package tezos-protocol-012-Psithaca
Tezos protocol 012-Psithaca package
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/tezos_raw_protocol_012_Psithaca/sapling_storage.ml.html
Source file sapling_storage.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
(*****************************************************************************) (* *) (* Open Source License *) (* Copyright (c) 2019-2020 Nomadic Labs <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) module type COMMITMENTS = sig val init : Raw_context.t -> Storage.Sapling.id -> Raw_context.t Lwt.t val default_root : Sapling.Hash.t val get_root : Raw_context.t -> Storage.Sapling.id -> (Raw_context.t * Sapling.Hash.t) tzresult Lwt.t val add : Raw_context.t -> Storage.Sapling.id -> Sapling.Commitment.t list -> int64 -> (Raw_context.t * int) tzresult Lwt.t val get_from : Raw_context.t -> Storage.Sapling.id -> int64 -> Sapling.Commitment.t list tzresult Lwt.t end module Commitments : COMMITMENTS = struct module H = Sapling.Hash (** Incremental Merkle Tree * * A tree of height h contains 2^h leaves and h+1 levels of nodes with * leaves at level 0 and root at level h. * * The leaves are commitments and the tree it is treated as always filled * with a default value H.uncommitted. This allows to have proofs of * membership, or witnesses, of fixed size. * * All the nodes at the same level of an empty tree have the same hash, * which can be computed from the default value of the leaves. This is * stored in the [uncommitted] list. * * Any subtree filled with default values is represented by the Empty * constructor and given its height it's possible to compute its hash * using the [uncommitted] list. * * The leaves are indexed by their position [pos], ranging from 0 to * (2^h)-1. The encoding of [pos] limits the possible size of the tree. * In any case the only valid height for the Sapling library is 32, so even * if the library encodes positions as uint64, they never exceed uint32. * * The tree is incremental in the sense that leaves cannot be modified but * only added and exclusively in successive positions. * * Given that elements are added and retrieved by position, it is possible * to use this information to efficiently navigate the tree. * Given a tree of height [h] and a position [pos], if pos < pow2 (h-1) only * the left subtree needs to be inspected recursively. Otherwise only the * right needs to be visited, decreasing [pos] by [pow2 (h-1)]. * * In order to avoid storing the height for each subtree (or worse * recomputing it), each function with suffix `_height` expects the height * of the tree as parameter. These functions are only for internal use and * are later aliased by functions using the default height of a Sapling * incremental Merkle tree. * * Each node of the tree is indexed starting from the root at index 1, * followed by its left child at index 2, right child at index 3 and so on * until the last leaf at index 2^(depth+1)-1, or in terms of height * 2^(32 - height +1) -1. * The functions left and right return the index of the left and right child * of a node. *) let pow2 h = Int64.(shift_left 1L h) let max_height = 32 let max_size = pow2 max_height let assert_node node height = assert ( let first_of_height = pow2 (max_height - height) in let first_of_next_height = Int64.shift_left first_of_height 1 in Compare.Int64.(node >= first_of_height && node < first_of_next_height)) let assert_height height = assert (Compare.Int.(height >= 0 && height <= max_height)) let assert_pos pos height = assert (Compare.Int64.(pos >= 0L && pos <= pow2 height)) let default_root = H.uncommitted ~height:max_height let init = Storage.Sapling.commitments_init let get_root_height ctx id node height = assert_node node height ; assert_height height ; Storage.Sapling.Commitments.find (ctx, id) node >|=? function | (ctx, None) -> let hash = H.uncommitted ~height in (ctx, hash) | (ctx, Some hash) -> (ctx, hash) let left node = Int64.mul node 2L let right node = Int64.(add (mul node 2L) 1L) (* Not tail-recursive *) let rec split_at n l = if Compare.Int64.(n = 0L) then ([], l) else match l with | [] -> ([], l) | x :: xs -> let (l1, l2) = split_at Int64.(pred n) xs in (x :: l1, l2) (* [insert tree height pos cms] inserts the list of commitments [cms] in the tree [tree] of height [height] at the next position [pos]. Returns the context, the size of the added storage, and the hash of the node. Not tail-recursive. Pre: incremental tree /\ size tree + List.length cms <= pow2 height /\ pos = size tree /\ Post: incremental tree /\ to_list (insert tree height pos cms) = to_list t @ cms *) let[@coq_struct "height"] rec insert ctx id node height pos cms = assert_node node height ; assert_height height ; assert_pos pos height ; match (height, cms) with | (_, []) -> get_root_height ctx id node height >|=? fun (ctx, h) -> (ctx, 0, h) | (0, [cm]) -> let h = H.of_commitment cm in Storage.Sapling.Commitments.init (ctx, id) node h >|=? fun (ctx, size) -> (ctx, size, h) | _ -> let height = height - 1 in (if Compare.Int64.(pos < pow2 height) then let at = Int64.(sub (pow2 height) pos) in let (cml, cmr) = split_at at cms in insert ctx id (left node) height pos cml >>=? fun (ctx, size_l, hl) -> insert ctx id (right node) height 0L cmr >|=? fun (ctx, size_r, hr) -> (ctx, size_l + size_r, hl, hr) else get_root_height ctx id (left node) height >>=? fun (ctx, hl) -> let pos = Int64.(sub pos (pow2 height)) in insert ctx id (right node) height pos cms >|=? fun (ctx, size_r, hr) -> (ctx, size_r, hl, hr)) >>=? fun (ctx, size_children, hl, hr) -> let h = H.merkle_hash ~height hl hr in Storage.Sapling.Commitments.add (ctx, id) node h >|=? fun (ctx, size, _existing) -> (ctx, size + size_children, h) let[@coq_struct "height"] rec fold_from_height ctx id node ~pos ~f ~acc height = assert_node node height ; assert_height height ; assert_pos pos height ; Storage.Sapling.Commitments.find (ctx, id) node (* we don't count gas for this function, it is called only by RPC *) >>=? function | (_ctx, None) -> return acc | (_ctx, Some h) -> if Compare.Int.(height = 0) then return (f acc h) else let full = pow2 (height - 1) in if Compare.Int64.(pos < full) then fold_from_height ctx id (left node) ~pos ~f ~acc (height - 1) >>=? fun acc -> (* Setting pos to 0 folds on the whole right subtree *) fold_from_height ctx id (right node) ~pos:0L ~f ~acc (height - 1) else let pos = Int64.(sub pos full) in fold_from_height ctx id (right node) ~pos ~f ~acc (height - 1) let root_node = 1L let get_root ctx id = get_root_height ctx id root_node max_height (* Expects pos to be the next position to insert. Pos is also the number of inserted leaves. A commitment should always be added together with a corresponding ciphertext in the same position. [insert] is not tail-recursive so we put a hard limit on the size of the list of commitments. The use of [split_at] has O(n logn) complexity that is less relevant on a smaller list. *) let add ctx id cms pos = let l = List.length cms in assert (Compare.Int.(l <= 1000)) ; let n' = Int64.(add pos (of_int l)) in assert (Compare.Int64.(n' <= max_size)) ; insert ctx id root_node max_height pos cms >|=? fun (ctx, size, _h) -> (ctx, size) let get_from ctx id pos = fold_from_height ctx id root_node ~pos ~f:(fun acc c -> H.to_commitment c :: acc) ~acc:[] max_height >|=? fun l -> List.rev l end module Ciphertexts = struct let init ctx id = Storage.Sapling.ciphertexts_init ctx id (* a ciphertext should always be added together with a corresponding commitment in the same position *) let add ctx id c pos = Storage.Sapling.Ciphertexts.init (ctx, id) pos c let get_from ctx id offset = let rec aux (ctx, acc) pos = Storage.Sapling.Ciphertexts.find (ctx, id) pos >>=? fun (ctx, c) -> match c with | None -> return (ctx, List.rev acc) | Some c -> aux (ctx, c :: acc) (Int64.succ pos) in aux (ctx, []) offset end (* Collection of nullifiers w/o duplicates, append-only. It has a dual implementation with a hash map for constant `mem` and with a ordered set to retrieve by position. *) module Nullifiers = struct let init = Storage.Sapling.nullifiers_init let size ctx id = Storage.Sapling.Nullifiers_size.get (ctx, id) let mem ctx id nf = Storage.Sapling.Nullifiers_hashed.mem (ctx, id) nf (* Allows for duplicates as they are already checked by verify_update before updating the state. Not tail-recursive so we put a hard limit on the size of the list of nullifiers. *) let add ctx id nfs = assert (Compare.Int.(List.compare_length_with nfs 1000 <= 0)) ; size ctx id >>=? fun nf_start_pos -> List.fold_right_es (fun nf (ctx, pos, acc_size) -> Storage.Sapling.Nullifiers_hashed.init (ctx, id) nf >>=? fun (ctx, size) -> Storage.Sapling.Nullifiers_ordered.init (ctx, id) pos nf >|=? fun ctx -> (ctx, Int64.succ pos, Z.add acc_size (Z.of_int size))) nfs (ctx, nf_start_pos, Z.zero) >>=? fun (ctx, nf_end_pos, size) -> Storage.Sapling.Nullifiers_size.update (ctx, id) nf_end_pos >|=? fun ctx -> (ctx, size) let get_from ctx id offset = let[@coq_struct "pos"] rec aux acc pos = Storage.Sapling.Nullifiers_ordered.find (ctx, id) pos >>=? function | None -> return @@ List.rev acc | Some c -> aux (c :: acc) (Int64.succ pos) in aux [] offset end (** Bounded queue of roots. The full size is initialized with the default uncommitted root, that's why roots storage doesn't need to be carbonated. A maximum of one new root is added per protocol level. If multiple transactions for the same shielded pool are processed during the same contract call or several calls in the same block, only the last root will be stored. This property prevents transactions in the same block from depending on each other and guarantees that a transaction will be valid for a least two hours (hence the 120 size) after being forged. *) module Roots = struct let size = 120l (* pos is the index of the last inserted element *) let get ctx id = Storage.Sapling.Roots_pos.get (ctx, id) >>=? fun pos -> Storage.Sapling.Roots.get (ctx, id) pos let init ctx id = let[@coq_struct "pos"] rec aux ctx pos = if Compare.Int32.(pos < 0l) then return ctx else Storage.Sapling.Roots.init (ctx, id) pos Commitments.default_root >>=? fun ctx -> aux ctx (Int32.pred pos) in aux ctx (Int32.pred size) >>=? fun ctx -> Storage.Sapling.Roots_pos.init (ctx, id) 0l >>=? fun ctx -> let level = (Raw_context.current_level ctx).level in Storage.Sapling.Roots_level.init (ctx, id) level let mem ctx id root = Storage.Sapling.Roots_pos.get (ctx, id) >>=? fun start_pos -> let rec aux pos = Storage.Sapling.Roots.get (ctx, id) pos >>=? fun hash -> if Compare.Int.(Sapling.Hash.compare hash root = 0) then return true else let pos = Int32.(pred pos) in let pos = if Compare.Int32.(pos < 0l) then Int32.pred size else pos in if Compare.Int32.(pos = start_pos) then return false else aux pos in aux start_pos (* allows duplicates *) let add ctx id root = Storage.Sapling.Roots_pos.get (ctx, id) >>=? fun pos -> let level = (Raw_context.current_level ctx).level in Storage.Sapling.Roots_level.get (ctx, id) >>=? fun stored_level -> if Raw_level_repr.(stored_level = level) then (* if there is another add during the same level, it will over-write on the same position *) Storage.Sapling.Roots.add (ctx, id) pos root >|= ok else (* it's the first add for this level *) (* TODO(samoht): why is it using [update] and not [init] then? *) Storage.Sapling.Roots_level.update (ctx, id) level >>=? fun ctx -> let pos = Int32.rem (Int32.succ pos) size in Storage.Sapling.Roots_pos.update (ctx, id) pos >>=? fun ctx -> Storage.Sapling.Roots.add (ctx, id) pos root >|= ok end (** This type links the permanent state stored in the context at the specified id together with the ephemeral diff managed by the Michelson interpreter. After a successful execution the diff can be applied to update the state at id. The first time a state is created its id is None, one will be assigned after the first application. *) type state = { id : Lazy_storage_kind.Sapling_state.Id.t option; diff : Sapling_repr.diff; memo_size : Sapling_repr.Memo_size.t; } let empty_diff = Sapling_repr.{commitments_and_ciphertexts = []; nullifiers = []} let empty_state ?id ~memo_size () = {id; diff = empty_diff; memo_size} (** Returns a state from an existing id. *) let state_from_id ctxt id = Storage.Sapling.Memo_size.get (ctxt, id) >|=? fun memo_size -> ({id = Some id; diff = empty_diff; memo_size}, ctxt) let rpc_arg = Storage.Sapling.rpc_arg let get_memo_size ctx id = Storage.Sapling.Memo_size.get (ctx, id) let init ctx id ~memo_size = Storage.Sapling.Memo_size.add (ctx, id) memo_size >>= fun ctx -> Storage.Sapling.Commitments_size.add (ctx, id) Int64.zero >>= fun ctx -> Commitments.init ctx id >>= fun ctx -> Nullifiers.init ctx id >>= fun ctx -> Roots.init ctx id >>=? fun ctx -> Ciphertexts.init ctx id >|= ok (* Gas costs for apply_diff. *) let sapling_apply_diff_cost ~inputs ~outputs = let open Saturation_repr in add (safe_int 1_300_000) (add (scale_fast (mul_safe_of_int_exn 5_000) (safe_int inputs)) (scale_fast (mul_safe_of_int_exn 55_000) (safe_int outputs))) (** Applies a diff to a state id stored in the context. Updates Commitments, Ciphertexts and Nullifiers using the diff and updates the Roots using the new Commitments tree. *) let apply_diff ctx id diff = let open Sapling_repr in let nb_commitments = List.length diff.commitments_and_ciphertexts in let nb_nullifiers = List.length diff.nullifiers in let sapling_cost = sapling_apply_diff_cost ~inputs:nb_nullifiers ~outputs:nb_commitments in Raw_context.consume_gas ctx sapling_cost >>?= fun ctx -> Storage.Sapling.Commitments_size.get (ctx, id) >>=? fun cm_start_pos -> let cms = List.rev_map fst diff.commitments_and_ciphertexts in Commitments.add ctx id cms cm_start_pos >>=? fun (ctx, size) -> Storage.Sapling.Commitments_size.update (ctx, id) (Int64.add cm_start_pos (Int64.of_int nb_commitments)) >>=? fun ctx -> List.fold_right_es (fun (_cm, cp) (ctx, pos, acc_size) -> Ciphertexts.add ctx id cp pos >|=? fun (ctx, size) -> (ctx, Int64.succ pos, Z.add acc_size (Z.of_int size))) diff.commitments_and_ciphertexts (ctx, cm_start_pos, Z.of_int size) >>=? fun (ctx, _ct_end_pos, size) -> Nullifiers.add ctx id diff.nullifiers >>=? fun (ctx, size_nf) -> let size = Z.add size size_nf in match diff.commitments_and_ciphertexts with | [] -> (* avoids adding duplicates to Roots *) return (ctx, size) | _ :: _ -> Commitments.get_root ctx id >>=? fun (ctx, root) -> Roots.add ctx id root >|=? fun ctx -> (ctx, size) let add {id; diff; memo_size} cm_cipher_list = assert ( List.for_all (fun (_cm, cipher) -> Compare.Int.(Sapling.Ciphertext.get_memo_size cipher = memo_size)) cm_cipher_list) ; { id; diff = { diff with commitments_and_ciphertexts = List.rev cm_cipher_list @ diff.commitments_and_ciphertexts; }; memo_size; } let root_mem ctx {id; _} tested_root = match id with | Some id -> Roots.mem ctx id tested_root | None -> return Compare.Int.( Sapling.Hash.compare tested_root Commitments.default_root = 0) (* to avoid a double spend we need to check the disk AND the diff *) let nullifiers_mem ctx {id; diff; _} nf = let exists_in_diff = List.exists (fun v -> Compare.Int.(Sapling.Nullifier.compare nf v = 0)) diff.nullifiers in if exists_in_diff then return (ctx, true) else match id with | None -> return (ctx, false) | Some id -> Nullifiers.mem ctx id nf (* Allows for duplicates as they are already checked by verify_update before updating the state. *) let nullifiers_add {id; diff; memo_size} nf = {id; diff = {diff with nullifiers = nf :: diff.nullifiers}; memo_size} type root = Sapling.Hash.t let root_encoding = Sapling.Hash.encoding let get_diff ctx id ?(offset_commitment = 0L) ?(offset_nullifier = 0L) () = if not Sapling.Commitment.( valid_position offset_commitment && valid_position offset_nullifier) then failwith "Invalid argument." else Commitments.get_from ctx id offset_commitment >>=? fun commitments -> Roots.get ctx id >>=? fun root -> Nullifiers.get_from ctx id offset_nullifier >>=? fun nullifiers -> Ciphertexts.get_from ctx id offset_commitment (* we don't count gas for RPCs *) >|=? fun (_ctx, ciphertexts) -> match List.combine ~when_different_lengths:() commitments ciphertexts with | Error () -> failwith "Invalid argument." | Ok commitments_and_ciphertexts -> (root, Sapling_repr.{commitments_and_ciphertexts; nullifiers})
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>