Lwt_result_syntax in let*! output_proof_state = state_hash state in let*! result = Context.produce_proof context state @@ has_output output_proof_output in match result with | Some (output_proof, true) -> return {output_proof; output_proof_state; output_proof_output} | Some (_, false) -> fail Arith_invalid_claim_about_outbox | None -> fail Arith_output_proof_production_failed let get_current_level state = let open Lwt_syntax in let* _state_, current_level = Monad.run Current_level.get state in return current_level module Internal_for_tests = struct let insert_failure state = let add n = Tree.add state ["failures"; string_of_int n] Bytes.empty in let open Lwt_syntax in let* n = Tree.length state ["failures"] in add n end end module Protocol_implementation = Make (struct module Tree = struct include Context.Tree type tree = Context.tree type t = Context.t type key = string list type value = bytes end type tree = Context.tree let hash_tree t = State_hash.context_hash_to_state_hash (Tree.hash t) type proof = Context.Proof.tree Context.Proof.t let verify_proof p f = let open Lwt_option_syntax in let*? () = Result.to_option (Context_binary_proof.check_is_binary p) in Lwt.map Result.to_option (Context.verify_tree_proof p f) let produce_proof _context _state _f = (* Can't produce proof without full context*) Lwt.return None let kinded_hash_to_state_hash = function | `Value hash | `Node hash -> State_hash.context_hash_to_state_hash hash let proof_before proof = kinded_hash_to_state_hash proof.Context.Proof.before let proof_after proof = kinded_hash_to_state_hash proof.Context.Proof.after let proof_encoding = Context.Proof_encoding.V2.Tree2.tree_proof_encoding end)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>