package tezos-protocol-011-PtHangz2
Tezos protocol 011-PtHangz2 package
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/tezos_raw_protocol_011_PtHangz2/michelson_v1_gas.ml.html
Source file michelson_v1_gas.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
(*****************************************************************************) (* *) (* Open Source License *) (* Copyright (c) 2018 Dynamic Ledger Solutions, Inc. <contact@tezos.com> *) (* Copyright (c) 2019-2020 Nomadic Labs <contact@nomadic-labs.com> *) (* Copyright (c) 2020 Metastate AG <hello@metastate.dev> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) open Alpha_context open Gas module S = Saturation_repr module Cost_of = struct module S_syntax = struct (* This is a good enough approximation. S.numbits 0 = 0 *) let log2 x = S.safe_int (1 + S.numbits x) let ( + ) = S.add let ( * ) = S.mul let ( lsr ) = S.shift_right end let z_bytes (z : Z.t) = let bits = Z.numbits z in (7 + bits) / 8 let int_bytes (z : 'a Script_int.num) = z_bytes (Script_int.to_zint z) let manager_operation = step_cost @@ S.safe_int 1_000 module Generated_costs = struct (* Automatically generated costs functions. *) (* model N_IAbs_int *) (* Approximating 0.065045 x term *) let cost_N_IAbs_int size = S.safe_int (25 + (size lsr 4)) (* model N_IAdd_bls12_381_fr *) let cost_N_IAdd_bls12_381_fr = S.safe_int 145 (* model N_IAdd_bls12_381_g1 *) let cost_N_IAdd_bls12_381_g1 = S.safe_int 8_300 (* model N_IAdd_bls12_381_g2 *) let cost_N_IAdd_bls12_381_g2 = S.safe_int 11_450 let cost_linear_op_int size1 size2 = let open S_syntax in let v0 = S.safe_int (Compare.Int.max size1 size2) in S.safe_int 35 + ((v0 lsr 4) + (v0 lsr 7)) (* model N_IAdd_intint *) (* Approximating 0.077989 x term *) let cost_N_IAdd_intint = cost_linear_op_int (* model N_IAdd_intnat *) (* Approximating 0.077997 x term *) let cost_N_IAdd_intnat = cost_linear_op_int (* model N_IAdd_natint *) (* Approximating 0.078154 x term *) let cost_N_IAdd_natint = cost_linear_op_int (* model N_IAdd_natnat *) (* Approximating 0.077807 x term *) let cost_N_IAdd_natnat = cost_linear_op_int (* model N_IAdd_seconds_to_timestamp *) (* Approximating 0.078056 x term *) let cost_N_IAdd_seconds_to_timestamp = cost_linear_op_int (* model N_IAdd_tez *) let cost_N_IAdd_tez = S.safe_int 25 (* model N_IAdd_timestamp_to_seconds *) (* Approximating 0.077771 x term *) let cost_N_IAdd_timestamp_to_seconds = cost_linear_op_int (* model N_IAddress *) let cost_N_IAddress = S.safe_int 10 (* model N_IAmount *) let cost_N_IAmount = S.safe_int 15 (* model N_IAnd *) let cost_N_IAnd = S.safe_int 20 (* model N_IAnd_int_nat *) (* Approximating 0.076804 x 2 x term *) let cost_N_IAnd_int_nat size1 size2 = let open S_syntax in let v0 = S.safe_int (Compare.Int.min size1 size2) in S.safe_int 35 + ((v0 lsr 3) + (v0 lsr 6)) (* model N_IAnd_nat *) (* Approximating 0.076804 x term *) let cost_N_IAnd_nat size1 size2 = let open S_syntax in let v0 = S.safe_int (Compare.Int.min size1 size2) in S.safe_int 35 + ((v0 lsr 4) + (v0 lsr 7)) (* model N_IApply *) let cost_N_IApply = S.safe_int 135 (* model N_IBlake2b *) (* Approximating 1.120804 x term *) let cost_N_IBlake2b size = let open S_syntax in let v0 = S.safe_int size in S.safe_int 605 + v0 + (v0 lsr 3) (* model N_IBytes_size *) let cost_N_IBytes_size = S.safe_int 15 (* model N_ICar *) let cost_N_ICar = S.safe_int 10 (* model N_ICdr *) let cost_N_ICdr = S.safe_int 10 (* model N_IChainId *) let cost_N_IChainId = S.safe_int 15 (* model N_ICheck_signature_ed25519 *) (* Approximating 1.123507 x term *) let cost_N_ICheck_signature_ed25519 size = let open S_syntax in let v0 = S.safe_int size in S.safe_int 242_950 + (v0 + (v0 lsr 3)) (* model N_ICheck_signature_p256 *) (* Approximating 1.111539 x term *) let cost_N_ICheck_signature_p256 size = let open S_syntax in let v0 = S.safe_int size in S.safe_int 532_150 + (v0 + (v0 lsr 3)) (* model N_ICheck_signature_secp256k1 *) (* Approximating 1.125404 x term *) let cost_N_ICheck_signature_secp256k1 size = let open S_syntax in let v0 = S.safe_int size in S.safe_int 49_700 + (v0 + (v0 lsr 3)) (* model N_IComb *) (* Approximating 3.531001 x term *) (* Note: size >= 2, so the cost is never 0 *) let cost_N_IComb size = let open S_syntax in let v0 = S.safe_int size in (S.safe_int 3 * v0) + (v0 lsr 1) + (v0 lsr 5) (* model N_IComb_get *) (* Approximating 0.573180 x term *) let cost_N_IComb_get size = let open S_syntax in let v0 = S.safe_int size in S.safe_int 30 + (v0 lsr 1) + (v0 lsr 4) (* model N_IComb_set *) (* Approximating 1.365745 x term *) let cost_N_IComb_set size = let open S_syntax in let v0 = S.safe_int size in S.safe_int 10 + (v0 + (v0 lsr 2) + (v0 lsr 3)) (* Model N_ICompare *) (* Approximating 0.024413 x term *) let cost_N_ICompare size1 size2 = let open S_syntax in let v0 = S.safe_int (Compare.Int.min size1 size2) in S.safe_int 35 + ((v0 lsr 6) + (v0 lsr 7)) (* model N_IConcat_bytes_pair *) (* Approximating 0.065017 x term *) let cost_N_IConcat_bytes_pair size1 size2 = let open S_syntax in let v0 = S.safe_int size1 + S.safe_int size2 in S.safe_int 65 + (v0 lsr 4) (* model N_IConcat_string_pair *) (* Approximating 0.061402 x term *) let cost_N_IConcat_string_pair size1 size2 = let open S_syntax in let v0 = S.safe_int size1 + S.safe_int size2 in S.safe_int 65 + (v0 lsr 4) (* model N_ICons_list *) let cost_N_ICons_list = S.safe_int 15 (* model N_ICons_none *) let cost_N_ICons_none = S.safe_int 15 (* model N_ICons_pair *) let cost_N_ICons_pair = S.safe_int 15 (* model N_ICons_some *) let cost_N_ICons_some = S.safe_int 15 (* model N_IConst *) let cost_N_IConst = S.safe_int 10 (* model N_IContract *) let cost_N_IContract = S.safe_int 30 (* model N_ICreate_contract *) let cost_N_ICreate_contract = S.safe_int 30 (* model N_IDiff_timestamps *) (* Approximating 0.077922 x term *) let cost_N_IDiff_timestamps = cost_linear_op_int (* model N_IDig *) (* Approximating 6.750442 x term *) let cost_N_IDig size = let open S_syntax in let v0 = S.safe_int size in S.safe_int 20 + ((S.safe_int 6 * v0) + (v0 lsr 1) + (v0 lsr 2)) (* model N_IDip *) let cost_N_IDip = S.safe_int 15 (* model N_IDipN *) (* Approximating 1.708122 x term *) let cost_N_IDipN size = let open S_syntax in let v0 = S.safe_int size in S.safe_int 20 + (v0 + (v0 lsr 1) + (v0 lsr 3)) (* model N_IView *) let cost_N_IView = S.safe_int 1370 (* model N_IDrop *) let cost_N_IDrop = S.safe_int 10 (* model N_IDropN *) (* Approximating 2.713108 x term *) let cost_N_IDropN size = let open S_syntax in let v0 = S.safe_int size in S.safe_int 20 + (S.safe_int 2 * v0) + (v0 lsr 1) + (v0 lsr 3) (* model N_IDug *) (* Approximating 6.718396 x term *) let cost_N_IDug size = let open S_syntax in let v0 = S.safe_int size in S.safe_int 20 + ((S.safe_int 6 * v0) + (v0 lsr 1) + (v0 lsr 2)) (* model N_IDup *) let cost_N_IDup = S.safe_int 10 (* model N_IDupN *) (* Approximating 1.129785 x term *) let cost_N_IDupN size = let open S_syntax in let v0 = S.safe_int size in S.safe_int 20 + v0 + (v0 lsr 3) let cost_div_int size1 size2 = let q = size1 - size2 in if Compare.Int.(q < 0) then S.safe_int 110 else let open S_syntax in let v0 = S.safe_int q * S.safe_int size2 in S.safe_int 110 + (v0 lsr 10) + (v0 lsr 11) + (v0 lsr 13) (* model N_IEdiv_intint *) (* Approximating 0.001591 x term *) let cost_N_IEdiv_intint = cost_div_int (* model N_IEdiv_intnat *) (* Approximating 0.001548 x term *) let cost_N_IEdiv_intnat = cost_div_int (* model N_IEdiv_natint *) (* Approximating 0.001535 x term *) let cost_N_IEdiv_natint = cost_div_int (* model N_IEdiv_natnat *) (* Approximating 0.001605 x term *) let cost_N_IEdiv_natnat = cost_div_int (* model N_IEdiv_tez *) let cost_N_IEdiv_tez = S.safe_int 65 (* model N_IEdiv_teznat *) let cost_N_IEdiv_teznat = S.safe_int 70 (* model N_IEmpty_big_map *) let cost_N_IEmpty_big_map = S.safe_int 15 (* model N_IEmpty_map *) let cost_N_IEmpty_map = S.safe_int 155 (* model N_IEmpty_set *) let cost_N_IEmpty_set = S.safe_int 155 (* model N_IEq *) let cost_N_IEq = S.safe_int 15 (* model N_IExec *) let cost_N_IExec = S.safe_int 15 (* model N_IFailwith *) (* let cost_N_IFailwith = S.safe_int 105 *) (* model N_IGe *) let cost_N_IGe = S.safe_int 15 (* model N_IGt *) let cost_N_IGt = S.safe_int 15 (* model N_IHalt *) let cost_N_IHalt = S.safe_int 15 (* model N_IHash_key *) let cost_N_IHash_key = S.safe_int 655 (* model N_IIf *) let cost_N_IIf = S.safe_int 10 (* model N_IIf_cons *) let cost_N_IIf_cons = S.safe_int 10 (* model N_IIf_left *) let cost_N_IIf_left = S.safe_int 10 (* model N_IIf_none *) let cost_N_IIf_none = S.safe_int 10 (* model N_IImplicit_account *) let cost_N_IImplicit_account = S.safe_int 10 (* model N_IInt_bls12_381_z_fr *) let cost_N_IInt_bls12_381_z_fr = S.safe_int 40 (* model N_IInt_nat *) let cost_N_IInt_nat = S.safe_int 15 (* model N_IIs_nat *) let cost_N_IIs_nat = S.safe_int 15 (* model N_IKeccak *) (* Approximating 32.7522064274 x term *) let cost_N_IKeccak size = let open S_syntax in let v0 = S.safe_int size in S.safe_int 5100 + ((S.safe_int 32 * v0) + (v0 lsr 1) + (v0 lsr 2)) (* model N_ILambda *) let cost_N_ILambda = S.safe_int 10 (* model N_ILe *) let cost_N_ILe = S.safe_int 15 (* model N_ILeft *) let cost_N_ILeft = S.safe_int 15 (* model N_ILevel *) let cost_N_ILevel = S.safe_int 25 (* model N_IList_iter *) let cost_N_IList_iter _ = S.safe_int 50 (* model N_IList_map *) let cost_N_IList_map _ = S.safe_int 45 (* model N_IList_size *) let cost_N_IList_size = S.safe_int 15 (* model N_ILoop *) let cost_N_ILoop = S.safe_int 10 (* model N_ILoop_left *) let cost_N_ILoop_left = S.safe_int 10 (* model N_ILsl_nat *) (* Approximating 0.115642 x term *) let cost_N_ILsl_nat size = let open S_syntax in let v0 = S.safe_int size in S.safe_int 35 + ((v0 lsr 4) + (v0 lsr 5) + (v0 lsr 6)) (* model N_ILsr_nat *) (* Approximating 0.115565 x term *) let cost_N_ILsr_nat size = let open S_syntax in let v0 = S.safe_int size in S.safe_int 35 + ((v0 lsr 4) + (v0 lsr 5) + (v0 lsr 6)) (* model N_ILt *) let cost_N_ILt = S.safe_int 15 (* model N_IMap_get *) (* Approximating 0.048359 x term *) let cost_N_IMap_get size1 size2 = let open S_syntax in let v0 = size1 * log2 size2 in S.safe_int 80 + (v0 lsr 5) + (v0 lsr 6) (* model N_IMap_get_and_update *) (* Approximating 0.145661 x term *) let cost_N_IMap_get_and_update size1 size2 = let open S_syntax in let v0 = size1 * log2 size2 in S.safe_int 165 + (v0 lsr 3) + (v0 lsr 6) (* model N_IMap_iter *) (* Approximating 5.235173 x term *) let cost_N_IMap_iter size = let open S_syntax in let v0 = S.safe_int size in S.safe_int 60 + (S.safe_int 5 * v0) + (v0 lsr 2) (* model N_IMap_map *) (* Approximating 7.46280485884 x term *) let cost_N_IMap_map size = let open S_syntax in let v0 = S.safe_int size in S.safe_int 180 + ((S.safe_int 7 * v0) + (v0 lsr 1)) (* model N_IMap_mem *) (* Approximating 0.048446 x term *) let cost_N_IMap_mem size1 size2 = let open S_syntax in let v0 = size1 * log2 size2 in S.safe_int 80 + (v0 lsr 5) + (v0 lsr 6) (* model N_IMap_size *) let cost_N_IMap_size = S.safe_int 15 (* model N_IMap_update *) (* Approximating 0.097072 x term *) let cost_N_IMap_update size1 size2 = let open S_syntax in let v0 = size1 * log2 size2 in S.safe_int 100 + (v0 lsr 4) + (v0 lsr 5) (* model N_IMul_bls12_381_fr *) let cost_N_IMul_bls12_381_fr = S.safe_int 170 (* model N_IMul_bls12_381_fr_z *) (* Approximating 1.059386 x term *) let cost_N_IMul_bls12_381_fr_z size1 = let open S_syntax in let v0 = S.safe_int size1 in S.safe_int 270 + v0 + (v0 lsr 4) (* model N_IMul_bls12_381_g1 *) let cost_N_IMul_bls12_381_g1 = S.safe_int 229_850 (* model N_IMul_bls12_381_g2 *) let cost_N_IMul_bls12_381_g2 = S.safe_int 760_350 (* model N_IMul_bls12_381_z_fr *) (* Approximating 1.068674 x term *) let cost_N_IMul_bls12_381_z_fr size1 = let open S_syntax in let v0 = S.safe_int size1 in S.safe_int 270 + v0 + (v0 lsr 4) let cost_mul size1 size2 = let open S_syntax in let a = S.add (S.safe_int size1) (S.safe_int size2) in let v0 = a * log2 a in S.safe_int 75 + (v0 lsr 1) + (v0 lsr 2) + (v0 lsr 4) (* model N_IMul_intint *) (* Approximating 0.857296 x term *) let cost_N_IMul_intint = cost_mul (* model N_IMul_intnat *) (* Approximating 0.857931 x term *) let cost_N_IMul_intnat = cost_mul (* model N_IMul_natint *) (* Approximating 0.861823 x term *) let cost_N_IMul_natint = cost_mul (* model N_IMul_natnat *) (* Approximating 0.849870 x term *) let cost_N_IMul_natnat = cost_mul (* model N_IMul_nattez *) let cost_N_IMul_nattez = S.safe_int 100 (* model N_IMul_teznat *) let cost_N_IMul_teznat = S.safe_int 100 (* model N_INeg_bls12_381_fr *) let cost_N_INeg_bls12_381_fr = S.safe_int 120 (* model N_INeg_bls12_381_g1 *) let cost_N_INeg_bls12_381_g1 = S.safe_int 290 (* model N_INeg_bls12_381_g2 *) let cost_N_INeg_bls12_381_g2 = S.safe_int 555 (* model N_INeg_int *) (* Approximating 0.065748 x term *) let cost_N_INeg_int size = let open S_syntax in S.safe_int 25 + (S.safe_int size lsr 4) (* model N_INeg_nat *) (* Approximating 0.066076 x term *) let cost_N_INeg_nat size = let open S_syntax in S.safe_int 25 + (S.safe_int size lsr 4) (* model N_INeq *) let cost_N_INeq = S.safe_int 15 (* model N_INil *) let cost_N_INil = S.safe_int 15 (* model N_INot *) let cost_N_INot = S.safe_int 10 (* model N_INot_int *) (* Approximating 0.075541 x term *) let cost_N_INot_int size = let open S_syntax in let v0 = S.safe_int size in S.safe_int 25 + ((v0 lsr 4) + (v0 lsr 7)) (* model N_INot_nat *) (* Approximating 0.074613 x term *) let cost_N_INot_nat size = let open S_syntax in let v0 = S.safe_int size in S.safe_int 25 + ((v0 lsr 4) + (v0 lsr 7)) (* model N_INow *) let cost_N_INow = S.safe_int 25 (* model N_IOpen_chest *) (* 612000 + chest * 19 + time * 19050 *) let cost_N_IOpen_chest ~chest ~time = let open S_syntax in let v0 = S.safe_int chest in let v1 = S.safe_int time in S.safe_int 612_000 + (S.safe_int 19 * v0) + (S.safe_int 19050 * v1) (* model N_IOr *) let cost_N_IOr = S.safe_int 15 (* model N_IOr_nat *) (* Approximating 0.075758 x term *) let cost_N_IOr_nat = cost_linear_op_int (* model N_IPairing_check_bls12_381 *) let cost_N_IPairing_check_bls12_381 size = S.add (S.safe_int 1_396_550) (S.mul (S.safe_int 456_475) (S.safe_int size)) (* model N_IRead_ticket *) let cost_N_IRead_ticket = S.safe_int 15 (* model N_IRight *) let cost_N_IRight = S.safe_int 15 (* model N_ISapling_empty_state *) let cost_N_ISapling_empty_state = S.safe_int 15 (* model N_ISapling_verify_update *) (* Approximating 1.27167 x term *) (* Approximating 38.72115 x term *) let cost_N_ISapling_verify_update size1 size2 = let open S_syntax in let v1 = S.safe_int size1 in let v0 = S.safe_int size2 in S.safe_int 84_050 + (v1 + (v1 lsr 2)) + (S.safe_int 39 * v0) (* model N_ISelf_address *) let cost_N_ISelf_address = S.safe_int 15 (* model N_ISelf *) let cost_N_ISelf = S.safe_int 15 (* model N_ISender *) let cost_N_ISender = S.safe_int 15 (* model N_ISet_delegate *) let cost_N_ISet_delegate = S.safe_int 40 (* model N_ISet_iter *) (* Approximating 4.214099 x term *) let cost_N_ISet_iter size = let open S_syntax in let v0 = S.safe_int size in S.safe_int 60 + (S.safe_int 4 * v0) + (v0 lsr 2) (* model N_ISet_size *) let cost_N_ISet_size = S.safe_int 15 (* model N_ISha256 *) (* Approximating 4.763264 x term *) let cost_N_ISha256 size = let open S_syntax in let v0 = S.safe_int size in S.safe_int 460 + ((S.safe_int 4 * v0) + (v0 lsr 1) + (v0 lsr 2)) (* model N_ISha3 *) (* Approximating 32.739046325 x term *) let cost_N_ISha3 = cost_N_IKeccak (* model N_ISha512 *) (* Approximating 3.074641 x term *) let cost_N_ISha512 size = let open S_syntax in let v0 = S.safe_int size in S.safe_int 535 + (S.safe_int 3 * v0) (* model N_ISlice_bytes *) (* Approximating 0.065752 x term *) let cost_N_ISlice_bytes size = let open S_syntax in S.safe_int 30 + (S.safe_int size lsr 4) (* model N_ISlice_string *) (* Approximating 0.065688 x term *) let cost_N_ISlice_string size = let open S_syntax in S.safe_int 30 + (S.safe_int size lsr 4) (* model N_ISource *) let cost_N_ISource = S.safe_int 15 (* model N_ISplit_ticket *) (* Approximating 0.132362 x term *) let cost_N_ISplit_ticket size1 size2 = let open S_syntax in let v1 = S.safe_int (Compare.Int.max size1 size2) in S.safe_int 70 + (v1 lsr 3) (* model N_IString_size *) let cost_N_IString_size = S.safe_int 15 (* model N_ISub_int *) (* Approximating 0.077849 x term *) let cost_N_ISub_int = cost_linear_op_int (* model N_ISub_tez *) let cost_N_ISub_tez = S.safe_int 25 (* model N_ISub_timestamp_seconds *) (* Approximating 0.077794 x term *) let cost_N_ISub_timestamp_seconds = cost_linear_op_int (* model N_ISwap *) let cost_N_ISwap = S.safe_int 10 (* model N_ITicket *) let cost_N_ITicket = S.safe_int 15 (* model N_ITotal_voting_power *) let cost_N_ITotal_voting_power = S.safe_int 300 (* model N_ITransfer_tokens *) let cost_N_ITransfer_tokens = S.safe_int 30 (* model N_IUncomb *) (* Approximating 3.944710 x term *) let cost_N_IUncomb size = let open S_syntax in let v0 = S.safe_int size in S.safe_int 25 + (S.safe_int 4 * v0) (* model N_IUnpair *) let cost_N_IUnpair = S.safe_int 10 (* model N_IVoting_power *) let cost_N_IVoting_power = S.safe_int 400 (* model N_IXor *) let cost_N_IXor = S.safe_int 20 (* model N_IXor_nat *) (* Approximating 0.075601 x term *) let cost_N_IXor_nat = cost_linear_op_int (* model N_KCons *) let cost_N_KCons = S.safe_int 15 (* model N_KIter *) let cost_N_KIter = S.safe_int 20 (* model N_KList_enter_body *) (* Approximating 1.672196 x term *) let cost_N_KList_enter_body xs size_ys = match xs with | [] -> let open S_syntax in let v0 = S.safe_int size_ys in S.safe_int 40 + (v0 + (v0 lsr 1) + (v0 lsr 3)) | _ :: _ -> S.safe_int 70 (* model N_KList_exit_body *) let cost_N_KList_exit_body = S.safe_int 30 (* model N_KLoop_in *) let cost_N_KLoop_in = S.safe_int 15 (* model N_KLoop_in_left *) let cost_N_KLoop_in_left = S.safe_int 15 (* model N_KMap_enter_body *) let cost_N_KMap_enter_body = S.safe_int 130 (* model N_KNil *) let cost_N_KNil = S.safe_int 20 (* model N_KReturn *) let cost_N_KReturn = S.safe_int 15 (* model N_KView_exit *) let cost_N_KView_exit = S.safe_int 15 (* model N_KUndip *) let cost_N_KUndip = S.safe_int 15 (* model DECODING_BLS_FR *) let cost_DECODING_BLS_FR = S.safe_int 50 (* model DECODING_BLS_G1 *) let cost_DECODING_BLS_G1 = S.safe_int 195_000 (* model DECODING_BLS_G2 *) let cost_DECODING_BLS_G2 = S.safe_int 660_000 (* model B58CHECK_DECODING_CHAIN_ID *) let cost_B58CHECK_DECODING_CHAIN_ID = S.safe_int 1_400 (* model B58CHECK_DECODING_PUBLIC_KEY_HASH_ed25519 *) let cost_B58CHECK_DECODING_PUBLIC_KEY_HASH_ed25519 = S.safe_int 3_100 (* model B58CHECK_DECODING_PUBLIC_KEY_HASH_p256 *) let cost_B58CHECK_DECODING_PUBLIC_KEY_HASH_p256 = S.safe_int 3_100 (* model B58CHECK_DECODING_PUBLIC_KEY_HASH_secp256k1 *) let cost_B58CHECK_DECODING_PUBLIC_KEY_HASH_secp256k1 = S.safe_int 3_100 (* model B58CHECK_DECODING_PUBLIC_KEY_ed25519 *) let cost_B58CHECK_DECODING_PUBLIC_KEY_ed25519 = S.safe_int 4_000 (* model B58CHECK_DECODING_PUBLIC_KEY_p256 *) let cost_B58CHECK_DECODING_PUBLIC_KEY_p256 = S.safe_int 27_000 (* model B58CHECK_DECODING_PUBLIC_KEY_secp256k1 *) let cost_B58CHECK_DECODING_PUBLIC_KEY_secp256k1 = S.safe_int 8_500 (* model B58CHECK_DECODING_SIGNATURE_ed25519 *) let cost_B58CHECK_DECODING_SIGNATURE_ed25519 = S.safe_int 6_100 (* model B58CHECK_DECODING_SIGNATURE_p256 *) let cost_B58CHECK_DECODING_SIGNATURE_p256 = S.safe_int 6_100 (* model B58CHECK_DECODING_SIGNATURE_secp256k1 *) let cost_B58CHECK_DECODING_SIGNATURE_secp256k1 = S.safe_int 6_100 (* model ENCODING_BLS_FR *) let cost_ENCODING_BLS_FR = S.safe_int 30 (* model ENCODING_BLS_G1 *) let cost_ENCODING_BLS_G1 = S.safe_int 30 (* model ENCODING_BLS_G2 *) let cost_ENCODING_BLS_G2 = S.safe_int 30 (* model B58CHECK_ENCODING_CHAIN_ID *) let cost_B58CHECK_ENCODING_CHAIN_ID = S.safe_int 1_600 (* model B58CHECK_ENCODING_PUBLIC_KEY_HASH_ed25519 *) let cost_B58CHECK_ENCODING_PUBLIC_KEY_HASH_ed25519 = S.safe_int 2_900 (* model B58CHECK_ENCODING_PUBLIC_KEY_HASH_p256 *) let cost_B58CHECK_ENCODING_PUBLIC_KEY_HASH_p256 = S.safe_int 2_900 (* model B58CHECK_ENCODING_PUBLIC_KEY_HASH_secp256k1 *) let cost_B58CHECK_ENCODING_PUBLIC_KEY_HASH_secp256k1 = S.safe_int 2_900 (* model B58CHECK_ENCODING_PUBLIC_KEY_ed25519 *) let cost_B58CHECK_ENCODING_PUBLIC_KEY_ed25519 = S.safe_int 4_200 (* model B58CHECK_ENCODING_PUBLIC_KEY_p256 *) let cost_B58CHECK_ENCODING_PUBLIC_KEY_p256 = S.safe_int 4_700 (* model B58CHECK_ENCODING_PUBLIC_KEY_secp256k1 *) let cost_B58CHECK_ENCODING_PUBLIC_KEY_secp256k1 = S.safe_int 4_500 (* model B58CHECK_ENCODING_SIGNATURE_ed25519 *) let cost_B58CHECK_ENCODING_SIGNATURE_ed25519 = S.safe_int 7_800 (* model B58CHECK_ENCODING_SIGNATURE_p256 *) let cost_B58CHECK_ENCODING_SIGNATURE_p256 = S.safe_int 7_800 (* model B58CHECK_ENCODING_SIGNATURE_secp256k1 *) let cost_B58CHECK_ENCODING_SIGNATURE_secp256k1 = S.safe_int 7_800 (* model DECODING_CHAIN_ID *) let cost_DECODING_CHAIN_ID = S.safe_int 50 (* model DECODING_PUBLIC_KEY_HASH_ed25519 *) let cost_DECODING_PUBLIC_KEY_HASH_ed25519 = S.safe_int 50 (* model DECODING_PUBLIC_KEY_HASH_p256 *) let cost_DECODING_PUBLIC_KEY_HASH_p256 = S.safe_int 50 (* model DECODING_PUBLIC_KEY_HASH_secp256k1 *) let cost_DECODING_PUBLIC_KEY_HASH_secp256k1 = S.safe_int 50 (* model DECODING_PUBLIC_KEY_ed25519 *) let cost_DECODING_PUBLIC_KEY_ed25519 = S.safe_int 60 (* model DECODING_PUBLIC_KEY_p256 *) let cost_DECODING_PUBLIC_KEY_p256 = S.safe_int 23_000 (* model DECODING_PUBLIC_KEY_secp256k1 *) let cost_DECODING_PUBLIC_KEY_secp256k1 = S.safe_int 4_800 (* model DECODING_SIGNATURE_ed25519 *) let cost_DECODING_SIGNATURE_ed25519 = S.safe_int 30 (* model DECODING_SIGNATURE_p256 *) let cost_DECODING_SIGNATURE_p256 = S.safe_int 30 (* model DECODING_SIGNATURE_secp256k1 *) let cost_DECODING_SIGNATURE_secp256k1 = S.safe_int 30 (* model DECODING_Chest_key *) let cost_DECODING_Chest_key = S.safe_int 7200 (* model DECODING_Chest *) (* Approximating 0.039349 x term *) let cost_DECODING_Chest ~bytes = let open S_syntax in let v0 = S.safe_int bytes in S.safe_int 7400 + (v0 lsr 5) + (v0 lsr 7) (* model ENCODING_CHAIN_ID *) let cost_ENCODING_CHAIN_ID = S.safe_int 50 (* model ENCODING_PUBLIC_KEY_HASH_ed25519 *) let cost_ENCODING_PUBLIC_KEY_HASH_ed25519 = S.safe_int 60 (* model ENCODING_PUBLIC_KEY_HASH_p256 *) let cost_ENCODING_PUBLIC_KEY_HASH_p256 = S.safe_int 80 (* model ENCODING_PUBLIC_KEY_HASH_secp256k1 *) let cost_ENCODING_PUBLIC_KEY_HASH_secp256k1 = S.safe_int 70 (* model ENCODING_PUBLIC_KEY_ed25519 *) let cost_ENCODING_PUBLIC_KEY_ed25519 = S.safe_int 80 (* model ENCODING_PUBLIC_KEY_p256 *) let cost_ENCODING_PUBLIC_KEY_p256 = S.safe_int 570 (* model ENCODING_PUBLIC_KEY_secp256k1 *) let cost_ENCODING_PUBLIC_KEY_secp256k1 = S.safe_int 440 (* model ENCODING_SIGNATURE_ed25519 *) let cost_ENCODING_SIGNATURE_ed25519 = S.safe_int 40 (* model ENCODING_SIGNATURE_p256 *) let cost_ENCODING_SIGNATURE_p256 = S.safe_int 40 (* model ENCODING_SIGNATURE_secp256k1 *) let cost_ENCODING_SIGNATURE_secp256k1 = S.safe_int 40 (* model ENCODING_Chest_key *) let cost_ENCODING_Chest_key = S.safe_int 13500 (* model ENCODING_Chest *) (* Approximating 0.120086 x term *) let cost_ENCODING_Chest ~plaintext_size = let open S_syntax in let v0 = S.safe_int plaintext_size in S.safe_int 16630 + (v0 lsr 3) (* model TIMESTAMP_READABLE_DECODING *) let cost_TIMESTAMP_READABLE_DECODING = S.safe_int 120 (* model TIMESTAMP_READABLE_ENCODING *) let cost_TIMESTAMP_READABLE_ENCODING = S.safe_int 800 (* model CHECK_PRINTABLE *) let cost_CHECK_PRINTABLE size = let open S_syntax in S.safe_int 14 + (S.safe_int 10 * S.safe_int size) (* model MERGE_TYPES This is the estimated cost of one iteration of merge_types, extracted and copied manually from the parameter fit for the MERGE_TYPES benchmark (the model is parametric on the size of the type, which we don't have access to in O(1)). *) let cost_MERGE_TYPES = S.safe_int 220 (* model TYPECHECKING_CODE This is the cost of one iteration of parse_instr, extracted by hand from the parameter fit for the TYPECHECKING_CODE benchmark. *) let cost_TYPECHECKING_CODE = S.safe_int 220 (* model UNPARSING_CODE This is the cost of one iteration of unparse_instr, extracted by hand from the parameter fit for the UNPARSING_CODE benchmark. *) let cost_UNPARSING_CODE = S.safe_int 115 (* model TYPECHECKING_DATA This is the cost of one iteration of parse_data, extracted by hand from the parameter fit for the TYPECHECKING_DATA benchmark. *) let cost_TYPECHECKING_DATA = S.safe_int 100 (* model UNPARSING_DATA This is the cost of one iteration of unparse_data, extracted by hand from the parameter fit for the UNPARSING_DATA benchmark. *) let cost_UNPARSING_DATA = S.safe_int 45 (* model PARSE_TYPE This is the cost of one iteration of parse_ty, extracted by hand from the parameter fit for the PARSE_TYPE benchmark. *) let cost_PARSE_TYPE = S.safe_int 60 (* model UNPARSE_TYPE This is the cost of one iteration of unparse_ty, extracted by hand from the parameter fit for the UNPARSE_TYPE benchmark. *) let cost_UNPARSE_TYPE = S.safe_int 20 (* TODO: benchmark *) let cost_COMPARABLE_TY_OF_TY = S.safe_int 120 (* model SAPLING_TRANSACTION_ENCODING *) let cost_SAPLING_TRANSACTION_ENCODING ~inputs ~outputs = S.safe_int (1500 + (inputs * 160) + (outputs * 320)) (* model SAPLING_DIFF_ENCODING *) let cost_SAPLING_DIFF_ENCODING ~nfs ~cms = S.safe_int ((nfs * 22) + (cms * 215)) end module Interpreter = struct open Generated_costs let drop = atomic_step_cost cost_N_IDrop let dup = atomic_step_cost cost_N_IDup let swap = atomic_step_cost cost_N_ISwap let cons_some = atomic_step_cost cost_N_ICons_some let cons_none = atomic_step_cost cost_N_ICons_none let if_none = atomic_step_cost cost_N_IIf_none let cons_pair = atomic_step_cost cost_N_ICons_pair let unpair = atomic_step_cost cost_N_IUnpair let car = atomic_step_cost cost_N_ICar let cdr = atomic_step_cost cost_N_ICdr let cons_left = atomic_step_cost cost_N_ILeft let cons_right = atomic_step_cost cost_N_IRight let if_left = atomic_step_cost cost_N_IIf_left let cons_list = atomic_step_cost cost_N_ICons_list let nil = atomic_step_cost cost_N_INil let if_cons = atomic_step_cost cost_N_IIf_cons let list_map : 'a Script_typed_ir.boxed_list -> Gas.cost = fun {length; _} -> atomic_step_cost (cost_N_IList_map length) let list_size = atomic_step_cost cost_N_IList_size let list_iter : 'a Script_typed_ir.boxed_list -> Gas.cost = fun {length; _} -> atomic_step_cost (cost_N_IList_iter length) let empty_set = atomic_step_cost cost_N_IEmpty_set let set_iter (type a) ((module Box) : a Script_typed_ir.set) = atomic_step_cost (cost_N_ISet_iter Box.size) let set_size = atomic_step_cost cost_N_ISet_size let empty_map = atomic_step_cost cost_N_IEmpty_map let map_map (type k v) ((module Box) : (k, v) Script_typed_ir.map) = atomic_step_cost (cost_N_IMap_map (snd Box.boxed)) let map_iter (type k v) ((module Box) : (k, v) Script_typed_ir.map) = atomic_step_cost (cost_N_IMap_iter (snd Box.boxed)) let map_size = atomic_step_cost cost_N_IMap_size let big_map_elt_size = S.safe_int Script_expr_hash.size let big_map_mem ({size; _} : _ Script_typed_ir.big_map_overlay) = atomic_step_cost (cost_N_IMap_mem big_map_elt_size (S.safe_int size)) let big_map_get ({size; _} : _ Script_typed_ir.big_map_overlay) = atomic_step_cost (cost_N_IMap_get big_map_elt_size (S.safe_int size)) let big_map_update ({size; _} : _ Script_typed_ir.big_map_overlay) = atomic_step_cost (cost_N_IMap_update big_map_elt_size (S.safe_int size)) let big_map_get_and_update ({size; _} : _ Script_typed_ir.big_map_overlay) = atomic_step_cost (cost_N_IMap_get_and_update big_map_elt_size (S.safe_int size)) let add_seconds_timestamp : 'a Script_int.num -> Script_timestamp.t -> Gas.cost = fun seconds timestamp -> let seconds_bytes = int_bytes seconds in let timestamp_bytes = z_bytes (Script_timestamp.to_zint timestamp) in atomic_step_cost (cost_N_IAdd_seconds_to_timestamp seconds_bytes timestamp_bytes) let add_timestamp_seconds : Script_timestamp.t -> 'a Script_int.num -> Gas.cost = fun timestamp seconds -> let seconds_bytes = int_bytes seconds in let timestamp_bytes = z_bytes (Script_timestamp.to_zint timestamp) in atomic_step_cost (cost_N_IAdd_timestamp_to_seconds timestamp_bytes seconds_bytes) let sub_timestamp_seconds : Script_timestamp.t -> 'a Script_int.num -> Gas.cost = fun timestamp seconds -> let seconds_bytes = int_bytes seconds in let timestamp_bytes = z_bytes (Script_timestamp.to_zint timestamp) in atomic_step_cost (cost_N_ISub_timestamp_seconds timestamp_bytes seconds_bytes) let diff_timestamps t1 t2 = let t1_bytes = z_bytes (Script_timestamp.to_zint t1) in let t2_bytes = z_bytes (Script_timestamp.to_zint t2) in atomic_step_cost (cost_N_IDiff_timestamps t1_bytes t2_bytes) let concat_string_pair s1 s2 = atomic_step_cost (cost_N_IConcat_string_pair (Script_string.length s1) (Script_string.length s2)) let slice_string s = atomic_step_cost (cost_N_ISlice_string (Script_string.length s)) let string_size = atomic_step_cost cost_N_IString_size let concat_bytes_pair b1 b2 = atomic_step_cost (cost_N_IConcat_bytes_pair (Bytes.length b1) (Bytes.length b2)) let slice_bytes b = atomic_step_cost (cost_N_ISlice_bytes (Bytes.length b)) let bytes_size = atomic_step_cost cost_N_IBytes_size let add_tez = atomic_step_cost cost_N_IAdd_tez let sub_tez = atomic_step_cost cost_N_ISub_tez let mul_teznat = atomic_step_cost cost_N_IMul_teznat let mul_nattez = atomic_step_cost cost_N_IMul_nattez let bool_or = atomic_step_cost cost_N_IOr let bool_and = atomic_step_cost cost_N_IAnd let bool_xor = atomic_step_cost cost_N_IXor let bool_not = atomic_step_cost cost_N_INot let is_nat = atomic_step_cost cost_N_IIs_nat let abs_int i = atomic_step_cost (cost_N_IAbs_int (int_bytes i)) let int_nat = atomic_step_cost cost_N_IInt_nat let neg_int i = atomic_step_cost (cost_N_INeg_int (int_bytes i)) let neg_nat n = atomic_step_cost (cost_N_INeg_nat (int_bytes n)) let add_intint i1 i2 = atomic_step_cost (cost_N_IAdd_intint (int_bytes i1) (int_bytes i2)) let add_intnat i1 i2 = atomic_step_cost (cost_N_IAdd_intnat (int_bytes i1) (int_bytes i2)) let add_natint i1 i2 = atomic_step_cost (cost_N_IAdd_natint (int_bytes i1) (int_bytes i2)) let add_natnat i1 i2 = atomic_step_cost (cost_N_IAdd_natnat (int_bytes i1) (int_bytes i2)) let sub_int i1 i2 = atomic_step_cost (cost_N_ISub_int (int_bytes i1) (int_bytes i2)) let mul_intint i1 i2 = atomic_step_cost (cost_N_IMul_intint (int_bytes i1) (int_bytes i2)) let mul_intnat i1 i2 = atomic_step_cost (cost_N_IMul_intnat (int_bytes i1) (int_bytes i2)) let mul_natint i1 i2 = atomic_step_cost (cost_N_IMul_natint (int_bytes i1) (int_bytes i2)) let mul_natnat i1 i2 = atomic_step_cost (cost_N_IMul_natnat (int_bytes i1) (int_bytes i2)) let ediv_teznat _tez _n = atomic_step_cost cost_N_IEdiv_teznat let ediv_tez = atomic_step_cost cost_N_IEdiv_tez let ediv_intint i1 i2 = atomic_step_cost (cost_N_IEdiv_intint (int_bytes i1) (int_bytes i2)) let ediv_intnat i1 i2 = atomic_step_cost (cost_N_IEdiv_intnat (int_bytes i1) (int_bytes i2)) let ediv_natint i1 i2 = atomic_step_cost (cost_N_IEdiv_natint (int_bytes i1) (int_bytes i2)) let ediv_natnat i1 i2 = atomic_step_cost (cost_N_IEdiv_natnat (int_bytes i1) (int_bytes i2)) let eq = atomic_step_cost cost_N_IEq let lsl_nat shifted = atomic_step_cost (cost_N_ILsl_nat (int_bytes shifted)) let lsr_nat shifted = atomic_step_cost (cost_N_ILsr_nat (int_bytes shifted)) let or_nat n1 n2 = atomic_step_cost (cost_N_IOr_nat (int_bytes n1) (int_bytes n2)) let and_nat n1 n2 = atomic_step_cost (cost_N_IAnd_nat (int_bytes n1) (int_bytes n2)) let and_int_nat n1 n2 = atomic_step_cost (cost_N_IAnd_int_nat (int_bytes n1) (int_bytes n2)) let xor_nat n1 n2 = atomic_step_cost (cost_N_IXor_nat (int_bytes n1) (int_bytes n2)) let not_int i = atomic_step_cost (cost_N_INot_int (int_bytes i)) let not_nat i = atomic_step_cost (cost_N_INot_nat (int_bytes i)) let if_ = atomic_step_cost cost_N_IIf let loop = atomic_step_cost cost_N_ILoop let loop_left = atomic_step_cost cost_N_ILoop_left let dip = atomic_step_cost cost_N_IDip let view = atomic_step_cost cost_N_IView let check_signature (pkey : Signature.public_key) b = let cost = match pkey with | Ed25519 _ -> cost_N_ICheck_signature_ed25519 (Bytes.length b) | Secp256k1 _ -> cost_N_ICheck_signature_secp256k1 (Bytes.length b) | P256 _ -> cost_N_ICheck_signature_p256 (Bytes.length b) in atomic_step_cost cost let blake2b b = atomic_step_cost (cost_N_IBlake2b (Bytes.length b)) let sha256 b = atomic_step_cost (cost_N_ISha256 (Bytes.length b)) let sha512 b = atomic_step_cost (cost_N_ISha512 (Bytes.length b)) let dign n = atomic_step_cost (cost_N_IDig n) let dugn n = atomic_step_cost (cost_N_IDug n) let dipn n = atomic_step_cost (cost_N_IDipN n) let dropn n = atomic_step_cost (cost_N_IDropN n) let voting_power = atomic_step_cost cost_N_IVoting_power let total_voting_power = atomic_step_cost cost_N_ITotal_voting_power let keccak b = atomic_step_cost (cost_N_IKeccak (Bytes.length b)) let sha3 b = atomic_step_cost (cost_N_ISha3 (Bytes.length b)) let add_bls12_381_g1 = atomic_step_cost cost_N_IAdd_bls12_381_g1 let add_bls12_381_g2 = atomic_step_cost cost_N_IAdd_bls12_381_g2 let add_bls12_381_fr = atomic_step_cost cost_N_IAdd_bls12_381_fr let mul_bls12_381_g1 = atomic_step_cost cost_N_IMul_bls12_381_g1 let mul_bls12_381_g2 = atomic_step_cost cost_N_IMul_bls12_381_g2 let mul_bls12_381_fr = atomic_step_cost cost_N_IMul_bls12_381_fr let mul_bls12_381_fr_z z = atomic_step_cost (cost_N_IMul_bls12_381_fr_z (int_bytes z)) let mul_bls12_381_z_fr z = atomic_step_cost (cost_N_IMul_bls12_381_z_fr (int_bytes z)) let int_bls12_381_fr = atomic_step_cost cost_N_IInt_bls12_381_z_fr let neg_bls12_381_g1 = atomic_step_cost cost_N_INeg_bls12_381_g1 let neg_bls12_381_g2 = atomic_step_cost cost_N_INeg_bls12_381_g2 let neg_bls12_381_fr = atomic_step_cost cost_N_INeg_bls12_381_fr let neq = atomic_step_cost cost_N_INeq let pairing_check_bls12_381 (l : 'a Script_typed_ir.boxed_list) = atomic_step_cost (cost_N_IPairing_check_bls12_381 l.length) let comb n = atomic_step_cost (cost_N_IComb n) let uncomb n = atomic_step_cost (cost_N_IUncomb n) let comb_get n = atomic_step_cost (cost_N_IComb_get n) let comb_set n = atomic_step_cost (cost_N_IComb_set n) let dupn n = atomic_step_cost (cost_N_IDupN n) let sapling_verify_update ~inputs ~outputs = atomic_step_cost (cost_N_ISapling_verify_update inputs outputs) let sapling_empty_state = atomic_step_cost cost_N_ISapling_empty_state let halt = atomic_step_cost cost_N_IHalt let const = atomic_step_cost cost_N_IConst let empty_big_map = atomic_step_cost cost_N_IEmpty_big_map let lt = atomic_step_cost cost_N_ILt let le = atomic_step_cost cost_N_ILe let gt = atomic_step_cost cost_N_IGt let ge = atomic_step_cost cost_N_IGe let exec = atomic_step_cost cost_N_IExec let apply = atomic_step_cost cost_N_IApply let lambda = atomic_step_cost cost_N_ILambda let address = atomic_step_cost cost_N_IAddress let contract = atomic_step_cost cost_N_IContract let transfer_tokens = atomic_step_cost cost_N_ITransfer_tokens let implicit_account = atomic_step_cost cost_N_IImplicit_account let create_contract = atomic_step_cost cost_N_ICreate_contract let set_delegate = atomic_step_cost cost_N_ISet_delegate let level = atomic_step_cost cost_N_ILevel let now = atomic_step_cost cost_N_INow let source = atomic_step_cost cost_N_ISource let sender = atomic_step_cost cost_N_ISender let self = atomic_step_cost cost_N_ISelf let self_address = atomic_step_cost cost_N_ISelf_address let amount = atomic_step_cost cost_N_IAmount let chain_id = atomic_step_cost cost_N_IChainId let ticket = atomic_step_cost cost_N_ITicket let read_ticket = atomic_step_cost cost_N_IRead_ticket let hash_key _ = atomic_step_cost cost_N_IHash_key let split_ticket _ amount_a amount_b = atomic_step_cost (cost_N_ISplit_ticket (int_bytes amount_a) (int_bytes amount_b)) let open_chest ~chest ~time = let plaintext = Timelock.get_plaintext_size chest in let log_time = Z.log2 Z.(add one time) in atomic_step_cost (cost_N_IOpen_chest ~chest:plaintext ~time:log_time) (* --------------------------------------------------------------------- *) (* Semi-hand-crafted models *) let compare_unit = atomic_step_cost (S.safe_int 10) let compare_pair_tag = atomic_step_cost (S.safe_int 10) let compare_union_tag = atomic_step_cost (S.safe_int 10) let compare_option_tag = atomic_step_cost (S.safe_int 10) let compare_bool = atomic_step_cost (cost_N_ICompare 1 1) let compare_signature = atomic_step_cost (S.safe_int 92) let compare_string s1 s2 = atomic_step_cost (cost_N_ICompare (Script_string.length s1) (Script_string.length s2)) let compare_bytes b1 b2 = atomic_step_cost (cost_N_ICompare (Bytes.length b1) (Bytes.length b2)) let compare_mutez = atomic_step_cost (cost_N_ICompare 8 8) let compare_int i1 i2 = atomic_step_cost (cost_N_ICompare (int_bytes i1) (int_bytes i2)) let compare_nat n1 n2 = atomic_step_cost (cost_N_ICompare (int_bytes n1) (int_bytes n2)) let compare_key_hash = let sz = Signature.Public_key_hash.size in atomic_step_cost (cost_N_ICompare sz sz) let compare_key = atomic_step_cost (S.safe_int 92) let compare_timestamp t1 t2 = atomic_step_cost (cost_N_ICompare (z_bytes (Script_timestamp.to_zint t1)) (z_bytes (Script_timestamp.to_zint t2))) (* Maximum size of an entrypoint in bytes *) let entrypoint_size = 31 let compare_address = let sz = Signature.Public_key_hash.size + entrypoint_size in atomic_step_cost (cost_N_ICompare sz sz) let compare_chain_id = atomic_step_cost (S.safe_int 30) (* Defunctionalized CPS *) type cont = | Compare : 'a Script_typed_ir.comparable_ty * 'a * 'a * cont -> cont | Return : cont let compare : type a. a Script_typed_ir.comparable_ty -> a -> a -> cost = fun ty x y -> let rec compare : type a. a Script_typed_ir.comparable_ty -> a -> a -> cost -> cont -> cost = fun ty x y acc k -> match ty with | Unit_key _ -> (apply [@tailcall]) Gas.(acc +@ compare_unit) k | Never_key _ -> ( match x with _ -> .) | Bool_key _ -> (apply [@tailcall]) Gas.(acc +@ compare_bool) k | String_key _ -> (apply [@tailcall]) Gas.(acc +@ compare_string x y) k | Signature_key _ -> (apply [@tailcall]) Gas.(acc +@ compare_signature) k | Bytes_key _ -> (apply [@tailcall]) Gas.(acc +@ compare_bytes x y) k | Mutez_key _ -> (apply [@tailcall]) Gas.(acc +@ compare_mutez) k | Int_key _ -> (apply [@tailcall]) Gas.(acc +@ compare_int x y) k | Nat_key _ -> (apply [@tailcall]) Gas.(acc +@ compare_nat x y) k | Key_hash_key _ -> (apply [@tailcall]) Gas.(acc +@ compare_key_hash) k | Key_key _ -> (apply [@tailcall]) Gas.(acc +@ compare_key) k | Timestamp_key _ -> (apply [@tailcall]) Gas.(acc +@ compare_timestamp x y) k | Address_key _ -> (apply [@tailcall]) Gas.(acc +@ compare_address) k | Chain_id_key _ -> (apply [@tailcall]) Gas.(acc +@ compare_chain_id) k | Pair_key ((tl, _), (tr, _), _) -> (* Reasonable over-approximation of the cost of lexicographic comparison. *) let (xl, xr) = x in let (yl, yr) = y in (compare [@tailcall]) tl xl yl Gas.(acc +@ compare_pair_tag) (Compare (tr, xr, yr, k)) | Union_key ((tl, _), (tr, _), _) -> ( match (x, y) with | (L x, L y) -> (compare [@tailcall]) tl x y Gas.(acc +@ compare_union_tag) k | (L _, R _) -> (apply [@tailcall]) Gas.(acc +@ compare_union_tag) k | (R _, L _) -> (apply [@tailcall]) Gas.(acc +@ compare_union_tag) k | (R x, R y) -> (compare [@tailcall]) tr x y Gas.(acc +@ compare_union_tag) k) | Option_key (t, _) -> ( match (x, y) with | (None, None) -> (apply [@tailcall]) Gas.(acc +@ compare_option_tag) k | (None, Some _) -> (apply [@tailcall]) Gas.(acc +@ compare_option_tag) k | (Some _, None) -> (apply [@tailcall]) Gas.(acc +@ compare_option_tag) k | (Some x, Some y) -> (compare [@tailcall]) t x y Gas.(acc +@ compare_option_tag) k) and apply cost k = match k with | Compare (ty, x, y, k) -> (compare [@tailcall]) ty x y cost k | Return -> cost in compare ty x y Gas.free Return [@@coq_axiom_with_reason "non top-level mutually recursive function"] let view_mem (elt : Script_string.t) (m : Script_typed_ir.view Script_typed_ir.SMap.t) = let open S_syntax in let per_elt_cost = compare (Script_typed_ir.string_key ~annot:None) elt elt in let size = S.safe_int (Script_typed_ir.SMap.cardinal m) in let intercept = atomic_step_cost (S.safe_int 80) in Gas.(intercept +@ (log2 size *@ per_elt_cost)) let view_get = view_mem let view_update (elt : Script_string.t) (m : Script_typed_ir.view Script_typed_ir.SMap.t) = let open S_syntax in let per_elt_cost = compare (Script_typed_ir.string_key ~annot:None) elt elt in let size = S.safe_int (Script_typed_ir.SMap.cardinal m) in let intercept = atomic_step_cost (S.safe_int 80) in Gas.(intercept +@ (S.safe_int 2 * log2 size *@ per_elt_cost)) let set_mem (type a) (elt : a) ((module Box) : a Script_typed_ir.set) = let open S_syntax in let per_elt_cost = compare Box.elt_ty elt elt in let size = S.safe_int Box.size in let intercept = atomic_step_cost (S.safe_int 80) in Gas.(intercept +@ (log2 size *@ per_elt_cost)) let set_update (type a) (elt : a) ((module Box) : a Script_typed_ir.set) = let open S_syntax in let per_elt_cost = compare Box.elt_ty elt elt in let size = S.safe_int Box.size in let intercept = atomic_step_cost (S.safe_int 80) in (* The 2 factor reflects the update vs mem overhead as benchmarked on non-structured data *) Gas.(intercept +@ (S.safe_int 2 * log2 size *@ per_elt_cost)) let map_mem (type k v) (elt : k) ((module Box) : (k, v) Script_typed_ir.map) = let open S_syntax in let per_elt_cost = compare Box.key_ty elt elt in let size = S.safe_int (snd Box.boxed) in let intercept = atomic_step_cost (S.safe_int 80) in Gas.(intercept +@ (log2 size *@ per_elt_cost)) let map_get = map_mem let map_update (type k v) (elt : k) ((module Box) : (k, v) Script_typed_ir.map) = let open S_syntax in let per_elt_cost = compare Box.key_ty elt elt in let size = S.safe_int (snd Box.boxed) in let intercept = atomic_step_cost (S.safe_int 80) in (* The 2 factor reflects the update vs mem overhead as benchmarked on non-structured data *) Gas.(intercept +@ (S.safe_int 2 * log2 size *@ per_elt_cost)) let map_get_and_update (type k v) (elt : k) ((module Box) : (k, v) Script_typed_ir.map) = let open S_syntax in let per_elt_cost = compare Box.key_ty elt elt in let size = S.safe_int (snd Box.boxed) in let intercept = atomic_step_cost (S.safe_int 80) in (* The 3 factor reflects the update vs mem overhead as benchmarked on non-structured data *) Gas.(intercept +@ (S.safe_int 3 * log2 size *@ per_elt_cost)) let join_tickets : 'a Script_typed_ir.comparable_ty -> 'a Script_typed_ir.ticket -> 'a Script_typed_ir.ticket -> Gas.cost = fun ty ticket_a ticket_b -> let contents_comparison = compare ty ticket_a.contents ticket_b.contents in Gas.( contents_comparison +@ compare_address +@ add_natnat ticket_a.amount ticket_b.amount) (* Continuations *) module Control = struct let nil = atomic_step_cost cost_N_KNil let cons = atomic_step_cost cost_N_KCons let return = atomic_step_cost cost_N_KReturn let view_exit = atomic_step_cost cost_N_KView_exit let undip = atomic_step_cost cost_N_KUndip let loop_in = atomic_step_cost cost_N_KLoop_in let loop_in_left = atomic_step_cost cost_N_KLoop_in_left let iter = atomic_step_cost cost_N_KIter let list_enter_body xs ys_len = atomic_step_cost (cost_N_KList_enter_body xs ys_len) let list_exit_body = atomic_step_cost cost_N_KList_exit_body let map_enter_body = atomic_step_cost cost_N_KMap_enter_body let map_exit_body (type k v) (key : k) (map : (k, v) Script_typed_ir.map) = map_update key map end (* --------------------------------------------------------------------- *) (* Hand-crafted models *) (* The cost functions below where not benchmarked, a cost model was derived from looking at similar instructions. *) (* Cost for Concat_string is paid in two steps: when entering the interpreter, the user pays for the cost of computing the information necessary to compute the actual gas (so it's meta-gas): indeed, one needs to run through the list of strings to compute the total allocated cost. [concat_string_precheck] corresponds to the meta-gas cost of this computation. *) let concat_string_precheck (l : 'a Script_typed_ir.boxed_list) = (* we set the precheck to be slightly more expensive than cost_N_IList_iter *) atomic_step_cost (S.mul (S.safe_int l.length) (S.safe_int 10)) (* This is the cost of allocating a string and blitting existing ones into it. *) let concat_string total_bytes = atomic_step_cost S.(add (S.safe_int 100) (S.ediv total_bytes (S.safe_int 10))) (* Same story as Concat_string. *) let concat_bytes total_bytes = atomic_step_cost S.(add (S.safe_int 100) (S.ediv total_bytes (S.safe_int 10))) (* Cost of access taken care of in Contract_storage.get_balance_carbonated *) let balance = Gas.free (* Cost of Unpack pays two integer comparisons, and a Bytes slice *) let unpack bytes = let blen = Bytes.length bytes in let open S_syntax in atomic_step_cost (S.safe_int 100 + (S.safe_int blen lsr 3)) (* TODO benchmark *) (* FIXME: imported from 006, needs proper benchmarks *) let unpack_failed bytes = (* We cannot instrument failed deserialization, so we take worst case fees: a set of size 1 bytes values. *) let blen = Bytes.length bytes in let len = S.safe_int blen in let d = Z.numbits (Z.of_int blen) in (len *@ alloc_mbytes_cost 1) +@ len *@ (S.safe_int d *@ (alloc_cost (S.safe_int 3) +@ step_cost S.one)) end module Typechecking = struct open Generated_costs let public_key_optimized = atomic_step_cost @@ S.( max cost_DECODING_PUBLIC_KEY_ed25519 (max cost_DECODING_PUBLIC_KEY_secp256k1 cost_DECODING_PUBLIC_KEY_p256)) let public_key_readable = atomic_step_cost @@ S.( max cost_B58CHECK_DECODING_PUBLIC_KEY_ed25519 (max cost_B58CHECK_DECODING_PUBLIC_KEY_secp256k1 cost_B58CHECK_DECODING_PUBLIC_KEY_p256)) let key_hash_optimized = atomic_step_cost @@ S.( max cost_DECODING_PUBLIC_KEY_HASH_ed25519 (max cost_DECODING_PUBLIC_KEY_HASH_secp256k1 cost_DECODING_PUBLIC_KEY_HASH_p256)) let key_hash_readable = atomic_step_cost @@ S.( max cost_B58CHECK_DECODING_PUBLIC_KEY_HASH_ed25519 (max cost_B58CHECK_DECODING_PUBLIC_KEY_HASH_secp256k1 cost_B58CHECK_DECODING_PUBLIC_KEY_HASH_p256)) let signature_optimized = atomic_step_cost @@ S.( max cost_DECODING_SIGNATURE_ed25519 (max cost_DECODING_SIGNATURE_secp256k1 cost_DECODING_SIGNATURE_p256)) let signature_readable = atomic_step_cost @@ S.( max cost_B58CHECK_DECODING_SIGNATURE_ed25519 (max cost_B58CHECK_DECODING_SIGNATURE_secp256k1 cost_B58CHECK_DECODING_SIGNATURE_p256)) let chain_id_optimized = atomic_step_cost cost_DECODING_CHAIN_ID let chain_id_readable = atomic_step_cost cost_B58CHECK_DECODING_CHAIN_ID (* Reasonable approximation *) let address_optimized = key_hash_optimized (* Reasonable approximation *) let contract_optimized = key_hash_optimized (* Reasonable approximation *) let contract_readable = key_hash_readable let bls12_381_g1 = atomic_step_cost cost_DECODING_BLS_G1 let bls12_381_g2 = atomic_step_cost cost_DECODING_BLS_G2 let bls12_381_fr = atomic_step_cost cost_DECODING_BLS_FR let check_printable s = atomic_step_cost (cost_CHECK_PRINTABLE (String.length s)) let merge_cycle = atomic_step_cost cost_MERGE_TYPES let parse_type_cycle = atomic_step_cost cost_PARSE_TYPE let parse_instr_cycle = atomic_step_cost cost_TYPECHECKING_CODE let parse_data_cycle = atomic_step_cost cost_TYPECHECKING_DATA let comparable_ty_of_ty_cycle = atomic_step_cost cost_COMPARABLE_TY_OF_TY (* Cost of a cycle of checking that a type is dupable *) (* TODO: bench *) let check_dupable_cycle = atomic_step_cost cost_TYPECHECKING_DATA let bool = free let unit = free let timestamp_readable = atomic_step_cost cost_TIMESTAMP_READABLE_DECODING (* Reasonable estimate. *) let contract = Gas.(S.safe_int 2 *@ public_key_readable) (* Balance stored at /contracts/index/hash/balance, on 64 bits *) let contract_exists = Gas.cost_of_repr @@ Storage_costs.read_access ~path_length:4 ~read_bytes:8 (* Constructing proof arguments consists in a decreasing loop in the result monad, allocating at each step. We charge a reasonable overapproximation. *) let proof_argument n = atomic_step_cost (S.mul (S.safe_int n) (S.safe_int 50)) let chest_key = atomic_step_cost cost_DECODING_Chest_key let chest ~bytes = atomic_step_cost (cost_DECODING_Chest ~bytes) end module Unparsing = struct open Generated_costs let public_key_optimized = atomic_step_cost @@ S.( max cost_ENCODING_PUBLIC_KEY_ed25519 (max cost_ENCODING_PUBLIC_KEY_secp256k1 cost_ENCODING_PUBLIC_KEY_p256)) let public_key_readable = atomic_step_cost @@ S.( max cost_B58CHECK_ENCODING_PUBLIC_KEY_ed25519 (max cost_B58CHECK_ENCODING_PUBLIC_KEY_secp256k1 cost_B58CHECK_ENCODING_PUBLIC_KEY_p256)) let key_hash_optimized = atomic_step_cost @@ S.( max cost_ENCODING_PUBLIC_KEY_HASH_ed25519 (max cost_ENCODING_PUBLIC_KEY_HASH_secp256k1 cost_ENCODING_PUBLIC_KEY_HASH_p256)) let key_hash_readable = atomic_step_cost @@ S.( max cost_B58CHECK_ENCODING_PUBLIC_KEY_HASH_ed25519 (max cost_B58CHECK_ENCODING_PUBLIC_KEY_HASH_secp256k1 cost_B58CHECK_ENCODING_PUBLIC_KEY_HASH_p256)) let signature_optimized = atomic_step_cost @@ S.( max cost_ENCODING_SIGNATURE_ed25519 (max cost_ENCODING_SIGNATURE_secp256k1 cost_ENCODING_SIGNATURE_p256)) let signature_readable = atomic_step_cost @@ S.( max cost_B58CHECK_ENCODING_SIGNATURE_ed25519 (max cost_B58CHECK_ENCODING_SIGNATURE_secp256k1 cost_B58CHECK_ENCODING_SIGNATURE_p256)) let chain_id_optimized = atomic_step_cost cost_ENCODING_CHAIN_ID let chain_id_readable = atomic_step_cost cost_B58CHECK_ENCODING_CHAIN_ID let timestamp_readable = atomic_step_cost cost_TIMESTAMP_READABLE_ENCODING (* Reasonable approximation *) let address_optimized = key_hash_optimized (* Reasonable approximation *) let contract_optimized = key_hash_optimized (* Reasonable approximation *) let contract_readable = key_hash_readable let bls12_381_g1 = atomic_step_cost cost_ENCODING_BLS_G1 let bls12_381_g2 = atomic_step_cost cost_ENCODING_BLS_G2 let bls12_381_fr = atomic_step_cost cost_ENCODING_BLS_FR let unparse_type_cycle = atomic_step_cost cost_UNPARSE_TYPE let unparse_instr_cycle = atomic_step_cost cost_UNPARSING_CODE let unparse_data_cycle = atomic_step_cost cost_UNPARSING_DATA let unit = Gas.free (* Reasonable estimate. *) let contract = Gas.(S.safe_int 2 *@ public_key_readable) (* Reuse 006 costs. *) let operation bytes = Script.bytes_node_cost bytes let sapling_transaction (t : Sapling.transaction) = let inputs = List.length t.inputs in let outputs = List.length t.outputs in atomic_step_cost (cost_SAPLING_TRANSACTION_ENCODING ~inputs ~outputs) let sapling_diff (d : Sapling.diff) = let nfs = List.length d.nullifiers in let cms = List.length d.commitments_and_ciphertexts in atomic_step_cost (cost_SAPLING_DIFF_ENCODING ~nfs ~cms) let chest_key = atomic_step_cost cost_ENCODING_Chest_key let chest ~plaintext_size = atomic_step_cost (cost_ENCODING_Chest ~plaintext_size) end end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>