package tezos-protocol-015-PtLimaPt
Tezos protocol 015-PtLimaPt package
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-18.0.tar.gz
sha256=dbc3b675aee59c2c574e5d0a771193a2ecfca31e7a5bc5aed66598080596ce1c
sha512=b97ed762b9d24744305c358af0d20f394376b64bfdd758dd4a81775326caf445caa57c4f6445da3dd6468ff492de18e4c14af6f374dfcbb7e4d64b7b720e5e2a
doc/src/tezos_raw_protocol_015_PtLimaPt/sc_rollup_inbox_repr.ml.html
Source file sc_rollup_inbox_repr.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
(*****************************************************************************) (* *) (* Open Source License *) (* Copyright (c) 2021 Nomadic Labs <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) (** A Merkelized inbox represents a list of messages. This list is decomposed into sublists of messages, one for each non-empty Tezos level greater than the level of the Last Cemented Commitment (LCC). This module is designed to: 1. provide a space-efficient representation for proofs of inbox inclusions (only for inboxes obtained at the end of block validation) ; 2. offer an efficient function to add a new batch of messages in the inbox at the current level. To solve (1), we use a proof tree H which is implemented by a sparse merkelized skip list allowing for compact inclusion proofs (See {!skip_list_repr.ml}). To solve (2), we maintain a separate proof tree C witnessing the contents of messages of the current level. The protocol maintains the hashes of the head of H, and the root hash of C. The rollup node needs to maintain a full representation for C and a partial representation for H back to the level of the LCC. *) type error += Invalid_level_add_messages of Raw_level_repr.t type error += Inbox_proof_error of string type error += Tried_to_add_zero_messages type error += Empty_upper_level of Raw_level_repr.t let () = let open Data_encoding in register_error_kind `Permanent ~id:"sc_rollup_inbox.invalid_level_add_messages" ~title:"Internal error: Trying to add a message to an inbox from the past" ~description: "An inbox can only accept messages for its current level or for the next \ levels." (obj1 (req "level" Raw_level_repr.encoding)) (function Invalid_level_add_messages level -> Some level | _ -> None) (fun level -> Invalid_level_add_messages level) ; register_error_kind `Permanent ~id:"sc_rollup_inbox.inbox_proof_error" ~title: "Internal error: error occurred during proof production or validation" ~description:"An inbox proof error." ~pp:(fun ppf e -> Format.fprintf ppf "Inbox proof error: %s" e) (obj1 (req "error" string)) (function Inbox_proof_error e -> Some e | _ -> None) (fun e -> Inbox_proof_error e) ; register_error_kind `Permanent ~id:"sc_rollup_inbox.add_zero_messages" ~title:"Internal error: trying to add zero messages" ~description: "Message adding functions must be called with a positive number of \ messages" ~pp:(fun ppf _ -> Format.fprintf ppf "Tried to add zero messages") empty (function Tried_to_add_zero_messages -> Some () | _ -> None) (fun () -> Tried_to_add_zero_messages) ; register_error_kind `Permanent ~id:"sc_rollup_inbox.empty_upper_level" ~title:"Internal error: No payload found in a [Level_crossing] proof" ~description: "Failed to find any message in the [upper_level] of a [Level_crossing] \ proof" (obj1 (req "upper_level" Raw_level_repr.encoding)) (function Empty_upper_level upper_level -> Some upper_level | _ -> None) (fun upper_level -> Empty_upper_level upper_level) module Int64_map = Map.Make (Int64) (* 32 *) let hash_prefix = "\003\250\174\238\208" (* scib1(55) *) module Hash = struct let prefix = "scib1" let encoded_size = 55 module H = Blake2B.Make (Base58) (struct let name = "inbox_hash" let title = "The hash of an inbox of a smart contract rollup" let b58check_prefix = hash_prefix (* defaults to 32 *) let size = None end) include H let () = Base58.check_encoded_prefix b58check_encoding prefix encoded_size let of_context_hash context_hash = Context_hash.to_bytes context_hash |> of_bytes_exn let to_context_hash hash = to_bytes hash |> Context_hash.of_bytes_exn include Path_encoding.Make_hex (H) end module Skip_list_parameters = struct let basis = 2 end module Skip_list = Skip_list_repr.Make (Skip_list_parameters) let hash_skip_list_cell cell = let current_level_hash = Skip_list.content cell in let back_pointers_hashes = Skip_list.back_pointers cell in Hash.to_bytes current_level_hash :: List.map Hash.to_bytes back_pointers_hashes |> Hash.hash_bytes module V1 = struct type history_proof = (Hash.t, Hash.t) Skip_list.cell let equal_history_proof = Skip_list.equal Hash.equal Hash.equal let history_proof_encoding : history_proof Data_encoding.t = Skip_list.encoding Hash.encoding Hash.encoding let pp_history_proof fmt history = let history_hash = hash_skip_list_cell history in Format.fprintf fmt "@[hash : %a@;%a@]" Hash.pp history_hash (Skip_list.pp ~pp_content:Hash.pp ~pp_ptr:Hash.pp) history (** Construct an inbox [history] with a given [capacity]. If you are running a rollup node, [capacity] needs to be large enough to remember any levels for which you may need to produce proofs. *) module History = Bounded_history_repr.Make (struct let name = "inbox_history" end) (Hash) (struct type t = history_proof let pp = pp_history_proof let equal = equal_history_proof let encoding = history_proof_encoding end) (* At a given level, an inbox is composed of metadata of type [t] and [current_level], a [tree] representing the messages of the current level (held by the [Raw_context.t] in the protocol). The metadata contains : - [rollup] : the address of the rollup ; - [level] : the inbox level ; - [message_counter] : the number of messages in the [level]'s inbox ; the number of messages that have not been consumed by a commitment cementing ; - [nb_messages_in_commitment_period] : the number of messages during the commitment period ; - [starting_level_of_current_commitment_period] : the level marking the beginning of the current commitment period ; - [current_level_hash] : the root hash of [current_level] ; - [old_levels_messages] : a witness of the inbox history. When new messages are appended to the current level inbox, the metadata stored in the context may be related to an older level. In that situation, an archival process is applied to the metadata. This process saves the [current_level_hash] in the [old_levels_messages] and empties [current_level]. It then initialises a new level tree for the new messages---note that any intermediate levels are simply skipped. See {!Make_hashing_scheme.archive_if_needed} for details. *) type t = { rollup : Sc_rollup_repr.t; level : Raw_level_repr.t; nb_messages_in_commitment_period : int64; starting_level_of_current_commitment_period : Raw_level_repr.t; message_counter : Z.t; (* Lazy to avoid hashing O(n^2) time in [add_messages] *) current_level_hash : unit -> Hash.t; old_levels_messages : history_proof; } let equal inbox1 inbox2 = (* To be robust to addition of fields in [t]. *) let { rollup; level; nb_messages_in_commitment_period; starting_level_of_current_commitment_period; message_counter; current_level_hash; old_levels_messages; } = inbox1 in Sc_rollup_repr.Address.equal rollup inbox2.rollup && Raw_level_repr.equal level inbox2.level && Compare.Int64.( equal nb_messages_in_commitment_period inbox2.nb_messages_in_commitment_period) && Raw_level_repr.( equal starting_level_of_current_commitment_period inbox2.starting_level_of_current_commitment_period) && Z.equal message_counter inbox2.message_counter && Hash.equal (current_level_hash ()) (inbox2.current_level_hash ()) && equal_history_proof old_levels_messages inbox2.old_levels_messages let pp fmt { rollup; level; nb_messages_in_commitment_period; starting_level_of_current_commitment_period; message_counter; current_level_hash; old_levels_messages; } = Format.fprintf fmt "@[<hov 2>{ rollup = %a@;\ level = %a@;\ current messages hash = %a@;\ nb_messages_in_commitment_period = %s@;\ starting_level_of_current_commitment_period = %a@;\ message_counter = %a@;\ old_levels_messages = %a@;\ }@]" Sc_rollup_repr.Address.pp rollup Raw_level_repr.pp level Hash.pp (current_level_hash ()) (Int64.to_string nb_messages_in_commitment_period) Raw_level_repr.pp starting_level_of_current_commitment_period Z.pp_print message_counter pp_history_proof old_levels_messages let inbox_level inbox = inbox.level let old_levels_messages inbox = inbox.old_levels_messages let current_level_hash inbox = inbox.current_level_hash () let old_levels_messages_encoding = Skip_list.encoding Hash.encoding Hash.encoding let encoding = Data_encoding.( conv (fun { rollup; message_counter; nb_messages_in_commitment_period; starting_level_of_current_commitment_period; level; current_level_hash; old_levels_messages; } -> ( rollup, message_counter, nb_messages_in_commitment_period, starting_level_of_current_commitment_period, level, current_level_hash (), old_levels_messages )) (fun ( rollup, message_counter, nb_messages_in_commitment_period, starting_level_of_current_commitment_period, level, current_level_hash, old_levels_messages ) -> { rollup; message_counter; nb_messages_in_commitment_period; starting_level_of_current_commitment_period; level; current_level_hash = (fun () -> current_level_hash); old_levels_messages; }) (obj7 (req "rollup" Sc_rollup_repr.encoding) (req "message_counter" n) (req "nb_messages_in_commitment_period" int64) (req "starting_level_of_current_commitment_period" Raw_level_repr.encoding) (req "level" Raw_level_repr.encoding) (req "current_level_hash" Hash.encoding) (req "old_levels_messages" old_levels_messages_encoding))) let number_of_messages_during_commitment_period inbox = inbox.nb_messages_in_commitment_period let start_new_commitment_period inbox level = { inbox with starting_level_of_current_commitment_period = level; nb_messages_in_commitment_period = 0L; } let starting_level_of_current_commitment_period inbox = inbox.starting_level_of_current_commitment_period let refresh_commitment_period ~commitment_period ~level inbox = let start = starting_level_of_current_commitment_period inbox in let freshness = Raw_level_repr.diff level start in let open Int32 in let open Compare.Int32 in if freshness >= commitment_period then ( let nb_periods = to_int ((mul (div freshness commitment_period)) commitment_period) in let new_starting_level = Raw_level_repr.(add start nb_periods) in assert (Raw_level_repr.(new_starting_level <= level)) ; assert ( rem (Raw_level_repr.diff new_starting_level start) commitment_period = 0l) ; start_new_commitment_period inbox new_starting_level) else inbox end type versioned = V1 of V1.t let versioned_encoding = let open Data_encoding in union [ case ~title:"V1" (Tag 0) V1.encoding (function V1 inbox -> Some inbox) (fun inbox -> V1 inbox); ] include V1 let of_versioned = function V1 inbox -> inbox [@@inline] let to_versioned inbox = V1 inbox [@@inline] let key_of_message ix = ["message"; Data_encoding.Binary.to_string_exn Data_encoding.n ix] let level_key = ["level"] let number_of_messages_key = ["number_of_messages"] type serialized_proof = bytes let serialized_proof_encoding = Data_encoding.bytes module type Merkelized_operations = sig type inbox_context type tree val hash_level_tree : tree -> Hash.t val new_level_tree : inbox_context -> Raw_level_repr.t -> tree Lwt.t val add_messages : inbox_context -> History.t -> t -> Raw_level_repr.t -> Sc_rollup_inbox_message_repr.serialized list -> tree option -> (tree * History.t * t) tzresult Lwt.t val add_messages_no_history : inbox_context -> t -> Raw_level_repr.t -> Sc_rollup_inbox_message_repr.serialized list -> tree option -> (tree * t) tzresult Lwt.t val get_message_payload : tree -> Z.t -> Sc_rollup_inbox_message_repr.serialized option Lwt.t val form_history_proof : inbox_context -> History.t -> t -> tree option -> (History.t * history_proof) tzresult Lwt.t val take_snapshot : t -> history_proof type inclusion_proof val inclusion_proof_encoding : inclusion_proof Data_encoding.t val pp_inclusion_proof : Format.formatter -> inclusion_proof -> unit val number_of_proof_steps : inclusion_proof -> int val verify_inclusion_proof : inclusion_proof -> history_proof -> history_proof -> bool type proof val pp_proof : Format.formatter -> proof -> unit val to_serialized_proof : proof -> serialized_proof val of_serialized_proof : serialized_proof -> proof option val verify_proof : Raw_level_repr.t * Z.t -> history_proof -> proof -> Sc_rollup_PVM_sig.inbox_message option tzresult Lwt.t val produce_proof : inbox_context -> History.t -> history_proof -> Raw_level_repr.t * Z.t -> (proof * Sc_rollup_PVM_sig.inbox_message option) tzresult Lwt.t val empty : inbox_context -> Sc_rollup_repr.t -> Raw_level_repr.t -> t Lwt.t module Internal_for_tests : sig val eq_tree : tree -> tree -> bool val produce_inclusion_proof : History.t -> history_proof -> history_proof -> inclusion_proof option tzresult val serialized_proof_of_string : string -> serialized_proof end end module type P = sig module Tree : Context.TREE with type key = string list and type value = bytes type t = Tree.t type tree = Tree.tree val commit_tree : Tree.t -> string list -> Tree.tree -> unit Lwt.t val lookup_tree : Tree.t -> Hash.t -> tree option Lwt.t type proof val proof_encoding : proof Data_encoding.t val proof_before : proof -> Hash.t val verify_proof : proof -> (tree -> (tree * 'a) Lwt.t) -> (tree * 'a) option Lwt.t val produce_proof : Tree.t -> tree -> (tree -> (tree * 'a) Lwt.t) -> (proof * 'a) option Lwt.t end module Make_hashing_scheme (P : P) : Merkelized_operations with type tree = P.tree and type inbox_context = P.t = struct module Tree = P.Tree type inbox_context = P.t type tree = P.tree let hash_level_tree level_tree = Hash.of_context_hash (Tree.hash level_tree) let set_level tree level = let level_bytes = Data_encoding.Binary.to_bytes_exn Raw_level_repr.encoding level in Tree.add tree level_key level_bytes let find_level tree = let open Lwt_syntax in let+ level_bytes = Tree.(find tree level_key) in Option.bind level_bytes (Data_encoding.Binary.of_bytes_opt Raw_level_repr.encoding) let set_number_of_messages tree number_of_messages = let number_of_messages_bytes = Data_encoding.Binary.to_bytes_exn Data_encoding.n number_of_messages in Tree.add tree number_of_messages_key number_of_messages_bytes (** Initialise the merkle tree for a new level in the inbox. We have to include the [level] in this structure so that it cannot be forged by a malicious rollup node. *) let new_level_tree ctxt level = let open Lwt_syntax in let tree = Tree.empty ctxt in let* tree = set_number_of_messages tree Z.zero in set_level tree level let add_message inbox payload level_tree = let open Lwt_tzresult_syntax in let message_index = inbox.message_counter in let message_counter = Z.succ message_index in let*! level_tree = Tree.add level_tree (key_of_message message_index) (Bytes.of_string (payload : Sc_rollup_inbox_message_repr.serialized :> string)) in let*! level_tree = set_number_of_messages level_tree message_counter in let nb_messages_in_commitment_period = Int64.succ inbox.nb_messages_in_commitment_period in let inbox = { starting_level_of_current_commitment_period = inbox.starting_level_of_current_commitment_period; current_level_hash = inbox.current_level_hash; rollup = inbox.rollup; level = inbox.level; old_levels_messages = inbox.old_levels_messages; message_counter; nb_messages_in_commitment_period; } in return (level_tree, inbox) let get_message_payload level_tree message_index = let open Lwt_syntax in let key = key_of_message message_index in let* bytes = Tree.(find level_tree key) in return @@ Option.map (fun bs -> Sc_rollup_inbox_message_repr.unsafe_of_string (Bytes.to_string bs)) bytes (** [no_history] creates an empty history with [capacity] set to zero---this makes the [remember] function a no-op. We want this behaviour in the protocol because we don't want to store previous levels of the inbox. *) let no_history = History.empty ~capacity:0L let take_snapshot inbox = let prev_cell = inbox.old_levels_messages in let prev_cell_ptr = hash_skip_list_cell prev_cell in Skip_list.next ~prev_cell ~prev_cell_ptr (current_level_hash inbox) let key_of_level level = let level_bytes = Data_encoding.Binary.to_bytes_exn Raw_level_repr.encoding level in Bytes.to_string level_bytes let commit_tree ctxt tree inbox_level = let key = [key_of_level inbox_level] in P.commit_tree ctxt key tree let form_history_proof ctxt history inbox level_tree = let open Lwt_tzresult_syntax in let*! () = let*! tree = match level_tree with | Some tree -> Lwt.return tree | None -> new_level_tree ctxt inbox.level in commit_tree ctxt tree inbox.level in let prev_cell = inbox.old_levels_messages in let prev_cell_ptr = hash_skip_list_cell prev_cell in let*? history = History.remember prev_cell_ptr prev_cell history in let cell = Skip_list.next ~prev_cell ~prev_cell_ptr (current_level_hash inbox) in return (history, cell) (** [archive_if_needed ctxt history inbox new_level level_tree] is responsible for ensuring that the {!add_messages} function below has a correctly set-up [level_tree] to which to add the messages. If [new_level] is a higher level than the current inbox, we create a new inbox level tree at that level in which to start adding messages, and archive the earlier levels depending on the [history] parameter's [capacity]. If [level_tree] is [None] (this happens when the inbox is first created) we similarly create a new empty level tree with the right [level] key. This function and {!form_history_proof} are the only places we begin new level trees. *) let archive_if_needed ctxt history inbox new_level level_tree = let open Lwt_result_syntax in if Raw_level_repr.(inbox.level = new_level) then match level_tree with | Some tree -> return (history, inbox, tree) | None -> let*! tree = new_level_tree ctxt new_level in return (history, inbox, tree) else let* history, old_levels_messages = form_history_proof ctxt history inbox level_tree in let*! tree = new_level_tree ctxt new_level in let inbox = { starting_level_of_current_commitment_period = inbox.starting_level_of_current_commitment_period; current_level_hash = inbox.current_level_hash; rollup = inbox.rollup; nb_messages_in_commitment_period = inbox.nb_messages_in_commitment_period; old_levels_messages; level = new_level; message_counter = Z.zero; } in return (history, inbox, tree) let add_messages ctxt history inbox level payloads level_tree = let open Lwt_tzresult_syntax in let* () = fail_when (match payloads with [] -> true | _ -> false) Tried_to_add_zero_messages in let* () = fail_when Raw_level_repr.(level < inbox.level) (Invalid_level_add_messages level) in let* history, inbox, level_tree = archive_if_needed ctxt history inbox level level_tree in let* level_tree, inbox = List.fold_left_es (fun (level_tree, inbox) payload -> add_message inbox payload level_tree) (level_tree, inbox) payloads in let current_level_hash () = hash_level_tree level_tree in return (level_tree, history, {inbox with current_level_hash}) let add_messages_no_history ctxt inbox level payloads level_tree = let open Lwt_tzresult_syntax in let+ level_tree, _, inbox = add_messages ctxt no_history inbox level payloads level_tree in (level_tree, inbox) (* An [inclusion_proof] is a path in the Merkelized skip list showing that a given inbox history is a prefix of another one. This path has a size logarithmic in the difference between the levels of the two inboxes. [Irmin.Proof.{tree_proof, stream_proof}] could not be reused here because there is no obvious encoding of sequences in these data structures with the same guarantee about the size of proofs. *) type inclusion_proof = history_proof list let inclusion_proof_encoding = let open Data_encoding in list history_proof_encoding let pp_inclusion_proof fmt proof = Format.pp_print_list pp_history_proof fmt proof let number_of_proof_steps proof = List.length proof let lift_ptr_path deref ptr_path = let rec aux accu = function | [] -> Some (List.rev accu) | x :: xs -> Option.bind (deref x) @@ fun c -> aux (c :: accu) xs in aux [] ptr_path let verify_inclusion_proof proof a b = let assoc = List.map (fun c -> (hash_skip_list_cell c, c)) proof in let path = List.split assoc |> fst in let deref = let open Hash.Map in let map = of_seq (List.to_seq assoc) in fun ptr -> find_opt ptr map in let cell_ptr = hash_skip_list_cell b in let target_ptr = hash_skip_list_cell a in Skip_list.valid_back_path ~equal_ptr:Hash.equal ~deref ~cell_ptr ~target_ptr path type proof = (* See the main docstring for this type (in the mli file) for definitions of the three proof parameters [starting_point], [message] and [snapshot]. In the below we deconstruct [starting_point] into [(l, n)] where [l] is a level and [n] is a message index. In a [Single_level] proof, [level] is the skip list cell for the level [l], [inc] is an inclusion proof of [level] into [snapshot] and [message_proof] is a tree proof showing that [exists level_tree . (hash_level_tree level_tree = level.content) AND (payload_and_level n level_tree = (_, (message, l)))] Note: in the case that [message] is [None] this shows that there's no value at the index [n]; in this case we also must check that [level] equals [snapshot] (otherwise, we'd need a [Level_crossing] proof instead. *) | Single_level of { level : history_proof; inc : inclusion_proof; message_proof : P.proof; } (* See the main docstring for this type (in the mli file) for definitions of the three proof parameters [starting_point], [message] and [snapshot]. In the below we deconstruct [starting_point] as [(l, n)] where [l] is a level and [n] is a message index. In a [Level_crossing] proof, [lower] is the skip list cell for the level [l] and [upper] must be the skip list cell that comes immediately after it in [snapshot]. If the inbox has been constructed correctly using the functions in this module that will be the next non-empty level in the inbox. [inc] is an inclusion proof of [upper] into [snapshot]. [upper_level] is the level of [upper]. The tree proof [lower_message_proof] shows the following: [exists level_tree . (hash_level_tree level_tree = lower.content) AND (payload_and_level n level_tree = (_, (None, l)))] in other words, there is no message at index [n] in level [l]. This means that level has been fully read. The tree proof [upper_message_proof] shows the following: [exists level_tree . (hash_level_tree level_tree = upper.content) AND (payload_and_level 0 level_tree = (_, (message, upper_level)))] in other words, if we look in the next non-empty level the message at index zero is [message]. *) | Level_crossing of { lower : history_proof; upper : history_proof; inc : inclusion_proof; lower_message_proof : P.proof; upper_message_proof : P.proof; upper_level : Raw_level_repr.t; } let pp_proof fmt proof = match proof with | Single_level {level; _} -> let hash = Skip_list.content level in Format.fprintf fmt "Single_level inbox proof at %a" Hash.pp hash | Level_crossing {lower; upper; upper_level; _} -> let lower_hash = Skip_list.content lower in let upper_hash = Skip_list.content upper in Format.fprintf fmt "Level_crossing inbox proof between %a and %a (upper_level %a)" Hash.pp lower_hash Hash.pp upper_hash Raw_level_repr.pp upper_level let proof_encoding = let open Data_encoding in union ~tag_size:`Uint8 [ case ~title:"Single_level" (Tag 0) (obj3 (req "level" history_proof_encoding) (req "inclusion_proof" inclusion_proof_encoding) (req "message_proof" P.proof_encoding)) (function | Single_level {level; inc; message_proof} -> Some (level, inc, message_proof) | _ -> None) (fun (level, inc, message_proof) -> Single_level {level; inc; message_proof}); case ~title:"Level_crossing" (Tag 1) (obj6 (req "lower" history_proof_encoding) (req "upper" history_proof_encoding) (req "inclusion_proof" inclusion_proof_encoding) (req "lower_message_proof" P.proof_encoding) (req "upper_message_proof" P.proof_encoding) (req "upper_level" Raw_level_repr.encoding)) (function | Level_crossing { lower; upper; inc; lower_message_proof; upper_message_proof; upper_level; } -> Some ( lower, upper, inc, lower_message_proof, upper_message_proof, upper_level ) | _ -> None) (fun ( lower, upper, inc, lower_message_proof, upper_message_proof, upper_level ) -> Level_crossing { lower; upper; inc; lower_message_proof; upper_message_proof; upper_level; }); ] let of_serialized_proof = Data_encoding.Binary.of_bytes_opt proof_encoding let to_serialized_proof = Data_encoding.Binary.to_bytes_exn proof_encoding let proof_error reason = let open Lwt_tzresult_syntax in fail (Inbox_proof_error reason) let check p reason = unless p (fun () -> proof_error reason) (** Utility function that checks the inclusion proof [inc] for any inbox proof. In the case of a [Single_level] proof this is just an inclusion proof between [level] and the inbox snapshot targeted the proof. In the case of a [Level_crossing] proof [inc] must be an inclusion proof between [upper] and the inbox snapshot. In this case we must additionally check that [lower] is the immediate predecessor of [upper] in the inbox skip list. NB: there may be many 'inbox levels' apart, but if the intervening levels are empty they will be immediate neighbours in the skip list because it misses empty levels out. *) let check_inclusions proof snapshot = check (match proof with | Single_level {inc; level; _} -> verify_inclusion_proof inc level snapshot | Level_crossing {inc; lower; upper; _} -> ( let prev_cell = Skip_list.back_pointer upper 0 in match prev_cell with | None -> false | Some p -> verify_inclusion_proof inc upper snapshot && Hash.equal p (hash_skip_list_cell lower))) "invalid inclusions" (** To construct or verify a tree proof we need a function of type [tree -> (tree, result) Lwt.t] where [result] is some data extracted from the tree that we care about proving. [payload_and_level n] is such a function, used for checking both the inbox level specified inside the tree and the message at a particular index, [n]. For this function, the [result] is [(payload, level) : string option * Raw_level_repr.t option] where [payload] is [None] if there was no message at the index. The [level] part of the result will only be [None] if the [tree] is not in the correct format for an inbox level. This should not happen if the [tree] was correctly initialised with [new_level_tree]. *) let payload_and_level n tree = let open Lwt_syntax in let* payload = get_message_payload tree n in let* level = find_level tree in return (tree, (payload, level)) (** Utility function that handles all the verification needed for a particular message proof at a particular level. It calls [P.verify_proof], but also checks the proof has the correct [P.proof_before] hash and the [level] stored inside the tree is the expected one. *) let check_message_proof message_proof level_hash (l, n) label = let open Lwt_tzresult_syntax in let* () = check (Hash.equal level_hash (P.proof_before message_proof)) (Format.sprintf "message_proof (%s) does not match history" label) in let*! result = P.verify_proof message_proof (payload_and_level n) in match result with | None -> proof_error (Format.sprintf "message_proof is invalid (%s)" label) | Some (_, (_, None)) -> proof_error (Format.sprintf "badly encoded level in message_proof (%s)" label) | Some (_, (payload_opt, Some proof_level)) -> let* () = check (Raw_level_repr.equal proof_level l) (Format.sprintf "incorrect level in message_proof (%s)" label) in return payload_opt let verify_proof (l, n) snapshot proof = assert (Z.(geq n zero)) ; let open Lwt_tzresult_syntax in let* () = check_inclusions proof snapshot in match proof with | Single_level p -> ( let level_hash = Skip_list.content p.level in let* payload_opt = check_message_proof p.message_proof level_hash (l, n) "single level" in match payload_opt with | None -> if equal_history_proof snapshot p.level then return None else proof_error "payload is None but proof.level not top level" | Some payload -> return @@ Some Sc_rollup_PVM_sig. {inbox_level = l; message_counter = n; payload}) | Level_crossing p -> ( let lower_level_hash = Skip_list.content p.lower in let* should_be_none = check_message_proof p.lower_message_proof lower_level_hash (l, n) "lower" in let* () = match should_be_none with | None -> return () | Some _ -> proof_error "more messages to read in lower level" in let upper_level_hash = Skip_list.content p.upper in let* payload_opt = check_message_proof p.upper_message_proof upper_level_hash (p.upper_level, Z.zero) "upper" in match payload_opt with | None -> (* [check_inclusions] checks at least two important properties: 1. [p.lower_level] is different from [p.upper_level] 2. [p.upper_level] is included in the snapshot If [p.upper_level] is included in the snapshot, the level was created by the protocol. If the protocol created a level tree at [p.upper_level] it *must* contain at least one message. So, if [p.upper_level] exists, at the index [Z.zero] (fetched here), a payload *must* exist. This code is then dead as long as we store only the nonempty inboxes. *) fail (Empty_upper_level p.upper_level) | Some payload -> return @@ Some Sc_rollup_PVM_sig. { inbox_level = p.upper_level; message_counter = Z.zero; payload; }) (** Utility function; we convert all our calls to be consistent with [Lwt_tzresult_syntax]. *) let option_to_result e lwt_opt = let open Lwt_syntax in let* opt = lwt_opt in match opt with None -> proof_error e | Some x -> return (ok x) let produce_proof ctxt history inbox (l, n) = let open Lwt_tzresult_syntax in let deref ptr = History.find ptr history in let compare hash = let*! tree = P.lookup_tree ctxt hash in match tree with | None -> Lwt.return (-1) | Some tree -> ( let open Lwt_syntax in let+ level = find_level tree in match level with | None -> -1 | Some level -> Raw_level_repr.compare level l) in let*! result = Skip_list.search ~deref ~compare ~cell:inbox in let* inc, level = match result with | Skip_list.{rev_path; last_cell = Found level} -> return (List.rev rev_path, level) | {last_cell = Nearest _; _} | {last_cell = No_exact_or_lower_ptr; _} | {last_cell = Deref_returned_none; _} -> (* We are only interested to the result where [search] than a path to the cell we were looking for. All the other cases should be considered as an error. *) proof_error (Format.asprintf "Skip_list.search failed to find a valid path: %a" (Skip_list.pp_search_result ~pp_cell:pp_history_proof) result) in let* level_tree = option_to_result "could not find level_tree in the inbox_context" (P.lookup_tree ctxt (Skip_list.content level)) in let* message_proof, (payload_opt, _) = option_to_result "failed to produce message proof for level_tree" (P.produce_proof ctxt level_tree (payload_and_level n)) in match payload_opt with | Some payload -> return ( Single_level {level; inc; message_proof}, Some Sc_rollup_PVM_sig.{inbox_level = l; message_counter = n; payload} ) | None -> ( if equal_history_proof inbox level then return (Single_level {level; inc; message_proof}, None) else let target_index = Skip_list.index level + 1 in let cell_ptr = hash_skip_list_cell inbox in let*? history = History.remember cell_ptr inbox history in let deref ptr = History.find ptr history in let* inc = option_to_result "failed to find path to upper level" (Lwt.return (Skip_list.back_path ~deref ~cell_ptr ~target_index |> Option.map (lift_ptr_path deref) |> Option.join)) in let* upper = option_to_result "back_path returned empty list" (Lwt.return (List.last_opt inc)) in let* upper_level_tree = option_to_result "could not find upper_level_tree in the inbox_context" (P.lookup_tree ctxt (Skip_list.content upper)) in let* upper_message_proof, (payload_opt, upper_level_opt) = option_to_result "failed to produce message proof for upper_level_tree" (P.produce_proof ctxt upper_level_tree (payload_and_level Z.zero)) in let* upper_level = option_to_result "upper_level_tree was misformed---could not find level" (Lwt.return upper_level_opt) in match payload_opt with | None -> proof_error "if upper_level_tree exists, the payload must exist" | Some payload -> let input_given = Some Sc_rollup_PVM_sig. { inbox_level = upper_level; message_counter = Z.zero; payload; } in return ( Level_crossing { lower = level; upper; inc; lower_message_proof = message_proof; upper_message_proof; upper_level; }, input_given )) let empty context rollup level = let open Lwt_syntax in assert (Raw_level_repr.(level <> Raw_level_repr.root)) ; let pre_genesis_level = Raw_level_repr.root in let* initial_level = new_level_tree context pre_genesis_level in let* () = commit_tree context initial_level pre_genesis_level in let initial_hash = hash_level_tree initial_level in return { rollup; level; message_counter = Z.zero; nb_messages_in_commitment_period = 0L; starting_level_of_current_commitment_period = level; current_level_hash = (fun () -> initial_hash); old_levels_messages = Skip_list.genesis initial_hash; } module Internal_for_tests = struct let eq_tree = Tree.equal let produce_inclusion_proof history a b = let open Tzresult_syntax in let cell_ptr = hash_skip_list_cell b in let target_index = Skip_list.index a in let* history = History.remember cell_ptr b history in let deref ptr = History.find ptr history in Skip_list.back_path ~deref ~cell_ptr ~target_index |> Option.map (lift_ptr_path deref) |> Option.join |> return let serialized_proof_of_string x = Bytes.of_string x end end include ( Make_hashing_scheme (struct module Tree = struct include Context.Tree type t = Context.t type tree = Context.tree type value = bytes type key = string list end type t = Context.t type tree = Context.tree let commit_tree _ctxt _key _tree = (* This is a no-op in the protocol inbox implementation *) Lwt.return () let lookup_tree _ctxt _hash = (* We cannot find the tree without a full inbox_context *) Lwt.return None type proof = Context.Proof.tree Context.Proof.t let proof_encoding = Context.Proof_encoding.V1.Tree32.tree_proof_encoding let proof_before proof = match proof.Context.Proof.before with | `Value hash | `Node hash -> Hash.of_context_hash hash let verify_proof p f = Lwt.map Result.to_option (Context.verify_tree_proof p f) let produce_proof _ _ _ = (* We cannot produce a proof without full inbox_context *) Lwt.return None end) : Merkelized_operations with type tree = Context.tree and type inbox_context = Context.t) type inbox = t
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>