package tezos-protocol-014-PtKathma
Tezos protocol 014-PtKathma package
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/tezos_raw_protocol_014_PtKathma/sc_rollup_inbox_repr.ml.html
Source file sc_rollup_inbox_repr.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
(*****************************************************************************) (* *) (* Open Source License *) (* Copyright (c) 2021 Nomadic Labs <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) (** A Merkelized inbox represents a list of available messages. This list is decomposed into sublist of messages, one for each Tezos level greater than the level of the Last Cemented Commitment (LCC). This module is designed to: 1. give a constant-time access to the number of available messages ; 2. provide a space-efficient representation for proofs of inbox inclusions (only for inboxes obtained at the end of block validation) ; 3. offer an efficient function to add a new batch of messages in the inbox at the current level. To solve (1), we simply maintain the number of available messages in a field. To solve (2), we use a proof tree H which is implemented by a merkelized skip list allowing for compact inclusion proofs (See {!skip_list_repr.ml}). To solve (3), we maintain a separate proof tree C witnessing the contents of messages of the current level. The protocol maintains the number of available messages, the hashes of the head of H, and the root hash of C. The rollup node needs to maintain a full representation for C and a partial representation for H back to the level of the LCC. *) type error += Invalid_level_add_messages of Raw_level_repr.t type error += Invalid_number_of_messages_to_consume of int64 let () = let open Data_encoding in register_error_kind `Permanent ~id:"sc_rollup_inbox.invalid_level_add_messages" ~title:"Internal error: Trying to add a message to an inbox from the past" ~description: "An inbox can only accept messages for its current level or for the next \ levels." (obj1 (req "level" Raw_level_repr.encoding)) (function Invalid_level_add_messages level -> Some level | _ -> None) (fun level -> Invalid_level_add_messages level) ; register_error_kind `Permanent ~id:"sc_rollup_inbox.consume_n_messages" ~title:"Internal error: Trying to consume a negative number of messages" ~description: "Sc_rollup_inbox.consume_n_messages must be called with a non negative \ integer." (obj1 (req "consume_n_messages" int64)) (function Invalid_number_of_messages_to_consume n -> Some n | _ -> None) (fun n -> Invalid_number_of_messages_to_consume n) (* 32 *) let hash_prefix = "\003\250\174\238\208" (* scib1(55) *) module Hash = struct let prefix = "scib1" let encoded_size = 55 module H = Blake2B.Make (Base58) (struct let name = "inbox_hash" let title = "The hash of an inbox of a smart contract rollup" let b58check_prefix = hash_prefix (* defaults to 32 *) let size = None end) include H let () = Base58.check_encoded_prefix b58check_encoding prefix encoded_size let of_context_hash context_hash = hash_bytes [Context_hash.to_bytes context_hash] include Path_encoding.Make_hex (H) end module Skip_list_parameters = struct let basis = 2 end module Skip_list = Skip_list_repr.Make (Skip_list_parameters) type proof_hash = Hash.t type history_proof_hash = Hash.t type history_proof = (proof_hash, history_proof_hash) Skip_list.cell let equal_history_proof = Skip_list.equal Hash.equal Hash.equal let history_proof_encoding : history_proof Data_encoding.t = Skip_list.encoding Hash.encoding Hash.encoding let pp_history_proof fmt cell = Format.fprintf fmt {| content = %a index = %d back_pointers = %a |} Hash.pp (Skip_list.content cell) (Skip_list.index cell) (Format.pp_print_list Hash.pp) (Skip_list.back_pointers cell) module V1 = struct (* At a given level, an inbox is composed of metadata of type [t] and [current_messages], a [tree] representing the messages of the current level (held by the [Raw_context.t] in the protocol). The metadata contains : - [rollup] : the address of the rollup ; - [level] : the inbox level ; - [message_counter] : the number of messages in the [level]'s inbox ; - [nb_available_messages] : the number of messages that have not been consumed by a commitment cementing ; - [nb_messages_in_commitment_period] : the number of messages during the commitment period ; - [starting_level_of_current_commitment_period] : the level marking the beginning of the current commitment period ; - [current_messages_hash] : the root hash of [current_messages] ; - [old_levels_messages] : a witness of the inbox history. When new messages are appended to the current level inbox, the metadata stored in the context may be related to an older level. In that situation, an archival process is applied to the metadata. This process saves the [current_messages_hash] in the [old_levels_messages] and empties [current_messages]. If there are intermediate levels between [inbox.level] and the current level, this archival process is applied until we reach the current level using an empty [current_messages]. See {!MakeHashingScheme.archive} for details. The [current_messages_hash] is either: - the hash of 'empty bytes' when there are no current messages ; - the root hash of the tree, where the contents of each message sit at the key [[message_index, "payload"]], where [message_index] is the index of the message in the list of [current_messages], if there are one or more messages. *) type t = { rollup : Sc_rollup_repr.t; level : Raw_level_repr.t; nb_available_messages : int64; nb_messages_in_commitment_period : int64; starting_level_of_current_commitment_period : Raw_level_repr.t; message_counter : Z.t; (* Lazy to avoid hashing O(n^2) time in [add_external_messages] *) current_messages_hash : unit -> Hash.t; old_levels_messages : history_proof; } let equal inbox1 inbox2 = (* To be robust to addition of fields in [t]. *) let { rollup; level; nb_available_messages; nb_messages_in_commitment_period; starting_level_of_current_commitment_period; message_counter; current_messages_hash; old_levels_messages; } = inbox1 in Sc_rollup_repr.Address.equal rollup inbox2.rollup && Raw_level_repr.equal level inbox2.level && Compare.Int64.(equal nb_available_messages inbox2.nb_available_messages) && Compare.Int64.( equal nb_messages_in_commitment_period inbox2.nb_messages_in_commitment_period) && Raw_level_repr.( equal starting_level_of_current_commitment_period inbox2.starting_level_of_current_commitment_period) && Z.equal message_counter inbox2.message_counter && Hash.equal (current_messages_hash ()) (inbox2.current_messages_hash ()) && equal_history_proof old_levels_messages inbox2.old_levels_messages let pp fmt { rollup; level; nb_available_messages; nb_messages_in_commitment_period; starting_level_of_current_commitment_period; message_counter; current_messages_hash; old_levels_messages; } = Format.fprintf fmt {| rollup = %a level = %a current messages hash = %a nb_available_messages = %Ld nb_messages_in_commitment_period = %s starting_level_of_current_commitment_period = %a message_counter = %a old_levels_messages = %a |} Sc_rollup_repr.Address.pp rollup Raw_level_repr.pp level Hash.pp (current_messages_hash ()) nb_available_messages (Int64.to_string nb_messages_in_commitment_period) Raw_level_repr.pp starting_level_of_current_commitment_period Z.pp_print message_counter pp_history_proof old_levels_messages let inbox_level inbox = inbox.level let old_levels_messages_encoding = Skip_list.encoding Hash.encoding Hash.encoding let encoding = Data_encoding.( conv (fun { rollup; message_counter; nb_available_messages; nb_messages_in_commitment_period; starting_level_of_current_commitment_period; level; current_messages_hash; old_levels_messages; } -> ( rollup, message_counter, nb_available_messages, nb_messages_in_commitment_period, starting_level_of_current_commitment_period, level, current_messages_hash (), old_levels_messages )) (fun ( rollup, message_counter, nb_available_messages, nb_messages_in_commitment_period, starting_level_of_current_commitment_period, level, current_messages_hash, old_levels_messages ) -> { rollup; message_counter; nb_available_messages; nb_messages_in_commitment_period; starting_level_of_current_commitment_period; level; current_messages_hash = (fun () -> current_messages_hash); old_levels_messages; }) (obj8 (req "rollup" Sc_rollup_repr.encoding) (req "message_counter" n) (req "nb_available_messages" int64) (req "nb_messages_in_commitment_period" int64) (req "starting_level_of_current_commitment_period" Raw_level_repr.encoding) (req "level" Raw_level_repr.encoding) (req "current_messages_hash" Hash.encoding) (req "old_levels_messages" old_levels_messages_encoding))) let number_of_available_messages inbox = Z.of_int64 inbox.nb_available_messages let number_of_messages_during_commitment_period inbox = inbox.nb_messages_in_commitment_period let start_new_commitment_period inbox level = { inbox with starting_level_of_current_commitment_period = level; nb_messages_in_commitment_period = 0L; } let starting_level_of_current_commitment_period inbox = inbox.starting_level_of_current_commitment_period let no_messages_hash = Hash.hash_bytes [Bytes.empty] let empty rollup level = { rollup; level; message_counter = Z.zero; nb_available_messages = 0L; nb_messages_in_commitment_period = 0L; starting_level_of_current_commitment_period = level; current_messages_hash = (fun () -> no_messages_hash); old_levels_messages = Skip_list.genesis no_messages_hash; } let consume_n_messages n ({nb_available_messages; _} as inbox) : t option tzresult = let n = Int64.of_int32 n in if Compare.Int64.(n < 0L) then error (Invalid_number_of_messages_to_consume n) else if Compare.Int64.(n > nb_available_messages) then ok None else let nb_available_messages = Int64.(sub nb_available_messages n) in ok (Some {inbox with nb_available_messages}) end type versioned = V1 of V1.t let versioned_encoding = let open Data_encoding in union [ case ~title:"V1" (Tag 0) V1.encoding (function V1 inbox -> Some inbox) (fun inbox -> V1 inbox); ] include V1 let of_versioned = function V1 inbox -> inbox [@@inline] let to_versioned inbox = V1 inbox [@@inline] let key_of_message = Data_encoding.Binary.to_string_exn Data_encoding.z module type MerkelizedOperations = sig type tree type messages = tree type message = tree type history val history_encoding : history Data_encoding.t val pp_history : Format.formatter -> history -> unit val history_at_genesis : bound:int64 -> history val add_external_messages : history -> t -> Raw_level_repr.t -> string list -> messages -> (messages * history * t) tzresult Lwt.t val add_messages_no_history : t -> Raw_level_repr.t -> Sc_rollup_inbox_message_repr.serialized list -> messages -> (messages * t) tzresult Lwt.t val get_message : messages -> Z.t -> message option Lwt.t val get_message_payload : messages -> Z.t -> string option Lwt.t type inclusion_proof val inclusion_proof_encoding : inclusion_proof Data_encoding.t val pp_inclusion_proof : Format.formatter -> inclusion_proof -> unit val number_of_proof_steps : inclusion_proof -> int val produce_inclusion_proof : history -> t -> t -> inclusion_proof option val verify_inclusion_proof : inclusion_proof -> t -> t -> bool end module type TREE = sig type t type tree type key = string list type value = bytes val find : tree -> key -> value option Lwt.t val find_tree : tree -> key -> tree option Lwt.t val add : tree -> key -> value -> tree Lwt.t val is_empty : tree -> bool val hash : tree -> Context_hash.t end module MakeHashingScheme (Tree : TREE) : MerkelizedOperations with type tree = Tree.tree = struct module Tree = Tree type tree = Tree.tree type messages = tree type message = tree let add_message inbox payload messages = let open Lwt_tzresult_syntax in let message_index = inbox.message_counter in let message_counter = Z.succ message_index in let key = key_of_message message_index in let nb_available_messages = Int64.succ inbox.nb_available_messages in let*! messages = Tree.add messages [key; "payload"] (Bytes.of_string (payload : Sc_rollup_inbox_message_repr.serialized :> string)) in let nb_messages_in_commitment_period = Int64.succ inbox.nb_messages_in_commitment_period in let inbox = { inbox with message_counter; nb_available_messages; nb_messages_in_commitment_period; } in return (messages, inbox) let get_message messages message_index = let key = key_of_message message_index in Tree.(find_tree messages [key]) let get_message_payload messages message_index = let key = key_of_message message_index in Tree.(find messages [key; "payload"]) >|= Option.map Bytes.to_string let hash_old_levels_messages cell = let current_messages_hash = Skip_list.content cell in let back_pointers_hashes = Skip_list.back_pointers cell in Hash.to_bytes current_messages_hash :: List.map Hash.to_bytes back_pointers_hashes |> Hash.hash_bytes module Int64_map = Map.Make (Int64) type history = { events : history_proof Hash.Map.t; sequence : Hash.t Int64_map.t; bound : int64; counter : int64; } let history_encoding : history Data_encoding.t = let open Data_encoding in let events_encoding = Hash.Map.encoding history_proof_encoding in let sequence_encoding = conv (fun m -> Int64_map.bindings m) (List.fold_left (fun m (k, v) -> Int64_map.add k v m) Int64_map.empty) (list (tup2 int64 Hash.encoding)) in conv (fun {events; sequence; bound; counter} -> (events, sequence, bound, counter)) (fun (events, sequence, bound, counter) -> {events; sequence; bound; counter}) (obj4 (req "events" events_encoding) (req "sequence" sequence_encoding) (req "bound" int64) (req "counter" int64)) let pp_history fmt history = Hash.Map.bindings history.events |> fun bindings -> let pp_binding fmt (hash, history_proof) = Format.fprintf fmt "@[%a -> %a@]" Hash.pp hash pp_history_proof history_proof in Format.pp_print_list pp_binding fmt bindings let history_at_genesis ~bound = {events = Hash.Map.empty; sequence = Int64_map.empty; bound; counter = 0L} type without_history_witness type with_history_witness type _ with_history = | No_history : without_history_witness with_history | With_history : history -> with_history_witness with_history (** [remember_history ptr cell history] extends [history] with a new mapping from [ptr] to [cell]. If [history] is full, the oldest mapping is removed. If the history bound is less or equal to zero, then this function returns [history] untouched. *) let remember_history ptr cell history = if Compare.Int64.(history.bound <= 0L) then history else let events = Hash.Map.add ptr cell history.events in let counter = Int64.succ history.counter in let history = { events; sequence = Int64_map.add history.counter ptr history.sequence; bound = history.bound; counter; } in if Int64.(equal history.counter history.bound) then match Int64_map.min_binding history.sequence with | None -> history | Some (l, h) -> let sequence = Int64_map.remove l history.sequence in let events = Hash.Map.remove h events in { counter = Int64.pred history.counter; bound = history.bound; sequence; events; } else history let remember : type history_witness. history_proof_hash -> history_proof -> history_witness with_history -> history_witness with_history = fun ptr cell history -> match history with | No_history -> No_history | With_history history -> With_history (remember_history ptr cell history) let archive_if_needed history inbox target_level = let archive_level history inbox = let prev_cell = inbox.old_levels_messages in let prev_cell_ptr = hash_old_levels_messages prev_cell in let history = remember prev_cell_ptr prev_cell history in let old_levels_messages = Skip_list.next ~prev_cell ~prev_cell_ptr (inbox.current_messages_hash ()) in let level = Raw_level_repr.succ inbox.level in let current_messages_hash () = no_messages_hash in let inbox = { rollup = inbox.rollup; nb_available_messages = inbox.nb_available_messages; nb_messages_in_commitment_period = inbox.nb_messages_in_commitment_period; starting_level_of_current_commitment_period = inbox.starting_level_of_current_commitment_period; old_levels_messages; level; current_messages_hash; message_counter = Z.zero; } in (history, inbox) in let rec aux (history, inbox) = if Raw_level_repr.(inbox.level = target_level) then (history, inbox) else aux (archive_level history inbox) in aux (history, inbox) let hash_messages messages = if Tree.is_empty messages then no_messages_hash else Hash.of_context_hash @@ Tree.hash messages let add_messages_aux history inbox level payloads messages = let open Lwt_tzresult_syntax in let* () = fail_when Raw_level_repr.(level < inbox.level) (Invalid_level_add_messages level) in let history, inbox = archive_if_needed history inbox level in let* messages, inbox = List.fold_left_es (fun (messages, inbox) payload -> add_message inbox payload messages) (messages, inbox) payloads in let current_messages_hash () = hash_messages messages in return (messages, history, {inbox with current_messages_hash}) let add_external_messages history inbox level payloads messages = let open Lwt_tzresult_syntax in let*? payloads = List.map_e (fun payload -> Sc_rollup_inbox_message_repr.(to_bytes @@ External payload)) payloads in let* messages, With_history history, inbox = add_messages_aux (With_history history) inbox level payloads messages in return (messages, history, inbox) let add_messages_no_history inbox level payloads messages = let open Lwt_tzresult_syntax in let* messages, No_history, inbox = add_messages_aux No_history inbox level payloads messages in return (messages, inbox) (* An [inclusion_proof] is a path in the Merkelized skip list showing that a given inbox history is a prefix of another one. This path has a size logarithmic in the difference between the levels of the two inboxes. [Irmin.Proof.{tree_proof, stream_proof}] could not be reused here because there is no obviously encoding of sequences in these data structures with the same guarantee about the size of proofs. *) type inclusion_proof = history_proof list let inclusion_proof_encoding = let open Data_encoding in list history_proof_encoding let pp_inclusion_proof fmt proof = Format.pp_print_list pp_history_proof fmt proof let number_of_proof_steps proof = List.length proof let lift_ptr_path history ptr_path = let rec aux accu = function | [] -> Some (List.rev accu) | x :: xs -> Option.bind (history x) @@ fun c -> aux (c :: accu) xs in aux [] ptr_path let produce_inclusion_proof history inbox1 inbox2 = let cell_ptr = hash_old_levels_messages inbox2.old_levels_messages in let target_index = Skip_list.index inbox1.old_levels_messages in let (With_history history) = remember cell_ptr inbox2.old_levels_messages (With_history history) in let deref ptr = Hash.Map.find_opt ptr history.events in Skip_list.back_path ~deref ~cell_ptr ~target_index |> Option.map (lift_ptr_path deref) |> Option.join let verify_inclusion_proof proof inbox1 inbox2 = let assoc = List.map (fun c -> (hash_old_levels_messages c, c)) proof in let path = List.split assoc |> fst in let deref = let open Hash.Map in let map = of_seq (List.to_seq assoc) in fun ptr -> find_opt ptr map in let cell_ptr = hash_old_levels_messages inbox2.old_levels_messages in let target_ptr = hash_old_levels_messages inbox1.old_levels_messages in Skip_list.valid_back_path ~equal_ptr:Hash.equal ~deref ~cell_ptr ~target_ptr path end include ( MakeHashingScheme (struct include Context.Tree type t = Context.t type tree = Context.tree type value = bytes type key = string list end) : MerkelizedOperations with type tree = Context.tree) type inbox = t module Proof = struct type starting_point = {inbox_level : Raw_level_repr.t; message_counter : Z.t} type t = { skips : (inbox * inclusion_proof) list; (* The [skips] value in this record makes it potentially unbounded in size. There is an issue #2997 to deal with this problem. *) level : inbox; inc : inclusion_proof; message_proof : Context.Proof.tree Context.Proof.t; } let pp fmt proof = Format.fprintf fmt "Inbox proof with %d skips" (List.length proof.skips) let encoding = let open Data_encoding in conv (fun {skips; level; inc; message_proof} -> (skips, level, inc, message_proof)) (fun (skips, level, inc, message_proof) -> {skips; level; inc; message_proof}) (obj4 (req "skips" (list (tup2 encoding inclusion_proof_encoding))) (req "level" encoding) (req "inc" inclusion_proof_encoding) (req "message_proof" Context.Proof_encoding.V1.Tree32.tree_proof_encoding)) (* This function is for pattern matching on proofs based on whether they involve multiple levels or if they only concern a single level. [split_proof proof] is [None] in the case that [proof] is a 'simple' inbox proof that only involves one level. In this case [skips] is empty and we just check the single [level], [inc] pair, and the [message_proof]. [split_proof proof] is [Some (level, inc, remaining_proof)] if there are [skips]. In this case, we must check the [level] and [inc] given, and then continue (recursively) on to the [remaining_proof]. *) let split_proof proof = match proof.skips with | [] -> None | (level, inc) :: rest -> Some (level, inc, {proof with skips = rest}) (* A proof might include several sub-inboxes as evidence of different levels being empty in the actual inbox snapshot. This returns the _lowest_ such sub-inbox for a given proof. It's used with the function above in the recursive case of [valid]. When [split_proof proof] gives [Some (level, inc, remaining_proof)] we have to check that [inc] is an inclusion proof between [level] and [bottom_level remaining_proof]. *) let bottom_level proof = match proof.skips with [] -> proof.level | (level, _) :: _ -> level (* The [message_proof] part of an inbox proof is a [Context.tree_proof]. To validate this, we need a function of type [tree -> (tree, result) Lwt.t]. For a given [n], [message_payload n] is such a function: it takes a [Context.tree] representing the messages in a single level of the inbox and extracts the message payload at index [n], so [result] in this case is [string]. (It also returns the tree just to satisfy the function [Context.verify_tree_proof]). *) let message_payload n tree = let open Lwt_syntax in let* r = get_message_payload tree n in return (tree, r) let check_hash hash kinded_hash = match kinded_hash with | `Node h -> Hash.(equal (of_context_hash h) hash) | `Value h -> Hash.(equal (of_context_hash h) hash) type error += Inbox_proof_error of string let proof_error reason = let open Lwt_result_syntax in fail (Inbox_proof_error reason) let drop_error promise reason = let open Lwt_tzresult_syntax in let*! result = promise in match result with Ok r -> return r | Error _ -> proof_error reason let rec valid {inbox_level = l; message_counter = n} inbox proof = assert (Z.(geq n zero)) ; let open Lwt_result_syntax in match split_proof proof with | None -> if verify_inclusion_proof proof.inc proof.level inbox && Raw_level_repr.equal (inbox_level proof.level) l && check_hash (proof.level.current_messages_hash ()) proof.message_proof.before then let* (_ : Context.tree), payload = drop_error (Context.verify_tree_proof proof.message_proof (message_payload n)) "message_proof invalid" in match payload with | None -> if equal proof.level inbox then return None else proof_error "payload is None, inbox proof.level not top" | Some msg -> return @@ Some Sc_rollup_PVM_sem. {inbox_level = l; message_counter = n; payload = msg} else proof_error "Inbox proof parameters don't match (message level)" | Some (level, inc, remaining_proof) -> if verify_inclusion_proof inc level (bottom_level remaining_proof) && Raw_level_repr.equal (inbox_level level) l && Z.equal level.message_counter n then valid {inbox_level = Raw_level_repr.succ l; message_counter = Z.zero} inbox remaining_proof else proof_error "Inbox proof parameters don't match (lower level)" (* TODO #2997 This needs to be implemented when the inbox structure is improved. *) let produce_proof _ _ = assert false end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>