package tezos-protocol-007-PsDELPH1
Tezos protocol 007-PsDELPH1 package
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-18.0.tar.gz
sha256=dbc3b675aee59c2c574e5d0a771193a2ecfca31e7a5bc5aed66598080596ce1c
sha512=b97ed762b9d24744305c358af0d20f394376b64bfdd758dd4a81775326caf445caa57c4f6445da3dd6468ff492de18e4c14af6f374dfcbb7e4d64b7b720e5e2a
doc/src/tezos_raw_protocol_007_PsDELPH1/script_interpreter.ml.html
Source file script_interpreter.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
(*****************************************************************************) (* *) (* Open Source License *) (* Copyright (c) 2018 Dynamic Ledger Solutions, Inc. <contact@tezos.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) open Alpha_context open Script open Script_typed_ir open Script_ir_translator open Misc.Syntax (* ---- Run-time errors -----------------------------------------------------*) type execution_trace = (Script.location * Gas.t * (Script.expr * string option) list) list type error += | Reject of Script.location * Script.expr * execution_trace option type error += Overflow of Script.location * execution_trace option type error += Runtime_contract_error : Contract.t * Script.expr -> error type error += Bad_contract_parameter of Contract.t (* `Permanent *) type error += Cannot_serialize_log type error += Cannot_serialize_failure type error += Cannot_serialize_storage type error += Michelson_too_many_recursive_calls let () = let open Data_encoding in let trace_encoding = list @@ obj3 (req "location" Script.location_encoding) (req "gas" Gas.encoding) (req "stack" (list (obj2 (req "item" Script.expr_encoding) (opt "annot" string)))) in (* Reject *) register_error_kind `Temporary ~id:"michelson_v1.script_rejected" ~title:"Script failed" ~description:"A FAILWITH instruction was reached" (obj3 (req "location" Script.location_encoding) (req "with" Script.expr_encoding) (opt "trace" trace_encoding)) (function Reject (loc, v, trace) -> Some (loc, v, trace) | _ -> None) (fun (loc, v, trace) -> Reject (loc, v, trace)) ; (* Overflow *) register_error_kind `Temporary ~id:"michelson_v1.script_overflow" ~title:"Script failed (overflow error)" ~description: "A FAIL instruction was reached due to the detection of an overflow" (obj2 (req "location" Script.location_encoding) (opt "trace" trace_encoding)) (function Overflow (loc, trace) -> Some (loc, trace) | _ -> None) (fun (loc, trace) -> Overflow (loc, trace)) ; (* Runtime contract error *) register_error_kind `Temporary ~id:"michelson_v1.runtime_error" ~title:"Script runtime error" ~description:"Toplevel error for all runtime script errors" (obj2 (req "contract_handle" Contract.encoding) (req "contract_code" Script.expr_encoding)) (function | Runtime_contract_error (contract, expr) -> Some (contract, expr) | _ -> None) (fun (contract, expr) -> Runtime_contract_error (contract, expr)) ; (* Bad contract parameter *) register_error_kind `Permanent ~id:"michelson_v1.bad_contract_parameter" ~title:"Contract supplied an invalid parameter" ~description: "Either no parameter was supplied to a contract with a non-unit \ parameter type, a non-unit parameter was passed to an account, or a \ parameter was supplied of the wrong type" Data_encoding.(obj1 (req "contract" Contract.encoding)) (function Bad_contract_parameter c -> Some c | _ -> None) (fun c -> Bad_contract_parameter c) ; (* Cannot serialize log *) register_error_kind `Temporary ~id:"michelson_v1.cannot_serialize_log" ~title:"Not enough gas to serialize execution trace" ~description: "Execution trace with stacks was to big to be serialized with the \ provided gas" Data_encoding.empty (function Cannot_serialize_log -> Some () | _ -> None) (fun () -> Cannot_serialize_log) ; (* Cannot serialize failure *) register_error_kind `Temporary ~id:"michelson_v1.cannot_serialize_failure" ~title:"Not enough gas to serialize argument of FAILWITH" ~description: "Argument of FAILWITH was too big to be serialized with the provided gas" Data_encoding.empty (function Cannot_serialize_failure -> Some () | _ -> None) (fun () -> Cannot_serialize_failure) ; (* Cannot serialize storage *) register_error_kind `Temporary ~id:"michelson_v1.cannot_serialize_storage" ~title:"Not enough gas to serialize execution storage" ~description: "The returned storage was too big to be serialized with the provided gas" Data_encoding.empty (function Cannot_serialize_storage -> Some () | _ -> None) (fun () -> Cannot_serialize_storage) ; (* Michelson Stack Overflow *) register_error_kind `Permanent ~id:"michelson_v1.interp_too_many_recursive_calls" ~title:"Too many recursive calls during interpretation" ~description: "Too many recursive calls were needed for interpretation of a Michelson \ script" Data_encoding.empty (function Michelson_too_many_recursive_calls -> Some () | _ -> None) (fun () -> Michelson_too_many_recursive_calls) (* ---- interpreter ---------------------------------------------------------*) let unparse_stack ctxt (stack, stack_ty) = (* We drop the gas limit as this function is only used for debugging/errors. *) let ctxt = Gas.set_unlimited ctxt in let rec unparse_stack : type a. a stack_ty * a -> (Script.expr * string option) list tzresult Lwt.t = function | (Empty_t, ()) -> return_nil | (Item_t (ty, rest_ty, annot), (v, rest)) -> unparse_data ctxt Readable ty v >>=? fun (data, _ctxt) -> unparse_stack (rest_ty, rest) >|=? fun rest -> let annot = match Script_ir_annot.unparse_var_annot annot with | [] -> None | [a] -> Some a | _ -> assert false in let data = Micheline.strip_locations data in (data, annot) :: rest in unparse_stack (stack_ty, stack) module Interp_costs = Michelson_v1_gas.Cost_of.Interpreter let rec interp_stack_prefix_preserving_operation : type fbef bef faft aft result. (fbef -> (faft * result) tzresult Lwt.t) -> (fbef, faft, bef, aft) stack_prefix_preservation_witness -> bef -> (aft * result) tzresult Lwt.t = fun f n stk -> match (n, stk) with | ( Prefix (Prefix (Prefix (Prefix (Prefix (Prefix (Prefix (Prefix (Prefix (Prefix (Prefix (Prefix (Prefix (Prefix (Prefix (Prefix n))))))))))))))), ( v0, ( v1, ( v2, ( v3, ( v4, ( v5, ( v6, (v7, (v8, (v9, (va, (vb, (vc, (vd, (ve, (vf, rest))))))))) ) ) ) ) ) ) ) ) -> interp_stack_prefix_preserving_operation f n rest >|=? fun (rest', result) -> ( ( v0, ( v1, ( v2, ( v3, ( v4, ( v5, ( v6, ( v7, (v8, (v9, (va, (vb, (vc, (vd, (ve, (vf, rest')))))))) ) ) ) ) ) ) ) ), result ) | (Prefix (Prefix (Prefix (Prefix n))), (v0, (v1, (v2, (v3, rest))))) -> interp_stack_prefix_preserving_operation f n rest >|=? fun (rest', result) -> ((v0, (v1, (v2, (v3, rest')))), result) | (Prefix n, (v, rest)) -> interp_stack_prefix_preserving_operation f n rest >|=? fun (rest', result) -> ((v, rest'), result) | (Rest, v) -> f v type step_constants = { source : Contract.t; payer : Contract.t; self : Contract.t; amount : Tez.t; chain_id : Chain_id.t; } type log_element = | Log : context * Script.location * 'a * 'a Script_typed_ir.stack_ty -> log_element module type STEP_LOGGER = sig val log_interp : context -> ('bef, 'aft) Script_typed_ir.descr -> 'bef -> unit val log_entry : context -> ('bef, 'aft) Script_typed_ir.descr -> 'bef -> unit val log_exit : context -> ('bef, 'aft) Script_typed_ir.descr -> 'aft -> unit val get_log : unit -> execution_trace option tzresult Lwt.t end type logger = (module STEP_LOGGER) module Trace_logger () : STEP_LOGGER = struct let log : log_element list ref = ref [] let log_interp ctxt descr stack = log := Log (ctxt, descr.loc, stack, descr.bef) :: !log let log_entry _ctxt _descr _stack = () let log_exit ctxt descr stack = log := Log (ctxt, descr.loc, stack, descr.aft) :: !log let get_log () = map_s (fun (Log (ctxt, loc, stack, stack_ty)) -> trace Cannot_serialize_log (unparse_stack ctxt (stack, stack_ty)) >>=? fun stack -> return (loc, Gas.level ctxt, stack)) !log >>=? fun res -> return (Some (List.rev res)) end module No_trace : STEP_LOGGER = struct let log_interp _ctxt _descr _stack = () let log_entry _ctxt _descr _stack = () let log_exit _ctxt _descr _stack = () let get_log () = return_none end let cost_of_instr : type b a. (b, a) descr -> b -> Gas.cost = fun descr stack -> match (descr.instr, stack) with | (Drop, _) -> Interp_costs.drop | (Dup, _) -> Interp_costs.dup | (Swap, _) -> Interp_costs.swap | (Const _, _) -> Interp_costs.push | (Cons_some, _) -> Interp_costs.cons_some | (Cons_none _, _) -> Interp_costs.cons_none | (If_none _, _) -> Interp_costs.if_none | (Cons_pair, _) -> Interp_costs.cons_pair | (Car, _) -> Interp_costs.car | (Cdr, _) -> Interp_costs.cdr | (Cons_left, _) -> Interp_costs.cons_left | (Cons_right, _) -> Interp_costs.cons_right | (If_left _, _) -> Interp_costs.if_left | (Cons_list, _) -> Interp_costs.cons_list | (Nil, _) -> Interp_costs.nil | (If_cons _, _) -> Interp_costs.if_cons | (List_map _, (list, _)) -> Interp_costs.list_map list | (List_size, _) -> Interp_costs.list_size | (List_iter _, (l, _)) -> Interp_costs.list_iter l | (Empty_set _, _) -> Interp_costs.empty_set | (Set_iter _, (set, _)) -> Interp_costs.set_iter set | (Set_mem, (v, (set, _))) -> Interp_costs.set_mem v set | (Set_update, (v, (_, (set, _)))) -> Interp_costs.set_update v set | (Set_size, _) -> Interp_costs.set_size | (Empty_map _, _) -> Interp_costs.empty_map | (Map_map _, (map, _)) -> Interp_costs.map_map map | (Map_iter _, (map, _)) -> Interp_costs.map_iter map | (Map_mem, (v, (map, _rest))) -> Interp_costs.map_mem v map | (Map_get, (v, (map, _rest))) -> Interp_costs.map_get v map | (Map_update, (k, (_, (map, _)))) -> Interp_costs.map_update k map | (Map_size, _) -> Interp_costs.map_size | (Empty_big_map _, _) -> Interp_costs.empty_map | (Big_map_mem, (key, (map, _))) -> Interp_costs.map_mem key map.diff | (Big_map_get, (key, (map, _))) -> Interp_costs.map_get key map.diff | (Big_map_update, (key, (_, (map, _)))) -> Interp_costs.map_update key map.diff | (Add_seconds_to_timestamp, (n, (t, _))) -> Interp_costs.add_seconds_timestamp n t | (Add_timestamp_to_seconds, (t, (n, _))) -> Interp_costs.add_seconds_timestamp n t | (Sub_timestamp_seconds, (t, (n, _))) -> Interp_costs.sub_seconds_timestamp n t | (Diff_timestamps, (t1, (t2, _))) -> Interp_costs.diff_timestamps t1 t2 | (Concat_string_pair, (x, (y, _))) -> Interp_costs.concat_string_pair x y | (Concat_string, (ss, _)) -> Interp_costs.concat_string_precheck ss | (Slice_string, (_offset, (_length, (s, _)))) -> Interp_costs.slice_string s | (String_size, _) -> Interp_costs.string_size | (Concat_bytes_pair, (x, (y, _))) -> Interp_costs.concat_bytes_pair x y | (Concat_bytes, (ss, _)) -> Interp_costs.concat_string_precheck ss | (Slice_bytes, (_offset, (_length, (s, _)))) -> Interp_costs.slice_bytes s | (Bytes_size, _) -> Interp_costs.bytes_size | (Add_tez, _) -> Interp_costs.add_tez | (Sub_tez, _) -> Interp_costs.sub_tez | (Mul_teznat, (_, (n, _))) -> Interp_costs.mul_teznat n | (Mul_nattez, (n, (_, _))) -> Interp_costs.mul_teznat n | (Or, _) -> Interp_costs.bool_or | (And, _) -> Interp_costs.bool_and | (Xor, _) -> Interp_costs.bool_xor | (Not, _) -> Interp_costs.bool_not | (Is_nat, _) -> Interp_costs.is_nat | (Abs_int, (x, _)) -> Interp_costs.abs_int x | (Int_nat, _) -> Interp_costs.int_nat | (Neg_int, (x, _)) -> Interp_costs.neg_int x | (Neg_nat, (x, _)) -> Interp_costs.neg_nat x | (Add_intint, (x, (y, _))) -> Interp_costs.add_bigint x y | (Add_intnat, (x, (y, _))) -> Interp_costs.add_bigint x y | (Add_natint, (x, (y, _))) -> Interp_costs.add_bigint x y | (Add_natnat, (x, (y, _))) -> Interp_costs.add_bigint x y | (Sub_int, (x, (y, _))) -> Interp_costs.sub_bigint x y | (Mul_intint, (x, (y, _))) -> Interp_costs.mul_bigint x y | (Mul_intnat, (x, (y, _))) -> Interp_costs.mul_bigint x y | (Mul_natint, (x, (y, _))) -> Interp_costs.mul_bigint x y | (Mul_natnat, (x, (y, _))) -> Interp_costs.mul_bigint x y | (Ediv_teznat, (x, (y, _))) -> Interp_costs.ediv_teznat x y | (Ediv_tez, _) -> Interp_costs.ediv_tez | (Ediv_intint, (x, (y, _))) -> Interp_costs.ediv_bigint x y | (Ediv_intnat, (x, (y, _))) -> Interp_costs.ediv_bigint x y | (Ediv_natint, (x, (y, _))) -> Interp_costs.ediv_bigint x y | (Ediv_natnat, (x, (y, _))) -> Interp_costs.ediv_bigint x y | (Lsl_nat, (x, _)) -> Interp_costs.lsl_nat x | (Lsr_nat, (x, _)) -> Interp_costs.lsr_nat x | (Or_nat, (x, (y, _))) -> Interp_costs.or_nat x y | (And_nat, (x, (y, _))) -> Interp_costs.and_nat x y | (And_int_nat, (x, (y, _))) -> Interp_costs.and_nat x y | (Xor_nat, (x, (y, _))) -> Interp_costs.xor_nat x y | (Not_int, (x, _)) -> Interp_costs.not_nat x | (Not_nat, (x, _)) -> Interp_costs.not_nat x | (Seq _, _) -> Interp_costs.seq | (If _, _) -> Interp_costs.if_ | (Loop _, _) -> Interp_costs.loop | (Loop_left _, _) -> Interp_costs.loop_left | (Dip _, _) -> Interp_costs.dip | (Exec, _) -> Interp_costs.exec | (Apply _, _) -> Interp_costs.apply | (Lambda _, _) -> Interp_costs.push | (Failwith _, _) -> Gas.free | (Nop, _) -> Interp_costs.nop | (Compare ty, (a, (b, _))) -> Interp_costs.compare ty a b | (Eq, _) -> Interp_costs.neq | (Neq, _) -> Interp_costs.neq | (Lt, _) -> Interp_costs.neq | (Le, _) -> Interp_costs.neq | (Gt, _) -> Interp_costs.neq | (Ge, _) -> Interp_costs.neq | (Pack _, _) -> Gas.free | (Unpack _, _) -> Gas.free | (Address, _) -> Interp_costs.address | (Contract _, _) -> Interp_costs.contract | (Transfer_tokens, _) -> Interp_costs.transfer_tokens | (Implicit_account, _) -> Interp_costs.implicit_account | (Create_contract _, _) -> Interp_costs.create_contract | (Set_delegate, _) -> Interp_costs.set_delegate | (Balance, _) -> Interp_costs.balance | (Now, _) -> Interp_costs.now | (Check_signature, (key, (_, (message, _)))) -> Interp_costs.check_signature key message | (Hash_key, (pk, _)) -> Interp_costs.hash_key pk | (Blake2b, (bytes, _)) -> Interp_costs.blake2b bytes | (Sha256, (bytes, _)) -> Interp_costs.sha256 bytes | (Sha512, (bytes, _)) -> Interp_costs.sha512 bytes | (Source, _) -> Interp_costs.source | (Sender, _) -> Interp_costs.source | (Self _, _) -> Interp_costs.self | (Amount, _) -> Interp_costs.amount | (Dig (n, _), _) -> Interp_costs.dign n | (Dug (n, _), _) -> Interp_costs.dugn n | (Dipn (n, _, _), _) -> Interp_costs.dipn n | (Dropn (n, _), _) -> Interp_costs.dropn n | (ChainId, _) -> Interp_costs.chain_id | (Create_account, _) -> Interp_costs.create_contract | (Create_contract_2 _, _) -> Interp_costs.create_contract | (Steps_to_quota, _) -> Interp_costs.push let rec step_bounded : type b a. logger -> stack_depth:int -> context -> step_constants -> (b, a) descr -> b -> (a * context) tzresult Lwt.t = fun logger ~stack_depth ctxt step_constants ({instr; loc; _} as descr) stack -> let gas = cost_of_instr descr stack in Gas.consume ctxt gas >>?= fun ctxt -> let module Log = (val logger) in Log.log_entry ctxt descr stack ; let logged_return : a * context -> (a * context) tzresult Lwt.t = fun (ret, ctxt) -> Log.log_exit ctxt descr ret ; return (ret, ctxt) in let non_terminal_recursion ~ctxt ?(stack_depth = stack_depth + 1) descr stack = if Compare.Int.(stack_depth >= 10_000) then fail Michelson_too_many_recursive_calls else step_bounded logger ~stack_depth ctxt step_constants descr stack in match (instr, stack) with (* stack ops *) | (Drop, (_, rest)) -> logged_return (rest, ctxt) | (Dup, (v, rest)) -> logged_return ((v, (v, rest)), ctxt) | (Swap, (vi, (vo, rest))) -> logged_return ((vo, (vi, rest)), ctxt) | (Const v, rest) -> logged_return ((v, rest), ctxt) (* options *) | (Cons_some, (v, rest)) -> logged_return ((Some v, rest), ctxt) | (Cons_none _, rest) -> logged_return ((None, rest), ctxt) | (If_none (bt, _), (None, rest)) -> step_bounded logger ~stack_depth ctxt step_constants bt rest | (If_none (_, bf), (Some v, rest)) -> step_bounded logger ~stack_depth ctxt step_constants bf (v, rest) (* pairs *) | (Cons_pair, (a, (b, rest))) -> logged_return (((a, b), rest), ctxt) | (Car, ((a, _), rest)) -> logged_return ((a, rest), ctxt) | (Cdr, ((_, b), rest)) -> logged_return ((b, rest), ctxt) (* unions *) | (Cons_left, (v, rest)) -> logged_return ((L v, rest), ctxt) | (Cons_right, (v, rest)) -> logged_return ((R v, rest), ctxt) | (If_left (bt, _), (L v, rest)) -> step_bounded logger ~stack_depth ctxt step_constants bt (v, rest) | (If_left (_, bf), (R v, rest)) -> step_bounded logger ~stack_depth ctxt step_constants bf (v, rest) (* lists *) | (Cons_list, (hd, (tl, rest))) -> logged_return ((list_cons hd tl, rest), ctxt) | (Nil, rest) -> logged_return ((list_empty, rest), ctxt) | (If_cons (_, bf), ({elements = []; _}, rest)) -> step_bounded logger ~stack_depth ctxt step_constants bf rest | (If_cons (bt, _), ({elements = hd :: tl; length}, rest)) -> let tl = {elements = tl; length = length - 1} in step_bounded logger ~stack_depth ctxt step_constants bt (hd, (tl, rest)) | (List_map body, (list, rest)) -> let rec loop rest ctxt l acc = match l with | [] -> let result = {elements = List.rev acc; length = list.length} in return ((result, rest), ctxt) | hd :: tl -> non_terminal_recursion ~ctxt body (hd, rest) >>=? fun ((hd, rest), ctxt) -> loop rest ctxt tl (hd :: acc) in loop rest ctxt list.elements [] >>=? fun (res, ctxt) -> logged_return (res, ctxt) | (List_size, (list, rest)) -> logged_return ((Script_int.(abs (of_int list.length)), rest), ctxt) | (List_iter body, (l, init)) -> let rec loop ctxt l stack = match l with | [] -> return (stack, ctxt) | hd :: tl -> non_terminal_recursion ~ctxt body (hd, stack) >>=? fun (stack, ctxt) -> loop ctxt tl stack in loop ctxt l.elements init >>=? fun (res, ctxt) -> logged_return (res, ctxt) (* sets *) | (Empty_set t, rest) -> logged_return ((empty_set t, rest), ctxt) | (Set_iter body, (set, init)) -> let l = List.rev (set_fold (fun e acc -> e :: acc) set []) in let rec loop ctxt l stack = match l with | [] -> return (stack, ctxt) | hd :: tl -> non_terminal_recursion ~ctxt body (hd, stack) >>=? fun (stack, ctxt) -> loop ctxt tl stack in loop ctxt l init >>=? fun (res, ctxt) -> logged_return (res, ctxt) | (Set_mem, (v, (set, rest))) -> logged_return ((set_mem v set, rest), ctxt) | (Set_update, (v, (presence, (set, rest)))) -> logged_return ((set_update v presence set, rest), ctxt) | (Set_size, (set, rest)) -> logged_return ((set_size set, rest), ctxt) (* maps *) | (Empty_map (t, _), rest) -> logged_return ((empty_map t, rest), ctxt) | (Map_map body, (map, rest)) -> let l = List.rev (map_fold (fun k v acc -> (k, v) :: acc) map []) in let rec loop rest ctxt l acc = match l with | [] -> return ((acc, rest), ctxt) | ((k, _) as hd) :: tl -> non_terminal_recursion ~ctxt body (hd, rest) >>=? fun ((hd, rest), ctxt) -> loop rest ctxt tl (map_update k (Some hd) acc) in loop rest ctxt l (empty_map (map_key_ty map)) >>=? fun (res, ctxt) -> logged_return (res, ctxt) | (Map_iter body, (map, init)) -> let l = List.rev (map_fold (fun k v acc -> (k, v) :: acc) map []) in let rec loop ctxt l stack = match l with | [] -> return (stack, ctxt) | hd :: tl -> non_terminal_recursion ~ctxt body (hd, stack) >>=? fun (stack, ctxt) -> loop ctxt tl stack in loop ctxt l init >>=? fun (res, ctxt) -> logged_return (res, ctxt) | (Map_mem, (v, (map, rest))) -> logged_return ((map_mem v map, rest), ctxt) | (Map_get, (v, (map, rest))) -> logged_return ((map_get v map, rest), ctxt) | (Map_update, (k, (v, (map, rest)))) -> logged_return ((map_update k v map, rest), ctxt) | (Map_size, (map, rest)) -> logged_return ((map_size map, rest), ctxt) (* Big map operations *) | (Empty_big_map (tk, tv), rest) -> logged_return ((Script_ir_translator.empty_big_map tk tv, rest), ctxt) | (Big_map_mem, (key, (map, rest))) -> Script_ir_translator.big_map_mem ctxt key map >>=? fun (res, ctxt) -> logged_return ((res, rest), ctxt) | (Big_map_get, (key, (map, rest))) -> Script_ir_translator.big_map_get ctxt key map >>=? fun (res, ctxt) -> logged_return ((res, rest), ctxt) | (Big_map_update, (key, (maybe_value, (map, rest)))) -> let big_map = Script_ir_translator.big_map_update key maybe_value map in logged_return ((big_map, rest), ctxt) (* timestamp operations *) | (Add_seconds_to_timestamp, (n, (t, rest))) -> let result = Script_timestamp.add_delta t n in logged_return ((result, rest), ctxt) | (Add_timestamp_to_seconds, (t, (n, rest))) -> let result = Script_timestamp.add_delta t n in logged_return ((result, rest), ctxt) | (Sub_timestamp_seconds, (t, (s, rest))) -> let result = Script_timestamp.sub_delta t s in logged_return ((result, rest), ctxt) | (Diff_timestamps, (t1, (t2, rest))) -> let result = Script_timestamp.diff t1 t2 in logged_return ((result, rest), ctxt) (* string operations *) | (Concat_string_pair, (x, (y, rest))) -> let s = String.concat "" [x; y] in logged_return ((s, rest), ctxt) | (Concat_string, (ss, rest)) -> (* The cost for this fold_left has been paid upfront *) let total_length = List.fold_left (fun acc s -> Z.add acc (Z.of_int (String.length s))) Z.zero ss.elements in Gas.consume ctxt (Interp_costs.concat_string total_length) >>?= fun ctxt -> let s = String.concat "" ss.elements in logged_return ((s, rest), ctxt) | (Slice_string, (offset, (length, (s, rest)))) -> let s_length = Z.of_int (String.length s) in let offset = Script_int.to_zint offset in let length = Script_int.to_zint length in if Compare.Z.(offset < s_length && Z.add offset length <= s_length) then logged_return ( (Some (String.sub s (Z.to_int offset) (Z.to_int length)), rest), ctxt ) else logged_return ((None, rest), ctxt) | (String_size, (s, rest)) -> logged_return ((Script_int.(abs (of_int (String.length s))), rest), ctxt) (* bytes operations *) | (Concat_bytes_pair, (x, (y, rest))) -> let s = MBytes.concat "" [x; y] in logged_return ((s, rest), ctxt) | (Concat_bytes, (ss, rest)) -> (* The cost for this fold_left has been paid upfront *) let total_length = List.fold_left (fun acc s -> Z.add acc (Z.of_int (MBytes.length s))) Z.zero ss.elements in Gas.consume ctxt (Interp_costs.concat_string total_length) >>?= fun ctxt -> let s = MBytes.concat "" ss.elements in logged_return ((s, rest), ctxt) | (Slice_bytes, (offset, (length, (s, rest)))) -> let s_length = Z.of_int (MBytes.length s) in let offset = Script_int.to_zint offset in let length = Script_int.to_zint length in if Compare.Z.(offset < s_length && Z.add offset length <= s_length) then logged_return ( (Some (MBytes.sub s (Z.to_int offset) (Z.to_int length)), rest), ctxt ) else logged_return ((None, rest), ctxt) | (Bytes_size, (s, rest)) -> logged_return ((Script_int.(abs (of_int (MBytes.length s))), rest), ctxt) (* currency operations *) | (Add_tez, (x, (y, rest))) -> Tez.(x +? y) >>?= fun res -> logged_return ((res, rest), ctxt) | (Sub_tez, (x, (y, rest))) -> Tez.(x -? y) >>?= fun res -> logged_return ((res, rest), ctxt) | (Mul_teznat, (x, (y, rest))) -> ( match Script_int.to_int64 y with | None -> Log.get_log () >>=? fun log -> fail (Overflow (loc, log)) | Some y -> Tez.(x *? y) >>?= fun res -> logged_return ((res, rest), ctxt) ) | (Mul_nattez, (y, (x, rest))) -> ( match Script_int.to_int64 y with | None -> Log.get_log () >>=? fun log -> fail (Overflow (loc, log)) | Some y -> Tez.(x *? y) >>?= fun res -> logged_return ((res, rest), ctxt) ) (* boolean operations *) | (Or, (x, (y, rest))) -> logged_return ((x || y, rest), ctxt) | (And, (x, (y, rest))) -> logged_return ((x && y, rest), ctxt) | (Xor, (x, (y, rest))) -> logged_return ((Compare.Bool.(x <> y), rest), ctxt) | (Not, (x, rest)) -> logged_return ((not x, rest), ctxt) (* integer operations *) | (Is_nat, (x, rest)) -> logged_return ((Script_int.is_nat x, rest), ctxt) | (Abs_int, (x, rest)) -> logged_return ((Script_int.abs x, rest), ctxt) | (Int_nat, (x, rest)) -> logged_return ((Script_int.int x, rest), ctxt) | (Neg_int, (x, rest)) -> logged_return ((Script_int.neg x, rest), ctxt) | (Neg_nat, (x, rest)) -> logged_return ((Script_int.neg x, rest), ctxt) | (Add_intint, (x, (y, rest))) -> logged_return ((Script_int.add x y, rest), ctxt) | (Add_intnat, (x, (y, rest))) -> logged_return ((Script_int.add x y, rest), ctxt) | (Add_natint, (x, (y, rest))) -> logged_return ((Script_int.add x y, rest), ctxt) | (Add_natnat, (x, (y, rest))) -> logged_return ((Script_int.add_n x y, rest), ctxt) | (Sub_int, (x, (y, rest))) -> logged_return ((Script_int.sub x y, rest), ctxt) | (Mul_intint, (x, (y, rest))) -> logged_return ((Script_int.mul x y, rest), ctxt) | (Mul_intnat, (x, (y, rest))) -> logged_return ((Script_int.mul x y, rest), ctxt) | (Mul_natint, (x, (y, rest))) -> logged_return ((Script_int.mul x y, rest), ctxt) | (Mul_natnat, (x, (y, rest))) -> logged_return ((Script_int.mul_n x y, rest), ctxt) | (Ediv_teznat, (x, (y, rest))) -> let x = Script_int.of_int64 (Tez.to_mutez x) in let result = match Script_int.ediv x y with | None -> None | Some (q, r) -> ( match (Script_int.to_int64 q, Script_int.to_int64 r) with | (Some q, Some r) -> ( match (Tez.of_mutez q, Tez.of_mutez r) with | (Some q, Some r) -> Some (q, r) (* Cannot overflow *) | _ -> assert false ) (* Cannot overflow *) | _ -> assert false ) in logged_return ((result, rest), ctxt) | (Ediv_tez, (x, (y, rest))) -> let x = Script_int.abs (Script_int.of_int64 (Tez.to_mutez x)) in let y = Script_int.abs (Script_int.of_int64 (Tez.to_mutez y)) in let result = match Script_int.ediv_n x y with | None -> None | Some (q, r) -> ( match Script_int.to_int64 r with | None -> assert false (* Cannot overflow *) | Some r -> ( match Tez.of_mutez r with | None -> assert false (* Cannot overflow *) | Some r -> Some (q, r) ) ) in logged_return ((result, rest), ctxt) | (Ediv_intint, (x, (y, rest))) -> logged_return ((Script_int.ediv x y, rest), ctxt) | (Ediv_intnat, (x, (y, rest))) -> logged_return ((Script_int.ediv x y, rest), ctxt) | (Ediv_natint, (x, (y, rest))) -> logged_return ((Script_int.ediv x y, rest), ctxt) | (Ediv_natnat, (x, (y, rest))) -> logged_return ((Script_int.ediv_n x y, rest), ctxt) | (Lsl_nat, (x, (y, rest))) -> ( match Script_int.shift_left_n x y with | None -> Log.get_log () >>=? fun log -> fail (Overflow (loc, log)) | Some x -> logged_return ((x, rest), ctxt) ) | (Lsr_nat, (x, (y, rest))) -> ( match Script_int.shift_right_n x y with | None -> Log.get_log () >>=? fun log -> fail (Overflow (loc, log)) | Some r -> logged_return ((r, rest), ctxt) ) | (Or_nat, (x, (y, rest))) -> logged_return ((Script_int.logor x y, rest), ctxt) | (And_nat, (x, (y, rest))) -> logged_return ((Script_int.logand x y, rest), ctxt) | (And_int_nat, (x, (y, rest))) -> logged_return ((Script_int.logand x y, rest), ctxt) | (Xor_nat, (x, (y, rest))) -> logged_return ((Script_int.logxor x y, rest), ctxt) | (Not_int, (x, rest)) -> logged_return ((Script_int.lognot x, rest), ctxt) | (Not_nat, (x, rest)) -> logged_return ((Script_int.lognot x, rest), ctxt) (* control *) | (Seq (hd, tl), stack) -> non_terminal_recursion ~ctxt hd stack >>=? fun (trans, ctxt) -> step_bounded logger ~stack_depth ctxt step_constants tl trans | (If (bt, _), (true, rest)) -> step_bounded logger ~stack_depth ctxt step_constants bt rest | (If (_, bf), (false, rest)) -> step_bounded logger ~stack_depth ctxt step_constants bf rest | (Loop body, (true, rest)) -> non_terminal_recursion ~ctxt body rest >>=? fun (trans, ctxt) -> step_bounded logger ~stack_depth ctxt step_constants descr trans | (Loop _, (false, rest)) -> logged_return (rest, ctxt) | (Loop_left body, (L v, rest)) -> non_terminal_recursion ~ctxt body (v, rest) >>=? fun (trans, ctxt) -> step_bounded logger ~stack_depth ctxt step_constants descr trans | (Loop_left _, (R v, rest)) -> logged_return ((v, rest), ctxt) | (Dip b, (ign, rest)) -> non_terminal_recursion ~ctxt b rest >>=? fun (res, ctxt) -> logged_return ((ign, res), ctxt) | (Exec, (arg, (Lam (code, _), rest))) -> Log.log_interp ctxt code (arg, ()) ; non_terminal_recursion ~ctxt code (arg, ()) >>=? fun ((res, ()), ctxt) -> logged_return ((res, rest), ctxt) | (Apply capture_ty, (capture, (lam, rest))) -> ( let (Lam (descr, expr)) = lam in let (Item_t (full_arg_ty, _, _)) = descr.bef in unparse_data ctxt Optimized capture_ty capture >>=? fun (const_expr, ctxt) -> unparse_ty ctxt capture_ty >>?= fun (ty_expr, ctxt) -> match full_arg_ty with | Pair_t ((capture_ty, _, _), (arg_ty, _, _), _) -> let arg_stack_ty = Item_t (arg_ty, Empty_t, None) in let const_descr = ( { loc = descr.loc; bef = arg_stack_ty; aft = Item_t (capture_ty, arg_stack_ty, None); instr = Const capture; } : (_, _) descr ) in let pair_descr = ( { loc = descr.loc; bef = Item_t (capture_ty, arg_stack_ty, None); aft = Item_t (full_arg_ty, Empty_t, None); instr = Cons_pair; } : (_, _) descr ) in let seq_descr = ( { loc = descr.loc; bef = arg_stack_ty; aft = Item_t (full_arg_ty, Empty_t, None); instr = Seq (const_descr, pair_descr); } : (_, _) descr ) in let full_descr = ( { loc = descr.loc; bef = arg_stack_ty; aft = descr.aft; instr = Seq (seq_descr, descr); } : (_, _) descr ) in let full_expr = Micheline.Seq ( 0, [ Prim (0, I_PUSH, [ty_expr; const_expr], []); Prim (0, I_PAIR, [], []); expr ] ) in let lam' = Lam (full_descr, full_expr) in logged_return ((lam', rest), ctxt) | _ -> assert false ) | (Lambda lam, rest) -> logged_return ((lam, rest), ctxt) | (Failwith tv, (v, _)) -> trace Cannot_serialize_failure (unparse_data ctxt Optimized tv v) >>=? fun (v, _ctxt) -> let v = Micheline.strip_locations v in Log.get_log () >>=? fun log -> fail (Reject (loc, v, log)) | (Nop, stack) -> logged_return (stack, ctxt) (* comparison *) | (Compare ty, (a, (b, rest))) -> logged_return ( ( Script_int.of_int @@ Script_ir_translator.compare_comparable ty a b, rest ), ctxt ) (* comparators *) | (Eq, (cmpres, rest)) -> let cmpres = Script_int.compare cmpres Script_int.zero in let cmpres = Compare.Int.(cmpres = 0) in logged_return ((cmpres, rest), ctxt) | (Neq, (cmpres, rest)) -> let cmpres = Script_int.compare cmpres Script_int.zero in let cmpres = Compare.Int.(cmpres <> 0) in logged_return ((cmpres, rest), ctxt) | (Lt, (cmpres, rest)) -> let cmpres = Script_int.compare cmpres Script_int.zero in let cmpres = Compare.Int.(cmpres < 0) in logged_return ((cmpres, rest), ctxt) | (Le, (cmpres, rest)) -> let cmpres = Script_int.compare cmpres Script_int.zero in let cmpres = Compare.Int.(cmpres <= 0) in logged_return ((cmpres, rest), ctxt) | (Gt, (cmpres, rest)) -> let cmpres = Script_int.compare cmpres Script_int.zero in let cmpres = Compare.Int.(cmpres > 0) in logged_return ((cmpres, rest), ctxt) | (Ge, (cmpres, rest)) -> let cmpres = Script_int.compare cmpres Script_int.zero in let cmpres = Compare.Int.(cmpres >= 0) in logged_return ((cmpres, rest), ctxt) (* packing *) | (Pack t, (value, rest)) -> Script_ir_translator.pack_data ctxt t value >>=? fun (bytes, ctxt) -> logged_return ((bytes, rest), ctxt) | (Unpack t, (bytes, rest)) -> Gas.check_enough ctxt (Script.serialized_cost bytes) >>?= fun () -> if Compare.Int.(MBytes.length bytes >= 1) && Compare.Int.(MBytes.get_uint8 bytes 0 = 0x05) then let bytes = MBytes.sub bytes 1 (MBytes.length bytes - 1) in match Data_encoding.Binary.of_bytes Script.expr_encoding bytes with | None -> Gas.consume ctxt (Interp_costs.unpack_failed bytes) >>?= fun ctxt -> logged_return ((None, rest), ctxt) | Some expr -> ( Gas.consume ctxt (Script.deserialized_cost expr) >>?= fun ctxt -> parse_data ctxt ~legacy:false t (Micheline.root expr) >>= function | Ok (value, ctxt) -> logged_return ((Some value, rest), ctxt) | Error _ignored -> Gas.consume ctxt (Interp_costs.unpack_failed bytes) >>?= fun ctxt -> logged_return ((None, rest), ctxt) ) else logged_return ((None, rest), ctxt) (* protocol *) | (Address, ((_, address), rest)) -> logged_return ((address, rest), ctxt) | (Contract (t, entrypoint), (contract, rest)) -> ( match (contract, entrypoint) with | ((contract, "default"), entrypoint) | ((contract, entrypoint), "default") -> Script_ir_translator.parse_contract_for_script ~legacy:false ctxt loc t contract ~entrypoint >>=? fun (ctxt, maybe_contract) -> logged_return ((maybe_contract, rest), ctxt) | _ -> logged_return ((None, rest), ctxt) ) | (Transfer_tokens, (p, (amount, ((tp, (destination, entrypoint)), rest)))) -> collect_big_maps ctxt tp p >>?= fun (to_duplicate, ctxt) -> let to_update = no_big_map_id in extract_big_map_diff ctxt Optimized tp p ~to_duplicate ~to_update ~temporary:true >>=? fun (p, big_map_diff, ctxt) -> unparse_data ctxt Optimized tp p >>=? fun (p, ctxt) -> Gas.consume ctxt (Script.strip_locations_cost p) >>?= fun ctxt -> let operation = Transaction { amount; destination; entrypoint; parameters = Script.lazy_expr (Micheline.strip_locations p); } in fresh_internal_nonce ctxt >>?= fun (ctxt, nonce) -> logged_return ( ( ( Internal_operation {source = step_constants.self; operation; nonce}, big_map_diff ), rest ), ctxt ) | (Create_account, (manager, (delegate, (_delegatable, (credit, rest))))) -> Contract.fresh_contract_from_current_nonce ctxt >>?= fun (ctxt, contract) -> (* store in optimized binary representation - as unparsed with [Optimized]. *) let manager_bytes = Data_encoding.Binary.to_bytes_exn Signature.Public_key_hash.encoding manager in let storage = Script_repr.lazy_expr @@ Micheline.strip_locations @@ Micheline.Bytes (0, manager_bytes) in let script = {code = Legacy_support.manager_script_code; storage} in let operation = Origination {credit; delegate; preorigination = Some contract; script} in Lwt.return (fresh_internal_nonce ctxt) >>=? fun (ctxt, nonce) -> logged_return ( ( ( Internal_operation {source = step_constants.self; operation; nonce}, None ), ((contract, "default"), rest) ), ctxt ) | (Implicit_account, (key, rest)) -> let contract = Contract.implicit_contract key in logged_return (((Unit_t None, (contract, "default")), rest), ctxt) | ( Create_contract (storage_type, param_type, Lam (_, code), root_name), (manager, (delegate, (spendable, (delegatable, (credit, (init, rest)))))) ) -> unparse_ty ctxt param_type >>?= fun (unparsed_param_type, ctxt) -> let unparsed_param_type = Script_ir_translator.add_field_annot root_name None unparsed_param_type in unparse_ty ctxt storage_type >>?= fun (unparsed_storage_type, ctxt) -> let code = Script.lazy_expr @@ Micheline.strip_locations (Seq ( 0, [ Prim (0, K_parameter, [unparsed_param_type], []); Prim (0, K_storage, [unparsed_storage_type], []); Prim (0, K_code, [code], []) ] )) in collect_big_maps ctxt storage_type init >>?= fun (to_duplicate, ctxt) -> let to_update = no_big_map_id in extract_big_map_diff ctxt Optimized storage_type init ~to_duplicate ~to_update ~temporary:true >>=? fun (init, big_map_diff, ctxt) -> unparse_data ctxt Optimized storage_type init >>=? fun (storage, ctxt) -> Gas.consume ctxt (Script.strip_locations_cost storage) >>?= fun ctxt -> let storage = Script.lazy_expr @@ Micheline.strip_locations storage in ( if spendable then Legacy_support.add_do ~manager_pkh:manager ~script_code:code ~script_storage:storage else if delegatable then Legacy_support.add_set_delegate ~manager_pkh:manager ~script_code:code ~script_storage:storage else if Legacy_support.has_default_entrypoint code then Legacy_support.add_root_entrypoint code >>=? fun code -> return (code, storage) else return (code, storage) ) >>=? fun (code, storage) -> Contract.fresh_contract_from_current_nonce ctxt >>?= fun (ctxt, contract) -> let operation = Origination { credit; delegate; preorigination = Some contract; script = {code; storage}; } in Lwt.return (fresh_internal_nonce ctxt) >>=? fun (ctxt, nonce) -> logged_return ( ( ( Internal_operation {source = step_constants.self; operation; nonce}, big_map_diff ), ((contract, "default"), rest) ), ctxt ) | ( Create_contract_2 (storage_type, param_type, Lam (_, code), root_name), (* Removed the instruction's arguments manager, spendable and delegatable *) (delegate, (credit, (init, rest))) ) -> unparse_ty ctxt param_type >>?= fun (unparsed_param_type, ctxt) -> let unparsed_param_type = Script_ir_translator.add_field_annot root_name None unparsed_param_type in unparse_ty ctxt storage_type >>?= fun (unparsed_storage_type, ctxt) -> let code = Micheline.strip_locations (Seq ( 0, [ Prim (0, K_parameter, [unparsed_param_type], []); Prim (0, K_storage, [unparsed_storage_type], []); Prim (0, K_code, [code], []) ] )) in collect_big_maps ctxt storage_type init >>?= fun (to_duplicate, ctxt) -> let to_update = no_big_map_id in extract_big_map_diff ctxt Optimized storage_type init ~to_duplicate ~to_update ~temporary:true >>=? fun (init, big_map_diff, ctxt) -> unparse_data ctxt Optimized storage_type init >>=? fun (storage, ctxt) -> Gas.consume ctxt (Script.strip_locations_cost storage) >>?= fun ctxt -> let storage = Micheline.strip_locations storage in Contract.fresh_contract_from_current_nonce ctxt >>?= fun (ctxt, contract) -> let operation = Origination { credit; delegate; preorigination = Some contract; script = { code = Script.lazy_expr code; storage = Script.lazy_expr storage; }; } in fresh_internal_nonce ctxt >>?= fun (ctxt, nonce) -> logged_return ( ( ( Internal_operation {source = step_constants.self; operation; nonce}, big_map_diff ), ((contract, "default"), rest) ), ctxt ) | (Set_delegate, (delegate, rest)) -> let operation = Delegation delegate in fresh_internal_nonce ctxt >>?= fun (ctxt, nonce) -> logged_return ( ( ( Internal_operation {source = step_constants.self; operation; nonce}, None ), rest ), ctxt ) | (Balance, rest) -> Contract.get_balance_carbonated ctxt step_constants.self >>=? fun (ctxt, balance) -> logged_return ((balance, rest), ctxt) | (Now, rest) -> let now = Script_timestamp.now ctxt in logged_return ((now, rest), ctxt) | (Check_signature, (key, (signature, (message, rest)))) -> let res = Signature.check key signature message in logged_return ((res, rest), ctxt) | (Hash_key, (key, rest)) -> logged_return ((Signature.Public_key.hash key, rest), ctxt) | (Blake2b, (bytes, rest)) -> let hash = Raw_hashes.blake2b bytes in logged_return ((hash, rest), ctxt) | (Sha256, (bytes, rest)) -> let hash = Raw_hashes.sha256 bytes in logged_return ((hash, rest), ctxt) | (Sha512, (bytes, rest)) -> let hash = Raw_hashes.sha512 bytes in logged_return ((hash, rest), ctxt) | (Steps_to_quota, rest) -> (* FIXME: to remove *) let steps = Z.zero in logged_return ((Script_int.(abs (of_zint steps)), rest), ctxt) | (Source, rest) -> logged_return (((step_constants.payer, "default"), rest), ctxt) | (Sender, rest) -> logged_return (((step_constants.source, "default"), rest), ctxt) | (Self (t, entrypoint), rest) -> logged_return (((t, (step_constants.self, entrypoint)), rest), ctxt) | (Amount, rest) -> logged_return ((step_constants.amount, rest), ctxt) | (Dig (_n, n'), stack) -> interp_stack_prefix_preserving_operation (fun (v, rest) -> return (rest, v)) n' stack >>=? fun (aft, x) -> logged_return ((x, aft), ctxt) | (Dug (_n, n'), (v, rest)) -> interp_stack_prefix_preserving_operation (fun stk -> return ((v, stk), ())) n' rest >>=? fun (aft, ()) -> logged_return (aft, ctxt) | (Dipn (n, n', b), stack) -> interp_stack_prefix_preserving_operation (fun stk -> non_terminal_recursion ~ctxt b stk (* This is a cheap upper bound of the number recursive calls to `interp_stack_prefix_preserving_operation`, which does ((n / 16) + log2 (n % 16)) iterations *) ~stack_depth:(stack_depth + 4 + (n / 16))) n' stack >>=? fun (aft, ctxt') -> logged_return (aft, ctxt') | (Dropn (_n, n'), stack) -> interp_stack_prefix_preserving_operation (fun stk -> return (stk, stk)) n' stack >>=? fun (_, rest) -> logged_return (rest, ctxt) | (ChainId, rest) -> logged_return ((step_constants.chain_id, rest), ctxt) let step : type b a. logger -> context -> step_constants -> (b, a) descr -> b -> (a * context) tzresult Lwt.t = step_bounded ~stack_depth:0 let interp : type p r. logger -> context -> step_constants -> (p, r) lambda -> p -> (r * context) tzresult Lwt.t = fun logger ctxt step_constants (Lam (code, _)) arg -> let stack = (arg, ()) in let module Log = (val logger) in Log.log_interp ctxt code stack ; step logger ctxt step_constants code stack >|=? fun ((ret, ()), ctxt) -> (ret, ctxt) (* ---- contract handling ---------------------------------------------------*) let execute logger ctxt mode step_constants ~entrypoint unparsed_script arg : ( Script.expr * packed_internal_operation list * context * Contract.big_map_diff option ) tzresult Lwt.t = parse_script ctxt unparsed_script ~legacy:true >>=? fun (Ex_script {code; arg_type; storage; storage_type; root_name}, ctxt) -> record_trace (Bad_contract_parameter step_constants.self) (find_entrypoint arg_type ~root_name entrypoint) >>?= fun (box, _) -> trace (Bad_contract_parameter step_constants.self) (parse_data ctxt ~legacy:false arg_type (box arg)) >>=? fun (arg, ctxt) -> Script.force_decode_in_context ctxt unparsed_script.code >>?= fun (script_code, ctxt) -> Script_ir_translator.collect_big_maps ctxt arg_type arg >>?= fun (to_duplicate, ctxt) -> Script_ir_translator.collect_big_maps ctxt storage_type storage >>?= fun (to_update, ctxt) -> trace (Runtime_contract_error (step_constants.self, script_code)) (interp logger ctxt step_constants code (arg, storage)) >>=? fun ((ops, storage), ctxt) -> Script_ir_translator.extract_big_map_diff ctxt mode ~temporary:false ~to_duplicate ~to_update storage_type storage >>=? fun (storage, big_map_diff, ctxt) -> trace Cannot_serialize_storage ( unparse_data ctxt mode storage_type storage >>=? fun (storage, ctxt) -> Lwt.return ( Gas.consume ctxt (Script.strip_locations_cost storage) >>? fun ctxt -> ok (Micheline.strip_locations storage, ctxt) ) ) >|=? fun (storage, ctxt) -> let (ops, op_diffs) = List.split ops.elements in let big_map_diff = match List.flatten (List.map (Option.unopt ~default:[]) (op_diffs @ [big_map_diff])) with | [] -> None | diff -> Some diff in (storage, ops, ctxt, big_map_diff) type execution_result = { ctxt : context; storage : Script.expr; big_map_diff : Contract.big_map_diff option; operations : packed_internal_operation list; } let trace ctxt mode step_constants ~script ~entrypoint ~parameter = let module Logger = Trace_logger () in let logger = (module Logger : STEP_LOGGER) in execute logger ctxt mode step_constants ~entrypoint script (Micheline.root parameter) >>=? fun (storage, operations, ctxt, big_map_diff) -> Logger.get_log () >|=? fun trace -> let trace = Option.unopt ~default:[] trace in ({ctxt; storage; big_map_diff; operations}, trace) let execute ctxt mode step_constants ~script ~entrypoint ~parameter = let logger = (module No_trace : STEP_LOGGER) in execute logger ctxt mode step_constants ~entrypoint script (Micheline.root parameter) >|=? fun (storage, operations, ctxt, big_map_diff) -> {ctxt; storage; big_map_diff; operations}
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>