package tezos-protocol-008-PtEdoTez
Tezos protocol 008-PtEdoTez package
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/tezos_raw_protocol_008_PtEdoTez/michelson_v1_gas.ml.html
Source file michelson_v1_gas.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
(*****************************************************************************) (* *) (* Open Source License *) (* Copyright (c) 2018 Dynamic Ledger Solutions, Inc. <contact@tezos.com> *) (* Copyright (c) 2019-2020 Nomadic Labs <contact@nomadic-labs.com> *) (* Copyright (c) 2020 Metastate AG <hello@metastate.dev> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) open Alpha_context open Gas module Cost_of = struct module Z_syntax = struct (* This is a good enough approximation. Z.numbits 0 = 0 *) let log2 x = Z.of_int (1 + Z.numbits x) let ( + ) = Z.add let ( * ) = Z.mul let ( lsr ) = Z.shift_right end let z_bytes (z : Z.t) = let bits = Z.numbits z in (7 + bits) / 8 let int_bytes (z : 'a Script_int.num) = z_bytes (Script_int.to_zint z) let timestamp_bytes (t : Script_timestamp.t) = let z = Script_timestamp.to_zint t in z_bytes z (* Upper-bound on the time to compare the given value. For now, returns size in bytes, but this could get more complicated... *) let rec size_of_comparable : type a. a Script_typed_ir.comparable_ty -> a -> Z.t = fun wit v -> match (wit, v) with | (Unit_key _, _) -> Z.of_int 1 | (Never_key _, _) -> . | (Int_key _, _) -> Z.of_int (int_bytes v) | (Nat_key _, _) -> Z.of_int (int_bytes v) | (Signature_key _, _) -> Z.of_int Signature.size | (String_key _, _) -> Z.of_int (String.length v) | (Bytes_key _, _) -> Z.of_int (Bytes.length v) | (Bool_key _, _) -> Z.of_int 8 | (Key_hash_key _, _) -> Z.of_int Signature.Public_key_hash.size | (Key_key _, k) -> Z.of_int (Signature.Public_key.size k) | (Timestamp_key _, _) -> Z.of_int (timestamp_bytes v) | (Address_key _, _) -> Z.of_int Signature.Public_key_hash.size | (Mutez_key _, _) -> Z.of_int 8 | (Chain_id_key _, _) -> Z.of_int Chain_id.size | (Pair_key ((l, _), (r, _), _), (lval, rval)) -> Z.add (size_of_comparable l lval) (size_of_comparable r rval) | (Union_key ((t, _), _, _), L x) -> Z.add (Z.of_int 1) (size_of_comparable t x) | (Union_key (_, (t, _), _), R x) -> Z.add (Z.of_int 1) (size_of_comparable t x) | (Option_key _, None) -> Z.of_int 1 | (Option_key (t, _), Some x) -> Z.add (Z.of_int 1) (size_of_comparable t x) let manager_operation = step_cost @@ Z.of_int 1_000 (* FIXME: hardcoded constant, available in next environment version. Set to a reasonable upper bound. *) let public_key_size = 64 module Generated_costs_007 = struct (* Automatically generated costs functions. *) (* model N_Abs_int *) (* Approximating 0.068306 x term *) let cost_N_Abs_int size = Z.of_int @@ (80 + (size lsr 4)) (* model N_Add_bls12_381_fr *) let cost_N_Add_bls12_381_fr = Z.of_int 230 (* model N_Add_bls12_381_g1 *) let cost_N_Add_bls12_381_g1 = Z.of_int 9_300 (* model N_Add_bls12_381_g2 *) let cost_N_Add_bls12_381_g2 = Z.of_int 13_000 (* model N_Add_intint *) (* Approximating 0.082158 x term *) let cost_N_Add_intint size1 size2 = let v0 = Compare.Int.max size1 size2 in Z.of_int (80 + ((v0 lsr 4) + (v0 lsr 6))) (* model N_Add_tez *) let cost_N_Add_tez = Z.of_int 100 (* model N_And *) let cost_N_And = Z.of_int 100 (* model N_And_nat *) (* Approximating 0.079325 x term *) let cost_N_And_nat size1 size2 = let v0 = Compare.Int.min size1 size2 in Z.of_int (80 + ((v0 lsr 4) + (v0 lsr 6))) (* model N_Blake2b *) (* Approximating 1.366428 x term *) let cost_N_Blake2b size = let open Z_syntax in let size = Z.of_int size in Z.of_int 500 + (size + (size lsr 2)) (* model N_Car *) let cost_N_Car = Z.of_int 80 (* model N_Cdr *) let cost_N_Cdr = Z.of_int 80 (* model N_Check_signature_ed25519 *) (* Approximating 1.372685 x term *) let cost_N_Check_signature_ed25519 size = let open Z_syntax in let size = Z.of_int size in Z.of_int 270_000 + (size + (size lsr 2)) (* model N_Check_signature_p256 *) (* Approximating 1.385771 x term *) let cost_N_Check_signature_p256 size = let open Z_syntax in let size = Z.of_int size in Z.of_int 600_000 + (size + (size lsr 2) + (size lsr 3)) (* model N_Check_signature_secp256k1 *) (* Approximating 1.372411 x term *) let cost_N_Check_signature_secp256k1 size = let open Z_syntax in let size = Z.of_int size in Z.of_int 60_000 + (size + (size lsr 2)) (* model N_Comb *) (* Approximating 3.275337 x term *) let cost_N_Comb size = Z.of_int (80 + ((3 * size) + (size lsr 2))) (* model N_Comb_get *) (* Approximating 0.553178 x term *) let cost_N_Comb_get size = Z.of_int (80 + ((size lsr 1) + (size lsr 4))) (* model N_Comb_set *) (* Approximating 1.282976 x term *) let cost_N_Comb_set size = Z.of_int (80 + (size + (size lsr 2))) (* model N_Compare_address *) let cost_N_Compare_address size1 size2 = Z.of_int (80 + (2 * Compare.Int.min size1 size2)) (* model N_Compare_bool *) let cost_N_Compare_bool size1 size2 = Z.of_int (80 + (128 * Compare.Int.min size1 size2)) (* model N_Compare_int *) (* Approximating 0.073657 x term *) let cost_N_Compare_int size1 size2 = let v0 = Compare.Int.min size1 size2 in Z.of_int (150 + ((v0 lsr 4) + (v0 lsr 7))) (* model N_Compare_key_hash *) let cost_N_Compare_key_hash size1 size2 = Z.of_int (80 + (2 * Compare.Int.min size1 size2)) (* model N_Compare_mutez *) let cost_N_Compare_mutez size1 size2 = Z.of_int (13 * Compare.Int.min size1 size2) (* model N_Compare_string *) (* Approximating 0.039389 x term *) let cost_N_Compare_string size1 size2 = let v0 = Compare.Int.min size1 size2 in Z.of_int (120 + ((v0 lsr 5) + (v0 lsr 7))) (* model N_Compare_timestamp *) (* Approximating 0.072483 x term *) let cost_N_Compare_timestamp size1 size2 = let v0 = Compare.Int.min size1 size2 in Z.of_int (140 + ((v0 lsr 4) + (v0 lsr 7))) (* model N_Concat_string_pair *) (* Approximating 0.068808 x term *) let cost_N_Concat_string_pair size1 size2 = let open Z_syntax in let v0 = Z.of_int size1 + Z.of_int size2 in Z.of_int 80 + (v0 lsr 4) (* model N_Cons_list *) let cost_N_Cons_list = Z.of_int 80 (* model N_Cons_none *) let cost_N_Cons_none = Z.of_int 80 (* model N_Cons_pair *) let cost_N_Cons_pair = Z.of_int 80 (* model N_Cons_some *) let cost_N_Cons_some = Z.of_int 80 (* model N_Const *) let cost_N_Const = Z.of_int 80 (* model N_Dig *) let cost_N_Dig size = Z.of_int (100 + (4 * size)) (* model N_Dip *) let cost_N_Dip = Z.of_int 100 (* model N_DipN *) let cost_N_DipN size = Z.of_int (100 + (4 * size)) (* model N_Drop *) let cost_N_Drop = Z.of_int 80 (* model N_DropN *) let cost_N_DropN size = Z.of_int (100 + (4 * size)) (* model N_Dug *) let cost_N_Dug size = Z.of_int (100 + (4 * size)) (* model N_Dup *) let cost_N_Dup = Z.of_int 80 (* model N_DupN *) (* Approximating 1.299969 x term *) let cost_N_DupN size = Z.of_int (60 + size + (size lsr 2)) (* model N_Ediv_natnat *) (* Approximating 0.001599 x term *) let cost_N_Ediv_natnat size1 size2 = let q = size1 - size2 in if Compare.Int.(q < 0) then Z.of_int 300 else let open Z_syntax in let v0 = Z.of_int q * Z.of_int size2 in Z.of_int 300 + (v0 lsr 10) + (v0 lsr 11) + (v0 lsr 13) (* model N_Ediv_tez *) let cost_N_Ediv_tez = Z.of_int 200 (* model N_Ediv_teznat *) (* Extracted by hand from the empirical data *) let cost_N_Ediv_teznat = Z.of_int 300 (* model N_Empty_map *) let cost_N_Empty_map = Z.of_int 240 (* model N_Empty_set *) let cost_N_Empty_set = Z.of_int 240 (* model N_Eq *) let cost_N_Eq = Z.of_int 80 (* model N_If *) let cost_N_If = Z.of_int 60 (* model N_If_cons *) let cost_N_If_cons = Z.of_int 110 (* model N_If_left *) let cost_N_If_left = Z.of_int 90 (* model N_If_none *) let cost_N_If_none = Z.of_int 80 (* model N_Int_nat *) let cost_N_Int_nat = Z.of_int 80 (* model N_Is_nat *) let cost_N_Is_nat = Z.of_int 80 (* model N_Keccak *) let cost_N_Keccak size = let open Z_syntax in Z.of_int 1_400 + (Z.of_int 30 * Z.of_int size) (* model N_Left *) let cost_N_Left = Z.of_int 80 (* model N_List_iter *) let cost_N_List_iter size = let open Z_syntax in Z.of_int 500 + (Z.of_int 7 * Z.of_int size) (* model N_List_map *) let cost_N_List_map size = let open Z_syntax in Z.of_int 500 + (Z.of_int 12 * Z.of_int size) (* model N_List_size *) let cost_N_List_size = Z.of_int 80 (* model N_Loop *) let cost_N_Loop = Z.of_int 70 (* model N_Loop_left *) let cost_N_Loop_left = Z.of_int 80 (* model N_Lsl_nat *) (* Approximating 0.129443 x term *) let cost_N_Lsl_nat size = Z.of_int (150 + (size lsr 3)) (* model N_Lsr_nat *) (* Approximating 0.129435 x term *) let cost_N_Lsr_nat size = Z.of_int (150 + (size lsr 3)) (* model N_Map_get *) (* Approximating 0.057548 x term *) let cost_N_Map_get size1 size2 = let open Z_syntax in let v0 = size1 * log2 (Z.of_int size2) in Z.of_int 80 + (v0 lsr 5) + (v0 lsr 6) + (v0 lsr 7) (* model N_Map_iter *) let cost_N_Map_iter size = let open Z_syntax in Z.of_int 80 + (Z.of_int 40 * Z.of_int size) (* model N_Map_map *) let cost_N_Map_map size = let open Z_syntax in Z.of_int 80 + (Z.of_int 761 * Z.of_int size) (* model N_Map_mem *) (* Approximating 0.058563 x term *) let cost_N_Map_mem size1 size2 = let open Z_syntax in let v0 = size1 * log2 (Z.of_int size2) in Z.of_int 80 + (v0 lsr 5) + (v0 lsr 6) + (v0 lsr 7) (* model N_Map_size *) let cost_N_Map_size = Z.of_int 90 (* model N_Map_update *) (* Approximating 0.119968 x term *) let cost_N_Map_update size1 size2 = let open Z_syntax in let v0 = size1 * log2 (Z.of_int size2) in Z.of_int 80 + (v0 lsr 4) + (v0 lsr 5) + (v0 lsr 6) + (v0 lsr 7) (* model N_Mul_bls12_381_fr *) let cost_N_Mul_bls12_381_fr = Z.of_int 260 (* model N_Mul_bls12_381_g1 *) let cost_N_Mul_bls12_381_g1 = Z.of_int 265_000 (* model N_Mul_bls12_381_g2 *) let cost_N_Mul_bls12_381_g2 = Z.of_int 850_000 (* Converting fr from/to Z.t *) let cost_bls12_381_fr_of_z = Z.of_int 130 let cost_bls12_381_fr_to_z = Z.of_int 30 let cost_N_Mul_bls12_381_fr_z = Z.add cost_bls12_381_fr_of_z cost_N_Mul_bls12_381_fr let cost_N_Int_bls12_381_fr = cost_bls12_381_fr_to_z (* model N_Mul_intint *) let cost_N_Mul_intint size1 size2 = let open Z_syntax in let a = Z.of_int size1 + Z.of_int size2 in Z.of_int 80 + (a * log2 a) (* model N_Mul_teznat *) let cost_N_Mul_teznat size = let open Z_syntax in Z.of_int 200 + (Z.of_int 133 * Z.of_int size) (* model N_Neg_bls12_381_fr *) let cost_N_Neg_bls12_381_fr = Z.of_int 180 (* model N_Neg_bls12_381_g1 *) let cost_N_Neg_bls12_381_g1 = Z.of_int 410 (* model N_Neg_bls12_381_g2 *) let cost_N_Neg_bls12_381_g2 = Z.of_int 715 (* model N_Neg_int *) (* Approximating 0.068419 x term *) let cost_N_Neg_int size = Z.of_int (80 + (size lsr 4)) (* model N_Neq *) let cost_N_Neq = Z.of_int 80 (* model N_Nil *) let cost_N_Nil = Z.of_int 80 (* model N_Nop *) let cost_N_Nop = Z.of_int 70 (* model N_Not *) let cost_N_Not = Z.of_int 90 (* model N_Not_int *) (* Approximating 0.076564 x term *) let cost_N_Not_int size = Z.of_int (55 + ((size lsr 4) + (size lsr 7))) (* model N_Or *) let cost_N_Or = Z.of_int 90 (* model N_Or_nat *) (* Approximating 0.078718 x term *) let cost_N_Or_nat size1 size2 = let v0 = Compare.Int.max size1 size2 in Z.of_int (80 + ((v0 lsr 4) + (v0 lsr 6))) (* model N_Pairing_check_bls12_381 *) let cost_N_Pairing_check_bls12_381 size = Z.add (Z.of_int 1_550_000) (Z.mul (Z.of_int 510_000) (Z.of_int size)) (* model N_Right *) let cost_N_Right = Z.of_int 80 (* model N_Seq *) let cost_N_Seq = Z.of_int 60 (* model N_Set_iter *) let cost_N_Set_iter size = let open Z_syntax in Z.of_int 80 + (Z.of_int 36 * Z.of_int size) (* model N_Set_mem *) (* Approximating 0.059410 x term *) let cost_N_Set_mem size1 size2 = let open Z_syntax in let v0 = size1 * log2 (Z.of_int size2) in Z.of_int 80 + (v0 lsr 5) + (v0 lsr 6) + (v0 lsr 7) + (v0 lsr 8) (* model N_Set_size *) let cost_N_Set_size = Z.of_int 80 (* model N_Set_update *) (* Approximating 0.126260 x term *) let cost_N_Set_update size1 size2 = let open Z_syntax in let v0 = size1 * log2 (Z.of_int size2) in Z.of_int 80 + (v0 lsr 3) (* model N_Sha256 *) let cost_N_Sha256 size = let open Z_syntax in Z.of_int 500 + (Z.of_int 5 * Z.of_int size) (* model N_Sha3 *) let cost_N_Sha3 size = let open Z_syntax in Z.of_int 1_400 + (Z.of_int 32 * Z.of_int size) (* model N_Sha512 *) let cost_N_Sha512 size = let open Z_syntax in Z.of_int 500 + (Z.of_int 3 * Z.of_int size) (* model N_Slice_string *) (* Approximating 0.067048 x term *) let cost_N_Slice_string size = Z.of_int (80 + (size lsr 4)) (* model N_String_size *) let cost_N_String_size = Z.of_int 80 (* model N_Sub_int *) (* Approximating 0.082399 x term *) let cost_N_Sub_int size1 size2 = let v0 = Compare.Int.max size1 size2 in Z.of_int (80 + ((v0 lsr 4) + (v0 lsr 6))) (* model N_Sub_tez *) let cost_N_Sub_tez = Z.of_int 80 (* model N_Swap *) let cost_N_Swap = Z.of_int 70 (* model N_Total_voting_power *) let cost_N_Total_voting_power = Z.of_int 400 (* model N_Uncomb *) (* Approximating 3.666332 x term *) let cost_N_Uncomb size = Z.of_int (80 + ((3 * size) + (size lsr 1) + (size lsr 3))) (* model N_Unpair *) let cost_N_Unpair = Z.of_int 80 (* model N_Voting_power *) let cost_N_Voting_power = Z.of_int 400 (* model N_Xor *) let cost_N_Xor = Z.of_int 100 (* model N_Xor_nat *) (* Approximating 0.078258 x term *) let cost_N_Xor_nat size1 size2 = let v0 = Compare.Int.max size1 size2 in Z.of_int (80 + ((v0 lsr 4) + (v0 lsr 6))) (* model DECODING_BLS_FR *) let cost_DECODING_BLS_FR = Z.of_int 50 (* model DECODING_BLS_G1 *) let cost_DECODING_BLS_G1 = Z.of_int 230_000 (* model DECODING_BLS_G2 *) let cost_DECODING_BLS_G2 = Z.of_int 740_000 (* model B58CHECK_DECODING_CHAIN_ID *) let cost_B58CHECK_DECODING_CHAIN_ID = Z.of_int 1_500 (* model B58CHECK_DECODING_PUBLIC_KEY_HASH_ed25519 *) let cost_B58CHECK_DECODING_PUBLIC_KEY_HASH_ed25519 = Z.of_int 3_300 (* model B58CHECK_DECODING_PUBLIC_KEY_HASH_p256 *) let cost_B58CHECK_DECODING_PUBLIC_KEY_HASH_p256 = Z.of_int 3_300 (* model B58CHECK_DECODING_PUBLIC_KEY_HASH_secp256k1 *) let cost_B58CHECK_DECODING_PUBLIC_KEY_HASH_secp256k1 = Z.of_int 3_300 (* model B58CHECK_DECODING_PUBLIC_KEY_ed25519 *) let cost_B58CHECK_DECODING_PUBLIC_KEY_ed25519 = Z.of_int 4_300 (* model B58CHECK_DECODING_PUBLIC_KEY_p256 *) let cost_B58CHECK_DECODING_PUBLIC_KEY_p256 = Z.of_int 29_000 (* model B58CHECK_DECODING_PUBLIC_KEY_secp256k1 *) let cost_B58CHECK_DECODING_PUBLIC_KEY_secp256k1 = Z.of_int 9_400 (* model B58CHECK_DECODING_SIGNATURE_ed25519 *) let cost_B58CHECK_DECODING_SIGNATURE_ed25519 = Z.of_int 6_600 (* model B58CHECK_DECODING_SIGNATURE_p256 *) let cost_B58CHECK_DECODING_SIGNATURE_p256 = Z.of_int 6_600 (* model B58CHECK_DECODING_SIGNATURE_secp256k1 *) let cost_B58CHECK_DECODING_SIGNATURE_secp256k1 = Z.of_int 6_600 (* model ENCODING_BLS_FR *) let cost_ENCODING_BLS_FR = Z.of_int 30 (* model ENCODING_BLS_G1 *) let cost_ENCODING_BLS_G1 = Z.of_int 30 (* model ENCODING_BLS_G2 *) let cost_ENCODING_BLS_G2 = Z.of_int 30 (* model B58CHECK_ENCODING_CHAIN_ID *) let cost_B58CHECK_ENCODING_CHAIN_ID = Z.of_int 1_600 (* model B58CHECK_ENCODING_PUBLIC_KEY_HASH_ed25519 *) let cost_B58CHECK_ENCODING_PUBLIC_KEY_HASH_ed25519 = Z.of_int 3_300 (* model B58CHECK_ENCODING_PUBLIC_KEY_HASH_p256 *) let cost_B58CHECK_ENCODING_PUBLIC_KEY_HASH_p256 = Z.of_int 3_750 (* model B58CHECK_ENCODING_PUBLIC_KEY_HASH_secp256k1 *) let cost_B58CHECK_ENCODING_PUBLIC_KEY_HASH_secp256k1 = Z.of_int 3_300 (* model B58CHECK_ENCODING_PUBLIC_KEY_ed25519 *) let cost_B58CHECK_ENCODING_PUBLIC_KEY_ed25519 = Z.of_int 4_500 (* model B58CHECK_ENCODING_PUBLIC_KEY_p256 *) let cost_B58CHECK_ENCODING_PUBLIC_KEY_p256 = Z.of_int 5_300 (* model B58CHECK_ENCODING_PUBLIC_KEY_secp256k1 *) let cost_B58CHECK_ENCODING_PUBLIC_KEY_secp256k1 = Z.of_int 5_000 (* model B58CHECK_ENCODING_SIGNATURE_ed25519 *) let cost_B58CHECK_ENCODING_SIGNATURE_ed25519 = Z.of_int 8_700 (* model B58CHECK_ENCODING_SIGNATURE_p256 *) let cost_B58CHECK_ENCODING_SIGNATURE_p256 = Z.of_int 8_700 (* model B58CHECK_ENCODING_SIGNATURE_secp256k1 *) let cost_B58CHECK_ENCODING_SIGNATURE_secp256k1 = Z.of_int 8_700 (* model DECODING_CHAIN_ID *) let cost_DECODING_CHAIN_ID = Z.of_int 50 (* model DECODING_PUBLIC_KEY_HASH_ed25519 *) let cost_DECODING_PUBLIC_KEY_HASH_ed25519 = Z.of_int 50 (* model DECODING_PUBLIC_KEY_HASH_p256 *) let cost_DECODING_PUBLIC_KEY_HASH_p256 = Z.of_int 60 (* model DECODING_PUBLIC_KEY_HASH_secp256k1 *) let cost_DECODING_PUBLIC_KEY_HASH_secp256k1 = Z.of_int 60 (* model DECODING_PUBLIC_KEY_ed25519 *) let cost_DECODING_PUBLIC_KEY_ed25519 = Z.of_int 60 (* model DECODING_PUBLIC_KEY_p256 *) let cost_DECODING_PUBLIC_KEY_p256 = Z.of_int 25_000 (* model DECODING_PUBLIC_KEY_secp256k1 *) let cost_DECODING_PUBLIC_KEY_secp256k1 = Z.of_int 5_300 (* model DECODING_SIGNATURE_ed25519 *) let cost_DECODING_SIGNATURE_ed25519 = Z.of_int 30 (* model DECODING_SIGNATURE_p256 *) let cost_DECODING_SIGNATURE_p256 = Z.of_int 30 (* model DECODING_SIGNATURE_secp256k1 *) let cost_DECODING_SIGNATURE_secp256k1 = Z.of_int 30 (* model ENCODING_CHAIN_ID *) let cost_ENCODING_CHAIN_ID = Z.of_int 50 (* model ENCODING_PUBLIC_KEY_HASH_ed25519 *) let cost_ENCODING_PUBLIC_KEY_HASH_ed25519 = Z.of_int 70 (* model ENCODING_PUBLIC_KEY_HASH_p256 *) let cost_ENCODING_PUBLIC_KEY_HASH_p256 = Z.of_int 80 (* model ENCODING_PUBLIC_KEY_HASH_secp256k1 *) let cost_ENCODING_PUBLIC_KEY_HASH_secp256k1 = Z.of_int 70 (* model ENCODING_PUBLIC_KEY_ed25519 *) let cost_ENCODING_PUBLIC_KEY_ed25519 = Z.of_int 80 (* model ENCODING_PUBLIC_KEY_p256 *) let cost_ENCODING_PUBLIC_KEY_p256 = Z.of_int 450 (* model ENCODING_PUBLIC_KEY_secp256k1 *) let cost_ENCODING_PUBLIC_KEY_secp256k1 = Z.of_int 490 (* model ENCODING_SIGNATURE_ed25519 *) let cost_ENCODING_SIGNATURE_ed25519 = Z.of_int 40 (* model ENCODING_SIGNATURE_p256 *) let cost_ENCODING_SIGNATURE_p256 = Z.of_int 40 (* model ENCODING_SIGNATURE_secp256k1 *) let cost_ENCODING_SIGNATURE_secp256k1 = Z.of_int 40 (* model TIMESTAMP_READABLE_DECODING *) let cost_TIMESTAMP_READABLE_DECODING = Z.of_int 130 (* model TIMESTAMP_READABLE_ENCODING *) let cost_TIMESTAMP_READABLE_ENCODING = Z.of_int 900 (* model CHECK_PRINTABLE *) let cost_CHECK_PRINTABLE size = let open Z_syntax in Z.of_int 14 + (Z.of_int 10 * Z.of_int size) (* model MERGE_TYPES This is the estimated cost of one iteration of merge_types, extracted and copied manually from the parameter fit for the MERGE_TYPES benchmark (the model is parametric on the size of the type, which we don't have access to in O(1)). *) let cost_MERGE_TYPES = Z.of_int 130 (* model TYPECHECKING_CODE This is the cost of one iteration of parse_instr, extracted by hand from the parameter fit for the TYPECHECKING_CODE benchmark. *) let cost_TYPECHECKING_CODE = Z.of_int 375 (* model UNPARSING_CODE This is the cost of one iteration of unparse_instr, extracted by hand from the parameter fit for the UNPARSING_CODE benchmark. *) let cost_UNPARSING_CODE = Z.of_int 200 (* model TYPECHECKING_DATA This is the cost of one iteration of parse_data, extracted by hand from the parameter fit for the TYPECHECKING_DATA benchmark. *) let cost_TYPECHECKING_DATA = Z.of_int 240 (* model UNPARSING_DATA This is the cost of one iteration of unparse_data, extracted by hand from the parameter fit for the UNPARSING_DATA benchmark. *) let cost_UNPARSING_DATA = Z.of_int 140 (* model PARSE_TYPE This is the cost of one iteration of parse_ty, extracted by hand from the parameter fit for the PARSE_TYPE benchmark. *) let cost_PARSE_TYPE = Z.of_int 170 (* model UNPARSE_TYPE This is the cost of one iteration of unparse_ty, extracted by hand from the parameter fit for the UNPARSE_TYPE benchmark. *) let cost_UNPARSE_TYPE = Z.of_int 185 (* TODO: benchmark *) let cost_COMPARABLE_TY_OF_TY = Z.of_int 120 end module Interpreter = struct open Generated_costs_007 let drop = atomic_step_cost cost_N_Drop let dup = atomic_step_cost cost_N_Dup let swap = atomic_step_cost cost_N_Swap let push = atomic_step_cost cost_N_Const let cons_some = atomic_step_cost cost_N_Cons_some let cons_none = atomic_step_cost cost_N_Cons_none let if_none = atomic_step_cost cost_N_If_none let cons_pair = atomic_step_cost cost_N_Cons_pair let unpair = atomic_step_cost cost_N_Unpair let car = atomic_step_cost cost_N_Car let cdr = atomic_step_cost cost_N_Cdr let cons_left = atomic_step_cost cost_N_Left let cons_right = atomic_step_cost cost_N_Right let if_left = atomic_step_cost cost_N_If_left let cons_list = atomic_step_cost cost_N_Cons_list let nil = atomic_step_cost cost_N_Nil let if_cons = atomic_step_cost cost_N_If_cons let list_map : 'a Script_typed_ir.boxed_list -> Gas.cost = fun {length; _} -> atomic_step_cost (cost_N_List_map length) let list_size = atomic_step_cost cost_N_List_size let list_iter : 'a Script_typed_ir.boxed_list -> Gas.cost = fun {length; _} -> atomic_step_cost (cost_N_List_iter length) let empty_set = atomic_step_cost cost_N_Empty_set let set_iter (type a) ((module Box) : a Script_typed_ir.set) = atomic_step_cost (cost_N_Set_iter Box.size) let set_mem (type a) (elt : a) ((module Box) : a Script_typed_ir.set) = let elt_size = size_of_comparable Box.elt_ty elt in atomic_step_cost (cost_N_Set_mem elt_size Box.size) let set_update (type a) (elt : a) ((module Box) : a Script_typed_ir.set) = let elt_size = size_of_comparable Box.elt_ty elt in atomic_step_cost (cost_N_Set_update elt_size Box.size) let set_size = atomic_step_cost cost_N_Set_size let empty_map = atomic_step_cost cost_N_Empty_map let map_map (type k v) ((module Box) : (k, v) Script_typed_ir.map) = atomic_step_cost (cost_N_Map_map (snd Box.boxed)) let map_iter (type k v) ((module Box) : (k, v) Script_typed_ir.map) = atomic_step_cost (cost_N_Map_iter (snd Box.boxed)) let map_mem (type k v) (elt : k) ((module Box) : (k, v) Script_typed_ir.map) = let elt_size = size_of_comparable Box.key_ty elt in atomic_step_cost (cost_N_Map_mem elt_size (snd Box.boxed)) let map_get (type k v) (elt : k) ((module Box) : (k, v) Script_typed_ir.map) = let elt_size = size_of_comparable Box.key_ty elt in atomic_step_cost (cost_N_Map_get elt_size (snd Box.boxed)) let map_update (type k v) (elt : k) ((module Box) : (k, v) Script_typed_ir.map) = let elt_size = size_of_comparable Box.key_ty elt in atomic_step_cost (cost_N_Map_update elt_size (snd Box.boxed)) let map_get_and_update (type k v) (elt : k) (m : (k, v) Script_typed_ir.map) = map_get elt m +@ map_update elt m let map_size = atomic_step_cost cost_N_Map_size let add_seconds_timestamp : 'a Script_int.num -> Script_timestamp.t -> Gas.cost = fun seconds timestamp -> let seconds_bytes = int_bytes seconds in let timestamp_bytes = z_bytes (Script_timestamp.to_zint timestamp) in atomic_step_cost (cost_N_Add_intint seconds_bytes timestamp_bytes) let sub_seconds_timestamp : 'a Script_int.num -> Script_timestamp.t -> Gas.cost = fun seconds timestamp -> let seconds_bytes = int_bytes seconds in let timestamp_bytes = z_bytes (Script_timestamp.to_zint timestamp) in atomic_step_cost (cost_N_Sub_int seconds_bytes timestamp_bytes) let diff_timestamps t1 t2 = let t1_bytes = z_bytes (Script_timestamp.to_zint t1) in let t2_bytes = z_bytes (Script_timestamp.to_zint t2) in atomic_step_cost (cost_N_Sub_int t1_bytes t2_bytes) let concat_string_pair s1 s2 = atomic_step_cost (cost_N_Concat_string_pair (String.length s1) (String.length s2)) let slice_string s = atomic_step_cost (cost_N_Slice_string (String.length s)) let string_size = atomic_step_cost cost_N_String_size let concat_bytes_pair b1 b2 = atomic_step_cost (cost_N_Concat_string_pair (Bytes.length b1) (Bytes.length b2)) let slice_bytes b = atomic_step_cost (cost_N_Slice_string (Bytes.length b)) let bytes_size = atomic_step_cost cost_N_String_size let add_tez = atomic_step_cost cost_N_Add_tez let sub_tez = atomic_step_cost cost_N_Sub_tez let mul_teznat n = atomic_step_cost (cost_N_Mul_teznat (int_bytes n)) let bool_or = atomic_step_cost cost_N_Or let bool_and = atomic_step_cost cost_N_And let bool_xor = atomic_step_cost cost_N_Xor let bool_not = atomic_step_cost cost_N_Not let is_nat = atomic_step_cost cost_N_Is_nat let abs_int i = atomic_step_cost (cost_N_Abs_int (int_bytes i)) let int_nat = atomic_step_cost cost_N_Int_nat let neg_int i = atomic_step_cost (cost_N_Neg_int (int_bytes i)) let neg_nat n = atomic_step_cost (cost_N_Neg_int (int_bytes n)) let add_bigint i1 i2 = atomic_step_cost (cost_N_Add_intint (int_bytes i1) (int_bytes i2)) let sub_bigint i1 i2 = atomic_step_cost (cost_N_Sub_int (int_bytes i1) (int_bytes i2)) let mul_bigint i1 i2 = atomic_step_cost (cost_N_Mul_intint (int_bytes i1) (int_bytes i2)) let ediv_teznat _tez _n = atomic_step_cost cost_N_Ediv_teznat let ediv_tez = atomic_step_cost cost_N_Ediv_tez let ediv_bigint i1 i2 = atomic_step_cost (cost_N_Ediv_natnat (int_bytes i1) (int_bytes i2)) let eq = atomic_step_cost cost_N_Eq let lsl_nat shifted = atomic_step_cost (cost_N_Lsl_nat (int_bytes shifted)) let lsr_nat shifted = atomic_step_cost (cost_N_Lsr_nat (int_bytes shifted)) let or_nat n1 n2 = atomic_step_cost (cost_N_Or_nat (int_bytes n1) (int_bytes n2)) let and_nat n1 n2 = atomic_step_cost (cost_N_And_nat (int_bytes n1) (int_bytes n2)) let xor_nat n1 n2 = atomic_step_cost (cost_N_Xor_nat (int_bytes n1) (int_bytes n2)) let not_int i = atomic_step_cost (cost_N_Not_int (int_bytes i)) let not_nat = not_int let seq = atomic_step_cost cost_N_Seq let if_ = atomic_step_cost cost_N_If let loop = atomic_step_cost cost_N_Loop let loop_left = atomic_step_cost cost_N_Loop_left let dip = atomic_step_cost cost_N_Dip let check_signature (pkey : Signature.public_key) b = let cost = match pkey with | Ed25519 _ -> cost_N_Check_signature_ed25519 (Bytes.length b) | Secp256k1 _ -> cost_N_Check_signature_secp256k1 (Bytes.length b) | P256 _ -> cost_N_Check_signature_p256 (Bytes.length b) in atomic_step_cost cost let blake2b b = atomic_step_cost (cost_N_Blake2b (Bytes.length b)) let sha256 b = atomic_step_cost (cost_N_Sha256 (Bytes.length b)) let sha512 b = atomic_step_cost (cost_N_Sha512 (Bytes.length b)) let dign n = atomic_step_cost (cost_N_Dig n) let dugn n = atomic_step_cost (cost_N_Dug n) let dipn n = atomic_step_cost (cost_N_DipN n) let dropn n = atomic_step_cost (cost_N_DropN n) let voting_power = atomic_step_cost cost_N_Voting_power let total_voting_power = atomic_step_cost cost_N_Total_voting_power let keccak b = atomic_step_cost (cost_N_Keccak (Bytes.length b)) let sha3 b = atomic_step_cost (cost_N_Sha3 (Bytes.length b)) let add_bls12_381_g1 = atomic_step_cost cost_N_Add_bls12_381_g1 let add_bls12_381_g2 = atomic_step_cost cost_N_Add_bls12_381_g2 let add_bls12_381_fr = atomic_step_cost cost_N_Add_bls12_381_fr let mul_bls12_381_g1 = atomic_step_cost cost_N_Mul_bls12_381_g1 let mul_bls12_381_g2 = atomic_step_cost cost_N_Mul_bls12_381_g2 let mul_bls12_381_fr = atomic_step_cost cost_N_Mul_bls12_381_fr let mul_bls12_381_fr_z = atomic_step_cost cost_N_Mul_bls12_381_fr_z let int_bls12_381_fr = atomic_step_cost cost_N_Int_bls12_381_fr let neg_bls12_381_g1 = atomic_step_cost cost_N_Neg_bls12_381_g1 let neg_bls12_381_g2 = atomic_step_cost cost_N_Neg_bls12_381_g2 let neg_bls12_381_fr = atomic_step_cost cost_N_Neg_bls12_381_fr let neq = atomic_step_cost cost_N_Neq let nop = atomic_step_cost cost_N_Nop let pairing_check_bls12_381 (l : 'a Script_typed_ir.boxed_list) = atomic_step_cost (cost_N_Pairing_check_bls12_381 l.length) let comb n = atomic_step_cost (cost_N_Comb n) let uncomb n = atomic_step_cost (cost_N_Uncomb n) let comb_get n = atomic_step_cost (cost_N_Comb_get n) let comb_set n = atomic_step_cost (cost_N_Comb_set n) let dupn n = atomic_step_cost (cost_N_DupN n) let sapling_verify_update ~inputs ~outputs = let open Z_syntax in atomic_step_cost ( Z.of_int 85_000 + (Z.of_int inputs * Z.of_int 4) + (Z.of_int outputs * Z.of_int 30) ) (* --------------------------------------------------------------------- *) (* Semi-hand-crafted models *) let compare_unit = atomic_step_cost (Z.of_int 10) let compare_union_tag = atomic_step_cost (Z.of_int 10) let compare_option_tag = atomic_step_cost (Z.of_int 10) let compare_bool = atomic_step_cost (cost_N_Compare_bool 1 1) let compare_signature = atomic_step_cost (Z.of_int 92) let compare_string s1 s2 = atomic_step_cost (cost_N_Compare_string (String.length s1) (String.length s2)) let compare_bytes b1 b2 = atomic_step_cost (cost_N_Compare_string (Bytes.length b1) (Bytes.length b2)) let compare_mutez = atomic_step_cost (cost_N_Compare_mutez 8 8) let compare_int i1 i2 = atomic_step_cost (cost_N_Compare_int (int_bytes i1) (int_bytes i2)) let compare_nat n1 n2 = atomic_step_cost (cost_N_Compare_int (int_bytes n1) (int_bytes n2)) let compare_key_hash = let sz = Signature.Public_key_hash.size in atomic_step_cost (cost_N_Compare_key_hash sz sz) let compare_key = atomic_step_cost (Z.of_int 92) let compare_timestamp t1 t2 = atomic_step_cost (cost_N_Compare_timestamp (z_bytes (Script_timestamp.to_zint t1)) (z_bytes (Script_timestamp.to_zint t2))) let compare_address = let sz = Signature.Public_key_hash.size + Chain_id.size in atomic_step_cost (cost_N_Compare_address sz sz) let compare_chain_id = atomic_step_cost (Z.of_int 30) let rec compare : type a. a Script_typed_ir.comparable_ty -> a -> a -> cost = fun ty x y -> match ty with | Unit_key _ -> compare_unit | Never_key _ -> ( match x with _ -> . ) | Bool_key _ -> compare_bool | String_key _ -> compare_string x y | Signature_key _ -> compare_signature | Bytes_key _ -> compare_bytes x y | Mutez_key _ -> compare_mutez | Int_key _ -> compare_int x y | Nat_key _ -> compare_nat x y | Key_hash_key _ -> compare_key_hash | Key_key _ -> compare_key | Timestamp_key _ -> compare_timestamp x y | Address_key _ -> compare_address | Chain_id_key _ -> compare_chain_id | Pair_key ((tl, _), (tr, _), _) -> (* Reasonable over-approximation of the cost of lexicographic comparison. *) let (xl, xr) = x in let (yl, yr) = y in compare tl xl yl +@ compare tr xr yr | Union_key ((tl, _), (tr, _), _) -> ( compare_union_tag +@ match (x, y) with | (L x, L y) -> compare tl x y | (L _, R _) -> free | (R _, L _) -> free | (R x, R y) -> compare tr x y ) | Option_key (t, _) -> ( compare_option_tag +@ match (x, y) with | (None, None) -> free | (None, Some _) -> free | (Some _, None) -> free | (Some x, Some y) -> compare t x y ) (* --------------------------------------------------------------------- *) (* Hand-crafted models *) (* The cost functions below where not benchmarked, a cost model was derived from looking at similar instructions. *) let sapling_empty_state = empty_map (* Cost for Concat_string is paid in two steps: when entering the interpreter, the user pays for the cost of computing the information necessary to compute the actual gas (so it's meta-gas): indeed, one needs to run through the list of strings to compute the total allocated cost. [concat_string_precheck] corresponds to the meta-gas cost of this computation. *) let concat_string_precheck (l : 'a Script_typed_ir.boxed_list) = (* we set the precheck to be slightly more expensive than cost_N_List_iter *) atomic_step_cost (Z.mul (Z.of_int l.length) (Z.of_int 10)) (* This is the cost of allocating a string and blitting existing ones into it. *) let concat_string total_bytes = atomic_step_cost Z.(add (of_int 100) (fst (ediv_rem total_bytes (of_int 10)))) (* Same story as Concat_string. *) let concat_bytes total_bytes = atomic_step_cost Z.(add (of_int 100) (fst (ediv_rem total_bytes (of_int 10)))) (* Cost of additional call to logger + overhead of setting up call to [interp]. *) let exec = atomic_step_cost (Z.of_int 100) (* Heavy computation happens in the [unparse_data], [unparse_ty] functions which are carbonated. We must account for allocating the Micheline lambda wrapper. *) let apply = atomic_step_cost (Z.of_int 1000) (* Pushing a pointer on the stack. *) let lambda = push (* Pusing an address on the stack. *) let address = push (* Most computation happens in [parse_contract_from_script], which is carbonated. Account for pushing on the stack. *) let contract = push (* Most computation happens in [collect_lazy_storage], [extract_lazy_storage_diff] and [unparse_data] which are carbonated. The instruction-specific overhead is mostly that of updating the internal nonce, which we approximate by the cost of a push. *) let transfer_tokens = Gas.(push +@ push) (* Wrapping a value and pushing it on the stack. *) let implicit_account = push (* As for [transfer_token], most computation happens elsewhere. We still account for the overhead of updating the internal_nonce. *) let create_contract = Gas.(push +@ push) (* Increments the internal_nonce counter. *) let set_delegate = Gas.(push +@ push) (* Cost of access taken care of in Contract_storage.get_balance_carbonated *) let balance = Gas.free (* Accessing the raw_context, Small arithmetic & pushing on the stack. *) let level = atomic_step_cost (Z.mul (Z.of_int 2) cost_N_Const) (* Same as [cost_level] *) let now = level (* Public keys are hashed with Blake2b *) let hash_key _pk = atomic_step_cost (cost_N_Blake2b public_key_size) (* Pushes on the stack an element from the [step_constants] record. *) let source = push (* Same as cost_source *) let sender = source (* Same as cost_source *) let self = source (* Same as cost_source *) let self_address = source (* Same as cost_source *) let amount = source (* Same as cost_source *) let chain_id = source (* TODO benchmark *) (* FIXME: imported from 006, needs proper benchmarks *) let unpack_failed bytes = (* We cannot instrument failed deserialization, so we take worst case fees: a set of size 1 bytes values. *) let len = Z.of_int (Bytes.length bytes) in (len *@ alloc_mbytes_cost 1) +@ len *@ ( Z.of_int (Z.numbits len) *@ (alloc_cost (Z.of_int 3) +@ step_cost Z.one) ) let ticket = atomic_step_cost (Z.of_int 80) let read_ticket = atomic_step_cost (Z.of_int 80) let split_ticket ticket_amount amount_a amount_b = ticket +@ add_bigint amount_a amount_b +@ compare_nat ticket_amount ticket_amount let join_tickets : 'a Script_typed_ir.comparable_ty -> 'a Script_typed_ir.ticket -> 'a Script_typed_ir.ticket -> Gas.cost = fun ty ticket_a ticket_b -> ticket +@ compare_address +@ add_bigint ticket_a.amount ticket_b.amount +@ compare ty ticket_a.contents ticket_b.contents end module Typechecking = struct open Generated_costs_007 let public_key_optimized = atomic_step_cost @@ Compare.Z.( max cost_DECODING_PUBLIC_KEY_ed25519 (max cost_DECODING_PUBLIC_KEY_secp256k1 cost_DECODING_PUBLIC_KEY_p256)) let public_key_readable = atomic_step_cost @@ Compare.Z.( max cost_B58CHECK_DECODING_PUBLIC_KEY_ed25519 (max cost_B58CHECK_DECODING_PUBLIC_KEY_secp256k1 cost_B58CHECK_DECODING_PUBLIC_KEY_p256)) let key_hash_optimized = atomic_step_cost @@ Compare.Z.( max cost_DECODING_PUBLIC_KEY_HASH_ed25519 (max cost_DECODING_PUBLIC_KEY_HASH_secp256k1 cost_DECODING_PUBLIC_KEY_HASH_p256)) let key_hash_readable = atomic_step_cost @@ Compare.Z.( max cost_B58CHECK_DECODING_PUBLIC_KEY_HASH_ed25519 (max cost_B58CHECK_DECODING_PUBLIC_KEY_HASH_secp256k1 cost_B58CHECK_DECODING_PUBLIC_KEY_HASH_p256)) let signature_optimized = atomic_step_cost @@ Compare.Z.( max cost_DECODING_SIGNATURE_ed25519 (max cost_DECODING_SIGNATURE_secp256k1 cost_DECODING_SIGNATURE_p256)) let signature_readable = atomic_step_cost @@ Compare.Z.( max cost_B58CHECK_DECODING_SIGNATURE_ed25519 (max cost_B58CHECK_DECODING_SIGNATURE_secp256k1 cost_B58CHECK_DECODING_SIGNATURE_p256)) let chain_id_optimized = atomic_step_cost cost_DECODING_CHAIN_ID let chain_id_readable = atomic_step_cost cost_B58CHECK_DECODING_CHAIN_ID (* Reasonable approximation *) let address_optimized = key_hash_optimized (* Reasonable approximation *) let contract_optimized = key_hash_optimized (* Reasonable approximation *) let contract_readable = key_hash_readable let bls12_381_g1 = atomic_step_cost cost_DECODING_BLS_G1 let bls12_381_g2 = atomic_step_cost cost_DECODING_BLS_G2 let bls12_381_fr = atomic_step_cost cost_DECODING_BLS_FR let check_printable s = atomic_step_cost (cost_CHECK_PRINTABLE (String.length s)) let merge_cycle = atomic_step_cost cost_MERGE_TYPES let parse_type_cycle = atomic_step_cost cost_PARSE_TYPE let parse_instr_cycle = atomic_step_cost cost_TYPECHECKING_CODE let parse_data_cycle = atomic_step_cost cost_TYPECHECKING_DATA let comparable_ty_of_ty_cycle = atomic_step_cost cost_COMPARABLE_TY_OF_TY (* Cost of a cycle of checking that a type is dupable *) (* TODO: bench *) let check_dupable_cycle = atomic_step_cost cost_TYPECHECKING_DATA let bool = free let unit = free let timestamp_readable = atomic_step_cost cost_TIMESTAMP_READABLE_DECODING (* Reasonable estimate. *) let contract = Gas.(Z.of_int 2 *@ public_key_readable) (* Assuming unflattened storage: /contracts/hash1/.../hash6/key/balance, balance stored on 64 bits *) let contract_exists = Gas.cost_of_repr @@ Storage_costs.read_access ~path_length:9 ~read_bytes:8 (* Constructing proof arguments consists in a decreasing loop in the result monad, allocating at each step. We charge a reasonable overapproximation. *) let proof_argument n = atomic_step_cost (Z.mul (Z.of_int n) (Z.of_int 50)) end module Unparsing = struct open Generated_costs_007 let public_key_optimized = atomic_step_cost @@ Compare.Z.( max cost_ENCODING_PUBLIC_KEY_ed25519 (max cost_ENCODING_PUBLIC_KEY_secp256k1 cost_ENCODING_PUBLIC_KEY_p256)) let public_key_readable = atomic_step_cost @@ Compare.Z.( max cost_B58CHECK_ENCODING_PUBLIC_KEY_ed25519 (max cost_B58CHECK_ENCODING_PUBLIC_KEY_secp256k1 cost_B58CHECK_ENCODING_PUBLIC_KEY_p256)) let key_hash_optimized = atomic_step_cost @@ Compare.Z.( max cost_ENCODING_PUBLIC_KEY_HASH_ed25519 (max cost_ENCODING_PUBLIC_KEY_HASH_secp256k1 cost_ENCODING_PUBLIC_KEY_HASH_p256)) let key_hash_readable = atomic_step_cost @@ Compare.Z.( max cost_B58CHECK_ENCODING_PUBLIC_KEY_HASH_ed25519 (max cost_B58CHECK_ENCODING_PUBLIC_KEY_HASH_secp256k1 cost_B58CHECK_ENCODING_PUBLIC_KEY_HASH_p256)) let signature_optimized = atomic_step_cost @@ Compare.Z.( max cost_ENCODING_SIGNATURE_ed25519 (max cost_ENCODING_SIGNATURE_secp256k1 cost_ENCODING_SIGNATURE_p256)) let signature_readable = atomic_step_cost @@ Compare.Z.( max cost_B58CHECK_ENCODING_SIGNATURE_ed25519 (max cost_B58CHECK_ENCODING_SIGNATURE_secp256k1 cost_B58CHECK_ENCODING_SIGNATURE_p256)) let chain_id_optimized = atomic_step_cost cost_ENCODING_CHAIN_ID let chain_id_readable = atomic_step_cost cost_B58CHECK_ENCODING_CHAIN_ID let timestamp_readable = atomic_step_cost cost_TIMESTAMP_READABLE_ENCODING (* Reasonable approximation *) let address_optimized = key_hash_optimized (* Reasonable approximation *) let contract_optimized = key_hash_optimized (* Reasonable approximation *) let contract_readable = key_hash_readable let bls12_381_g1 = atomic_step_cost cost_ENCODING_BLS_G1 let bls12_381_g2 = atomic_step_cost cost_ENCODING_BLS_G2 let bls12_381_fr = atomic_step_cost cost_ENCODING_BLS_FR let unparse_type_cycle = atomic_step_cost cost_UNPARSE_TYPE let unparse_instr_cycle = atomic_step_cost cost_UNPARSING_CODE let unparse_data_cycle = atomic_step_cost cost_UNPARSING_DATA let unit = Gas.free (* Reasonable estimate. *) let contract = Gas.(Z.of_int 2 *@ public_key_readable) (* Reuse 006 costs. *) let operation bytes = Script.bytes_node_cost bytes let sapling_transaction _t = (* TODO should it be scaled? *) (* let size = Data_encoding.Binary.length Sapling.transaction_encoding t in *) (* string_cost size *) Gas.free let sapling_diff _d = (* TODO should it be scaled? *) (* let size = Data_encoding.Binary.length Sapling.diff_encoding d in *) (* string_cost size *) Gas.free end end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>