package tezos-protocol-013-PtJakart
Tezos/Protocol: economic-protocol definition
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-16.1.tar.gz
sha256=43723d096307603703a1a89ed1b2eb202b365f5e7824b96b0cbf813b343a6cf7
sha512=b2a637f2e965000d3d49ad85277ca24d6cb07a1a7cf2bc69d296d8b03ad78c3eaa8e21e94b9162e62c2e11649cd03bc845b2a3dafe623b91065df69d47dc8e4f
doc/src/tezos-protocol-013-PtJakart.raw/sc_rollup_game.ml.html
Source file sc_rollup_game.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
(*****************************************************************************) (* *) (* Open Source License *) (* Copyright (c) 2022 Nomadic Labs <contact@nomadic-labs.com> *) (* Copyright (c) 2022 Trili Tech, <contact@trili.tech> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) open Alpha_context.Sc_rollup module Make (PVM : Sc_rollup_PVM_sem.S) = struct module PVM = PVM type tick = Sc_rollup_tick_repr.t module Section = struct type section = { section_start_state : PVM.hash; section_start_at : tick; section_stop_state : PVM.hash; section_stop_at : tick; } and dissection = section Sc_rollup_tick_repr.Map.t let section_encoding = let open Data_encoding in conv (fun { section_start_state; section_start_at; section_stop_state; section_stop_at; } -> ( section_start_state, section_start_at, section_stop_state, section_stop_at )) (fun ( section_start_state, section_start_at, section_stop_state, section_stop_at ) -> { section_start_state; section_start_at; section_stop_state; section_stop_at; }) (obj4 (req "section_start_state" State_hash.encoding) (req "section_start_at" Sc_rollup_tick_repr.encoding) (req "section_stop_state" State_hash.encoding) (req "section_stop_at" Sc_rollup_tick_repr.encoding)) let dissection_encoding = let open Data_encoding in let open Sc_rollup_tick_repr in option @@ conv (fun map -> List.of_seq @@ Map.to_seq map) (fun list -> Map.of_seq @@ List.to_seq list) (list @@ tup2 encoding section_encoding) let empty_dissection = Sc_rollup_tick_repr.Map.empty let add_section section dissection = Sc_rollup_tick_repr.Map.add section.section_start_at section dissection let find_section section (dissection : dissection) = let open Sc_rollup_tick_repr in Option.bind (Map.find section.section_start_at dissection) (fun {section_start_at; section_stop_at; _} -> if section_start_at = section.section_start_at && section_stop_at = section.section_stop_at then Some section else None) let fold_over_dissection f i dissection = Sc_rollup_tick_repr.Map.fold f i dissection let dissection_cardinal = Sc_rollup_tick_repr.Map.cardinal let last_section = Sc_rollup_tick_repr.Map.max_binding_opt let pp_section ppf (s : section) = Format.fprintf ppf "( %a ) -- [%a] \n ->\n ( %a ) -- [%a]\n " State_hash.pp s.section_start_state Sc_rollup_tick_repr.pp s.section_start_at State_hash.pp s.section_stop_state Sc_rollup_tick_repr.pp s.section_stop_at let pp_dissection ppf d = let open Sc_rollup_tick_repr in let list = List.of_seq @@ Map.to_seq d in Format.pp_print_list ~pp_sep:(fun ppf () -> Format.pp_print_string ppf ";\n\n") (fun ppf (key, b) -> Format.fprintf ppf "key = %a \n val = %a\n" pp key pp_section b) ppf list let pp_optional_dissection d = Format.pp_print_option ~none:(fun ppf () -> Format.pp_print_text ppf "no dissection at the moment") pp_dissection d let valid_section ({section_start_at; section_stop_at; _} : section) = Sc_rollup_tick_repr.(section_stop_at > section_start_at) let valid_dissection section dissection = let open Sc_rollup_tick_repr in let rec traverse last_pos = function | Seq.Nil -> section.section_stop_at = last_pos | Seq.Cons ((_, v), kvs) -> last_pos = v.section_start_at && valid_section v && traverse v.section_stop_at (kvs ()) in traverse section.section_start_at (Map.to_seq dissection ()) end type player = Committer | Refuter let string_of_player = function | Committer -> "committer" | Refuter -> "refuter" let pp_player ppf player = Format.fprintf ppf "%s" (string_of_player player) let player_encoding = let open Data_encoding in union ~tag_size:`Uint8 [ case ~title:"Commiter" (Tag 0) string (function Committer -> Some "committer" | _ -> None) (fun _ -> Committer); case ~title:"Refuter" (Tag 1) string (function Refuter -> Some "refuter" | _ -> None) (fun _ -> Refuter); ] let opponent = function Committer -> Refuter | Refuter -> Committer type t = { turn : player; start_state : PVM.hash; start_at : tick; player_stop_state : PVM.hash; opponent_stop_state : PVM.hash; stop_at : tick; current_dissection : Section.dissection option; } let encoding = let open Data_encoding in conv (fun { turn; start_state; start_at; player_stop_state; opponent_stop_state; stop_at; current_dissection; } -> ( turn, start_state, start_at, player_stop_state, opponent_stop_state, stop_at, current_dissection )) (fun ( turn, start_state, start_at, player_stop_state, opponent_stop_state, stop_at, current_dissection ) -> { turn; start_state; start_at; player_stop_state; opponent_stop_state; stop_at; current_dissection; }) (obj7 (req "turn" player_encoding) (req "start_state" State_hash.encoding) (req "start_at" Sc_rollup_tick_repr.encoding) (req "player_stop_state" State_hash.encoding) (req "oponent_stop_state" State_hash.encoding) (req "stop_at" Sc_rollup_tick_repr.encoding) (req "current_dissection" Section.dissection_encoding)) type conflict_resolution_step = | Refine of {stop_state : PVM.hash; next_dissection : Section.dissection} | Conclude of Sc_rollup_PVM_sem.input option * PVM.proof type move = | ConflictInside of { choice : Section.section; conflict_resolution_step : conflict_resolution_step; } type commit = Commit of Section.section type refutation = RefuteByConflict of conflict_resolution_step type reason = InvalidMove | ConflictResolved let pp_reason ppf reason = Format.fprintf ppf "%s" (match reason with | InvalidMove -> "invalid move" | ConflictResolved -> "conflict resolved") type outcome = {winner : player option; reason : reason} let pp_winner winner = Format.pp_print_option ~none:(fun ppf () -> Format.pp_print_text ppf "no winner") pp_player winner let pp_outcome ppf {winner; reason} = Format.fprintf ppf "%a because of %a" pp_winner winner pp_reason reason type move_result = Over of outcome | Ongoing of t let pp ppf (g : t) = Format.fprintf ppf "%a @ %a -> %a / %a @ %a [%a] %s playing" State_hash.pp g.start_state Sc_rollup_tick_repr.pp g.start_at State_hash.pp g.player_stop_state State_hash.pp g.opponent_stop_state Sc_rollup_tick_repr.pp g.stop_at Section.pp_optional_dissection g.current_dissection (match g.turn with Committer -> "committer" | Refuter -> "refuter") let pp_move ppf = function | ConflictInside { choice; conflict_resolution_step = Refine {next_dissection; stop_state}; } -> Format.fprintf ppf "conflict is inside %a, should end with %a, new dissection = %a" Section.pp_section choice State_hash.pp stop_state Section.pp_dissection next_dissection | ConflictInside {choice; conflict_resolution_step = Conclude (input, proof)} -> let using_optional_input = match input with | None -> "" | Some input -> Format.sprintf " (using optional input `%s')" input.payload in Format.fprintf ppf "atomic conflict found inside %a, we can verify that it starts with \ %a and should end with %a%s" Section.pp_section choice State_hash.pp (PVM.proof_start_state proof) State_hash.pp (PVM.proof_stop_state proof) using_optional_input let conflict_found (game : t) = Sc_rollup_tick_repr.(Z.equal (distance game.stop_at game.start_at) Z.one) let stop_state = function | Refine {stop_state; _} -> stop_state | Conclude (_, proof) -> PVM.proof_stop_state proof let initial (Commit commit) (refutation : conflict_resolution_step) = let game = { start_state = commit.section_start_state; start_at = commit.section_start_at; opponent_stop_state = commit.section_stop_state; stop_at = commit.section_stop_at; player_stop_state = stop_state refutation; current_dissection = None; turn = Refuter; } in let choice = commit in let move = ConflictInside {choice; conflict_resolution_step = refutation} in (game, move) let resolve_conflict (game : t) (input, proof) = assert (conflict_found game) ; let player = game.turn in let opponent_state_valid = State_hash.equal (PVM.proof_stop_state proof) game.opponent_stop_state in let over winner = {winner; reason = ConflictResolved} in PVM.verify_proof ~input proof >>= fun player_state_valid -> let outcome = match (player_state_valid, opponent_state_valid) with | (true, true) -> over @@ Some Committer | (true, false) -> over @@ Some player | (false, true) -> over @@ Some (opponent player) | (false, false) -> over @@ None in Lwt.return outcome let apply_choice ~(game : t) ~(choice : Section.section) chosen_stop_state = let section = match game.current_dissection with | Some dissection -> Section.find_section choice dissection | None -> if State_hash.equal choice.section_start_state game.start_state then Some choice else None in let game = match section with | None -> None | Some { section_start_state; section_start_at; section_stop_state; section_stop_at; } -> if State_hash.equal chosen_stop_state section_stop_state then None else Some { game with start_state = section_start_state; start_at = section_start_at; opponent_stop_state = section_stop_state; player_stop_state = chosen_stop_state; stop_at = section_stop_at; } in Lwt.return game let apply_dissection ~(game : t) (next_dissection : Section.dissection) = let current_section : Section.section = { section_start_state = game.start_state; section_start_at = game.start_at; section_stop_state = game.opponent_stop_state; section_stop_at = game.stop_at; } in if Section.valid_dissection current_section next_dissection then Lwt.return @@ Some {game with current_dissection = Some next_dissection} else Lwt.return None let play game (ConflictInside {choice; conflict_resolution_step}) = let player = game.turn in let apply_move () = match conflict_resolution_step with | Refine {next_dissection; stop_state} -> ( apply_choice ~game ~choice stop_state >>= function | None -> Lwt.return None | Some game -> ( apply_dissection ~game next_dissection >>= function | None -> Lwt.return None | Some game -> Lwt.return @@ Some (Ongoing game))) | Conclude (input, proof) -> ( apply_choice ~game ~choice (PVM.proof_stop_state proof) >>= function | None -> Lwt.return None | Some game -> if State_hash.equal (PVM.proof_start_state proof) game.start_state && conflict_found game then resolve_conflict game (input, proof) >>= fun x -> Lwt.return @@ Some (Over x) else Lwt.return None) in apply_move () >>= function | None -> Lwt.return @@ Over {winner = Some (opponent player); reason = InvalidMove} | Some state -> Lwt.return state end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>