package tezos-protocol-005-PsBabyM1
Tezos/Protocol: economic-protocol definition
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-17.3.tar.gz
sha256=7062cd57addd452852598a2214ade393130efa087b99068d53713bdf912b3680
sha512=08e4091144a03ce3c107fb91a66501bd8b65ca3278917c455a2eaac6df3e108ade63f6ab8340a4bb152d60f404326e464d0ec95d26cafe8e82f870465d24a5fc
doc/src/tezos-protocol-005-PsBabyM1.raw/script_interpreter.ml.html
Source file script_interpreter.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
(*****************************************************************************) (* *) (* Open Source License *) (* Copyright (c) 2018 Dynamic Ledger Solutions, Inc. <contact@tezos.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) open Alpha_context open Script open Script_typed_ir open Script_ir_translator (* ---- Run-time errors -----------------------------------------------------*) type execution_trace = (Script.location * Gas.t * (Script.expr * string option) list) list type error += Reject of Script.location * Script.expr * execution_trace option type error += Overflow of Script.location * execution_trace option type error += Runtime_contract_error : Contract.t * Script.expr -> error type error += Bad_contract_parameter of Contract.t (* `Permanent *) type error += Cannot_serialize_log type error += Cannot_serialize_failure type error += Cannot_serialize_storage let () = let open Data_encoding in let trace_encoding = (list @@ obj3 (req "location" Script.location_encoding) (req "gas" Gas.encoding) (req "stack" (list (obj2 (req "item" (Script.expr_encoding)) (opt "annot" string))))) in (* Reject *) register_error_kind `Temporary ~id:"michelson_v1.script_rejected" ~title: "Script failed" ~description: "A FAILWITH instruction was reached" (obj3 (req "location" Script.location_encoding) (req "with" Script.expr_encoding) (opt "trace" trace_encoding)) (function Reject (loc, v, trace) -> Some (loc, v, trace) | _ -> None) (fun (loc, v, trace) -> Reject (loc, v, trace)); (* Overflow *) register_error_kind `Temporary ~id:"michelson_v1.script_overflow" ~title: "Script failed (overflow error)" ~description: "A FAIL instruction was reached due to the detection of an overflow" (obj2 (req "location" Script.location_encoding) (opt "trace" trace_encoding)) (function Overflow (loc, trace) -> Some (loc, trace) | _ -> None) (fun (loc, trace) -> Overflow (loc, trace)); (* Runtime contract error *) register_error_kind `Temporary ~id:"michelson_v1.runtime_error" ~title: "Script runtime error" ~description: "Toplevel error for all runtime script errors" (obj2 (req "contract_handle" Contract.encoding) (req "contract_code" Script.expr_encoding)) (function | Runtime_contract_error (contract, expr) -> Some (contract, expr) | _ -> None) (fun (contract, expr) -> Runtime_contract_error (contract, expr)) ; (* Bad contract parameter *) register_error_kind `Permanent ~id:"michelson_v1.bad_contract_parameter" ~title:"Contract supplied an invalid parameter" ~description:"Either no parameter was supplied to a contract with \ a non-unit parameter type, a non-unit parameter was \ passed to an account, or a parameter was supplied of \ the wrong type" Data_encoding.(obj1 (req "contract" Contract.encoding)) (function Bad_contract_parameter c -> Some c | _ -> None) (fun c -> Bad_contract_parameter c) ; (* Cannot serialize log *) register_error_kind `Temporary ~id:"michelson_v1.cannot_serialize_log" ~title:"Not enough gas to serialize execution trace" ~description:"Execution trace with stacks was to big to be serialized with \ the provided gas" Data_encoding.empty (function Cannot_serialize_log -> Some () | _ -> None) (fun () -> Cannot_serialize_log) ; (* Cannot serialize failure *) register_error_kind `Temporary ~id:"michelson_v1.cannot_serialize_failure" ~title:"Not enough gas to serialize argument of FAILWITH" ~description:"Argument of FAILWITH was too big to be serialized with \ the provided gas" Data_encoding.empty (function Cannot_serialize_failure -> Some () | _ -> None) (fun () -> Cannot_serialize_failure) ; (* Cannot serialize storage *) register_error_kind `Temporary ~id:"michelson_v1.cannot_serialize_storage" ~title:"Not enough gas to serialize execution storage" ~description:"The returned storage was too big to be serialized with \ the provided gas" Data_encoding.empty (function Cannot_serialize_storage -> Some () | _ -> None) (fun () -> Cannot_serialize_storage) (* ---- interpreter ---------------------------------------------------------*) type 'tys stack = | Item : 'ty * 'rest stack -> ('ty * 'rest) stack | Empty : end_of_stack stack let unparse_stack ctxt (stack, stack_ty) = (* We drop the gas limit as this function is only used for debugging/errors. *) let ctxt = Gas.set_unlimited ctxt in let rec unparse_stack : type a. a stack * a stack_ty -> (Script.expr * string option) list tzresult Lwt.t = function | Empty, Empty_t -> return_nil | Item (v, rest), Item_t (ty, rest_ty, annot) -> unparse_data ctxt Readable ty v >>=? fun (data, _ctxt) -> unparse_stack (rest, rest_ty) >>=? fun rest -> let annot = match Script_ir_annot.unparse_var_annot annot with | [] -> None | [ a ] -> Some a | _ -> assert false in let data = Micheline.strip_locations data in return ((data, annot) :: rest) in unparse_stack (stack, stack_ty) module Interp_costs = Michelson_v1_gas.Cost_of.Interpreter let rec interp_stack_prefix_preserving_operation : type fbef bef faft aft result . (fbef stack -> (faft stack * result) tzresult Lwt.t) -> (fbef, faft, bef, aft) stack_prefix_preservation_witness -> bef stack -> (aft stack * result) tzresult Lwt.t = fun f n stk -> match n,stk with | Prefix (Prefix (Prefix (Prefix (Prefix (Prefix (Prefix (Prefix (Prefix (Prefix (Prefix (Prefix (Prefix (Prefix (Prefix (Prefix n))))))))))))))), Item (v0, Item (v1, Item (v2, Item (v3, Item (v4, Item (v5, Item (v6, Item (v7, Item (v8, Item (v9, Item (va, Item (vb, Item (vc, Item (vd, Item (ve, Item (vf, rest)))))))))))))))) -> interp_stack_prefix_preserving_operation f n rest >>=? fun (rest', result) -> return (Item (v0, Item (v1, Item (v2, Item (v3, Item (v4, Item (v5, Item (v6, Item (v7, Item (v8, Item (v9, Item (va, Item (vb, Item (vc, Item (vd, Item (ve, Item (vf, rest')))))))))))))))), result) | Prefix (Prefix (Prefix (Prefix n))), Item (v0, Item (v1, Item (v2, Item (v3, rest)))) -> interp_stack_prefix_preserving_operation f n rest >>=? fun (rest', result) -> return (Item (v0, Item (v1, Item (v2, Item (v3, rest')))), result) | Prefix n, Item (v, rest) -> interp_stack_prefix_preserving_operation f n rest >>=? fun (rest', result) -> return (Item (v, rest'), result) | Rest, v -> f v type step_constants = { source : Contract.t ; payer : Contract.t ; self : Contract.t ; amount : Tez.t ; chain_id : Chain_id.t } let rec step : type b a. (?log: execution_trace ref -> context -> step_constants -> (b, a) descr -> b stack -> (a stack * context) tzresult Lwt.t) = fun ?log ctxt step_constants ({ instr ; loc ; _ } as descr) stack -> Lwt.return (Gas.consume ctxt Interp_costs.cycle) >>=? fun ctxt -> let logged_return : type a b. (b, a) descr -> a stack * context -> (a stack * context) tzresult Lwt.t = fun descr (ret, ctxt) -> match log with | None -> return (ret, ctxt) | Some log -> trace Cannot_serialize_log (unparse_stack ctxt (ret, descr.aft)) >>=? fun stack -> log := (descr.loc, Gas.level ctxt, stack) :: !log ; return (ret, ctxt) in let get_log (log : execution_trace ref option) = Option.map ~f:(fun l -> List.rev !l) log in let consume_gas_terop : type ret arg1 arg2 arg3 rest. (_ * (_ * (_ * rest)), ret * rest) descr -> ((arg1 -> arg2 -> arg3 -> ret) * arg1 * arg2 * arg3) -> (arg1 -> arg2 -> arg3 -> Gas.cost) -> rest stack -> ((ret * rest) stack * context) tzresult Lwt.t = fun descr (op, x1, x2, x3) cost_func rest -> Lwt.return (Gas.consume ctxt (cost_func x1 x2 x3)) >>=? fun ctxt -> logged_return descr (Item (op x1 x2 x3, rest), ctxt) in let consume_gas_binop : type ret arg1 arg2 rest. (_ * (_ * rest), ret * rest) descr -> ((arg1 -> arg2 -> ret) * arg1 * arg2) -> (arg1 -> arg2 -> Gas.cost) -> rest stack -> context -> ((ret * rest) stack * context) tzresult Lwt.t = fun descr (op, x1, x2) cost_func rest ctxt -> Lwt.return (Gas.consume ctxt (cost_func x1 x2)) >>=? fun ctxt -> logged_return descr (Item (op x1 x2, rest), ctxt) in let consume_gas_unop : type ret arg rest. (_ * rest, ret * rest) descr -> ((arg -> ret) * arg) -> (arg -> Gas.cost) -> rest stack -> context -> ((ret * rest) stack * context) tzresult Lwt.t = fun descr (op, arg) cost_func rest ctxt -> Lwt.return (Gas.consume ctxt (cost_func arg)) >>=? fun ctxt -> logged_return descr (Item (op arg, rest), ctxt) in let logged_return : a stack * context -> (a stack * context) tzresult Lwt.t = logged_return descr in match instr, stack with (* stack ops *) | Drop, Item (_, rest) -> Lwt.return (Gas.consume ctxt Interp_costs.stack_op) >>=? fun ctxt -> logged_return (rest, ctxt) | Dup, Item (v, rest) -> Lwt.return (Gas.consume ctxt Interp_costs.stack_op) >>=? fun ctxt -> logged_return (Item (v, Item (v, rest)), ctxt) | Swap, Item (vi, Item (vo, rest)) -> Lwt.return (Gas.consume ctxt Interp_costs.stack_op) >>=? fun ctxt -> logged_return (Item (vo, Item (vi, rest)), ctxt) | Const v, rest -> Lwt.return (Gas.consume ctxt Interp_costs.push) >>=? fun ctxt -> logged_return (Item (v, rest), ctxt) (* options *) | Cons_some, Item (v, rest) -> Lwt.return (Gas.consume ctxt Interp_costs.wrap) >>=? fun ctxt -> logged_return (Item (Some v, rest), ctxt) | Cons_none _, rest -> Lwt.return (Gas.consume ctxt Interp_costs.variant_no_data) >>=? fun ctxt -> logged_return (Item (None, rest), ctxt) | If_none (bt, _), Item (None, rest) -> Lwt.return (Gas.consume ctxt Interp_costs.branch) >>=? fun ctxt -> step ?log ctxt step_constants bt rest | If_none (_, bf), Item (Some v, rest) -> Lwt.return (Gas.consume ctxt Interp_costs.branch) >>=? fun ctxt -> step ?log ctxt step_constants bf (Item (v, rest)) (* pairs *) | Cons_pair, Item (a, Item (b, rest)) -> Lwt.return (Gas.consume ctxt Interp_costs.pair) >>=? fun ctxt -> logged_return (Item ((a, b), rest), ctxt) (* Peephole optimization for UNPAIR *) | Seq ({instr=Dup;_}, {instr=Seq ({instr=Car;_}, {instr=Seq ({instr=Dip {instr=Cdr}}, {instr=Nop;_});_});_}), Item ((a, b), rest) -> Lwt.return (Gas.consume ctxt Interp_costs.pair_access) >>=? fun ctxt -> logged_return (Item (a, Item (b, rest)), ctxt) | Car, Item ((a, _), rest) -> Lwt.return (Gas.consume ctxt Interp_costs.pair_access) >>=? fun ctxt -> logged_return (Item (a, rest), ctxt) | Cdr, Item ((_, b), rest) -> Lwt.return (Gas.consume ctxt Interp_costs.pair_access) >>=? fun ctxt -> logged_return (Item (b, rest), ctxt) (* unions *) | Left, Item (v, rest) -> Lwt.return (Gas.consume ctxt Interp_costs.wrap) >>=? fun ctxt -> logged_return (Item (L v, rest), ctxt) | Right, Item (v, rest) -> Lwt.return (Gas.consume ctxt Interp_costs.wrap) >>=? fun ctxt -> logged_return (Item (R v, rest), ctxt) | If_left (bt, _), Item (L v, rest) -> Lwt.return (Gas.consume ctxt Interp_costs.branch) >>=? fun ctxt -> step ?log ctxt step_constants bt (Item (v, rest)) | If_left (_, bf), Item (R v, rest) -> Lwt.return (Gas.consume ctxt Interp_costs.branch) >>=? fun ctxt -> step ?log ctxt step_constants bf (Item (v, rest)) (* lists *) | Cons_list, Item (hd, Item (tl, rest)) -> Lwt.return (Gas.consume ctxt Interp_costs.cons) >>=? fun ctxt -> logged_return (Item (hd :: tl, rest), ctxt) | Nil, rest -> Lwt.return (Gas.consume ctxt Interp_costs.variant_no_data) >>=? fun ctxt -> logged_return (Item ([], rest), ctxt) | If_cons (_, bf), Item ([], rest) -> Lwt.return (Gas.consume ctxt Interp_costs.branch) >>=? fun ctxt -> step ?log ctxt step_constants bf rest | If_cons (bt, _), Item (hd :: tl, rest) -> Lwt.return (Gas.consume ctxt Interp_costs.branch) >>=? fun ctxt -> step ?log ctxt step_constants bt (Item (hd, Item (tl, rest))) | List_map body, Item (l, rest) -> let rec loop rest ctxt l acc = Lwt.return (Gas.consume ctxt Interp_costs.loop_map) >>=? fun ctxt -> match l with | [] -> return (Item (List.rev acc, rest), ctxt) | hd :: tl -> step ?log ctxt step_constants body (Item (hd, rest)) >>=? fun (Item (hd, rest), ctxt) -> loop rest ctxt tl (hd :: acc) in loop rest ctxt l [] >>=? fun (res, ctxt) -> logged_return (res, ctxt) | List_size, Item (list, rest) -> Lwt.return (List.fold_left (fun acc _ -> acc >>? fun (size, ctxt) -> Gas.consume ctxt Interp_costs.loop_size >>? fun ctxt -> ok (size + 1 (* FIXME: overflow *), ctxt)) (ok (0, ctxt)) list) >>=? fun (len, ctxt) -> logged_return (Item (Script_int.(abs (of_int len)), rest), ctxt) | List_iter body, Item (l, init) -> let rec loop ctxt l stack = Lwt.return (Gas.consume ctxt Interp_costs.loop_iter) >>=? fun ctxt -> match l with | [] -> return (stack, ctxt) | hd :: tl -> step ?log ctxt step_constants body (Item (hd, stack)) >>=? fun (stack, ctxt) -> loop ctxt tl stack in loop ctxt l init >>=? fun (res, ctxt) -> logged_return (res, ctxt) (* sets *) | Empty_set t, rest -> Lwt.return (Gas.consume ctxt Interp_costs.empty_set) >>=? fun ctxt -> logged_return (Item (empty_set t, rest), ctxt) | Set_iter body, Item (set, init) -> Lwt.return (Gas.consume ctxt (Interp_costs.set_to_list set)) >>=? fun ctxt -> let l = List.rev (set_fold (fun e acc -> e :: acc) set []) in let rec loop ctxt l stack = Lwt.return (Gas.consume ctxt Interp_costs.loop_iter) >>=? fun ctxt -> match l with | [] -> return (stack, ctxt) | hd :: tl -> step ?log ctxt step_constants body (Item (hd, stack)) >>=? fun (stack, ctxt) -> loop ctxt tl stack in loop ctxt l init >>=? fun (res, ctxt) -> logged_return (res, ctxt) | Set_mem, Item (v, Item (set, rest)) -> consume_gas_binop descr (set_mem, v, set) Interp_costs.set_mem rest ctxt | Set_update, Item (v, Item (presence, Item (set, rest))) -> consume_gas_terop descr (set_update, v, presence, set) Interp_costs.set_update rest | Set_size, Item (set, rest) -> consume_gas_unop descr (set_size, set) (fun _ -> Interp_costs.set_size) rest ctxt (* maps *) | Empty_map (t, _), rest -> Lwt.return (Gas.consume ctxt Interp_costs.empty_map) >>=? fun ctxt -> logged_return (Item (empty_map t, rest), ctxt) | Map_map body, Item (map, rest) -> Lwt.return (Gas.consume ctxt (Interp_costs.map_to_list map)) >>=? fun ctxt -> let l = List.rev (map_fold (fun k v acc -> (k, v) :: acc) map []) in let rec loop rest ctxt l acc = Lwt.return (Gas.consume ctxt Interp_costs.loop_map) >>=? fun ctxt -> match l with | [] -> return (acc, ctxt) | (k, _) as hd :: tl -> step ?log ctxt step_constants body (Item (hd, rest)) >>=? fun (Item (hd, rest), ctxt) -> loop rest ctxt tl (map_update k (Some hd) acc) in loop rest ctxt l (empty_map (map_key_ty map)) >>=? fun (res, ctxt) -> logged_return (Item (res, rest), ctxt) | Map_iter body, Item (map, init) -> Lwt.return (Gas.consume ctxt (Interp_costs.map_to_list map)) >>=? fun ctxt -> let l = List.rev (map_fold (fun k v acc -> (k, v) :: acc) map []) in let rec loop ctxt l stack = Lwt.return (Gas.consume ctxt Interp_costs.loop_iter) >>=? fun ctxt -> match l with | [] -> return (stack, ctxt) | hd :: tl -> step ?log ctxt step_constants body (Item (hd, stack)) >>=? fun (stack, ctxt) -> loop ctxt tl stack in loop ctxt l init >>=? fun (res, ctxt) -> logged_return (res, ctxt) | Map_mem, Item (v, Item (map, rest)) -> consume_gas_binop descr (map_mem, v, map) Interp_costs.map_mem rest ctxt | Map_get, Item (v, Item (map, rest)) -> consume_gas_binop descr (map_get, v, map) Interp_costs.map_get rest ctxt | Map_update, Item (k, Item (v, Item (map, rest))) -> consume_gas_terop descr (map_update, k, v, map) Interp_costs.map_update rest | Map_size, Item (map, rest) -> consume_gas_unop descr (map_size, map) (fun _ -> Interp_costs.map_size) rest ctxt (* Big map operations *) | Empty_big_map (tk, tv), rest -> Lwt.return (Gas.consume ctxt Interp_costs.empty_map) >>=? fun ctxt -> logged_return (Item (Script_ir_translator.empty_big_map tk tv, rest), ctxt) | Big_map_mem, Item (key, Item (map, rest)) -> Lwt.return (Gas.consume ctxt (Interp_costs.map_mem key map.diff)) >>=? fun ctxt -> Script_ir_translator.big_map_mem ctxt key map >>=? fun (res, ctxt) -> logged_return (Item (res, rest), ctxt) | Big_map_get, Item (key, Item (map, rest)) -> Lwt.return (Gas.consume ctxt (Interp_costs.map_get key map.diff)) >>=? fun ctxt -> Script_ir_translator.big_map_get ctxt key map >>=? fun (res, ctxt) -> logged_return (Item (res, rest), ctxt) | Big_map_update, Item (key, Item (maybe_value, Item (map, rest))) -> consume_gas_terop descr (Script_ir_translator.big_map_update, key, maybe_value, map) (fun k v m -> Interp_costs.map_update k (Some v) m.diff) rest (* timestamp operations *) | Add_seconds_to_timestamp, Item (n, Item (t, rest)) -> consume_gas_binop descr (Script_timestamp.add_delta, t, n) Interp_costs.add_timestamp rest ctxt | Add_timestamp_to_seconds, Item (t, Item (n, rest)) -> consume_gas_binop descr (Script_timestamp.add_delta, t, n) Interp_costs.add_timestamp rest ctxt | Sub_timestamp_seconds, Item (t, Item (s, rest)) -> consume_gas_binop descr (Script_timestamp.sub_delta, t, s) Interp_costs.sub_timestamp rest ctxt | Diff_timestamps, Item (t1, Item (t2, rest)) -> consume_gas_binop descr (Script_timestamp.diff, t1, t2) Interp_costs.diff_timestamps rest ctxt (* string operations *) | Concat_string_pair, Item (x, Item (y, rest)) -> Lwt.return (Gas.consume ctxt (Interp_costs.concat_string [x; y])) >>=? fun ctxt -> let s = String.concat "" [x; y] in logged_return (Item (s, rest), ctxt) | Concat_string, Item (ss, rest) -> Lwt.return (Gas.consume ctxt (Interp_costs.concat_string ss)) >>=? fun ctxt -> let s = String.concat "" ss in logged_return (Item (s, rest), ctxt) | Slice_string, Item (offset, Item (length, Item (s, rest))) -> let s_length = Z.of_int (String.length s) in let offset = Script_int.to_zint offset in let length = Script_int.to_zint length in if Compare.Z.(offset < s_length && Z.add offset length <= s_length) then Lwt.return (Gas.consume ctxt (Interp_costs.slice_string (Z.to_int length))) >>=? fun ctxt -> logged_return (Item (Some (String.sub s (Z.to_int offset) (Z.to_int length)), rest), ctxt) else Lwt.return (Gas.consume ctxt (Interp_costs.slice_string 0)) >>=? fun ctxt -> logged_return (Item (None, rest), ctxt) | String_size, Item (s, rest) -> Lwt.return (Gas.consume ctxt Interp_costs.push) >>=? fun ctxt -> logged_return (Item (Script_int.(abs (of_int (String.length s))), rest), ctxt) (* bytes operations *) | Concat_bytes_pair, Item (x, Item (y, rest)) -> Lwt.return (Gas.consume ctxt (Interp_costs.concat_bytes [x; y])) >>=? fun ctxt -> let s = MBytes.concat "" [x; y] in logged_return (Item (s, rest), ctxt) | Concat_bytes, Item (ss, rest) -> Lwt.return (Gas.consume ctxt (Interp_costs.concat_bytes ss)) >>=? fun ctxt -> let s = MBytes.concat "" ss in logged_return (Item (s, rest), ctxt) | Slice_bytes, Item (offset, Item (length, Item (s, rest))) -> let s_length = Z.of_int (MBytes.length s) in let offset = Script_int.to_zint offset in let length = Script_int.to_zint length in if Compare.Z.(offset < s_length && Z.add offset length <= s_length) then Lwt.return (Gas.consume ctxt (Interp_costs.slice_string (Z.to_int length))) >>=? fun ctxt -> logged_return (Item (Some (MBytes.sub s (Z.to_int offset) (Z.to_int length)), rest), ctxt) else Lwt.return (Gas.consume ctxt (Interp_costs.slice_string 0)) >>=? fun ctxt -> logged_return (Item (None, rest), ctxt) | Bytes_size, Item (s, rest) -> Lwt.return (Gas.consume ctxt Interp_costs.push) >>=? fun ctxt -> logged_return (Item (Script_int.(abs (of_int (MBytes.length s))), rest), ctxt) (* currency operations *) | Add_tez, Item (x, Item (y, rest)) -> Lwt.return (Gas.consume ctxt Interp_costs.int64_op) >>=? fun ctxt -> Lwt.return Tez.(x +? y) >>=? fun res -> logged_return (Item (res, rest), ctxt) | Sub_tez, Item (x, Item (y, rest)) -> Lwt.return (Gas.consume ctxt Interp_costs.int64_op) >>=? fun ctxt -> Lwt.return Tez.(x -? y) >>=? fun res -> logged_return (Item (res, rest), ctxt) | Mul_teznat, Item (x, Item (y, rest)) -> Lwt.return (Gas.consume ctxt Interp_costs.int64_op) >>=? fun ctxt -> Lwt.return (Gas.consume ctxt Interp_costs.z_to_int64) >>=? fun ctxt -> begin match Script_int.to_int64 y with | None -> fail (Overflow (loc, get_log log)) | Some y -> Lwt.return Tez.(x *? y) >>=? fun res -> logged_return (Item (res, rest), ctxt) end | Mul_nattez, Item (y, Item (x, rest)) -> Lwt.return (Gas.consume ctxt Interp_costs.int64_op) >>=? fun ctxt -> Lwt.return (Gas.consume ctxt Interp_costs.z_to_int64) >>=? fun ctxt -> begin match Script_int.to_int64 y with | None -> fail (Overflow (loc, get_log log)) | Some y -> Lwt.return Tez.(x *? y) >>=? fun res -> logged_return (Item (res, rest), ctxt) end (* boolean operations *) | Or, Item (x, Item (y, rest)) -> consume_gas_binop descr ((||), x, y) Interp_costs.bool_binop rest ctxt | And, Item (x, Item (y, rest)) -> consume_gas_binop descr ((&&), x, y) Interp_costs.bool_binop rest ctxt | Xor, Item (x, Item (y, rest)) -> consume_gas_binop descr (Compare.Bool.(<>), x, y) Interp_costs.bool_binop rest ctxt | Not, Item (x, rest) -> consume_gas_unop descr (not, x) Interp_costs.bool_unop rest ctxt (* integer operations *) | Is_nat, Item (x, rest) -> consume_gas_unop descr (Script_int.is_nat, x) Interp_costs.abs rest ctxt | Abs_int, Item (x, rest) -> consume_gas_unop descr (Script_int.abs, x) Interp_costs.abs rest ctxt | Int_nat, Item (x, rest) -> consume_gas_unop descr (Script_int.int, x) Interp_costs.int rest ctxt | Neg_int, Item (x, rest) -> consume_gas_unop descr (Script_int.neg, x) Interp_costs.neg rest ctxt | Neg_nat, Item (x, rest) -> consume_gas_unop descr (Script_int.neg, x) Interp_costs.neg rest ctxt | Add_intint, Item (x, Item (y, rest)) -> consume_gas_binop descr (Script_int.add, x, y) Interp_costs.add rest ctxt | Add_intnat, Item (x, Item (y, rest)) -> consume_gas_binop descr (Script_int.add, x, y) Interp_costs.add rest ctxt | Add_natint, Item (x, Item (y, rest)) -> consume_gas_binop descr (Script_int.add, x, y) Interp_costs.add rest ctxt | Add_natnat, Item (x, Item (y, rest)) -> consume_gas_binop descr (Script_int.add_n, x, y) Interp_costs.add rest ctxt | Sub_int, Item (x, Item (y, rest)) -> consume_gas_binop descr (Script_int.sub, x, y) Interp_costs.sub rest ctxt | Mul_intint, Item (x, Item (y, rest)) -> consume_gas_binop descr (Script_int.mul, x, y) Interp_costs.mul rest ctxt | Mul_intnat, Item (x, Item (y, rest)) -> consume_gas_binop descr (Script_int.mul, x, y) Interp_costs.mul rest ctxt | Mul_natint, Item (x, Item (y, rest)) -> consume_gas_binop descr (Script_int.mul, x, y) Interp_costs.mul rest ctxt | Mul_natnat, Item (x, Item (y, rest)) -> consume_gas_binop descr (Script_int.mul_n, x, y) Interp_costs.mul rest ctxt | Ediv_teznat, Item (x, Item (y, rest)) -> Lwt.return (Gas.consume ctxt Interp_costs.int64_to_z) >>=? fun ctxt -> let x = Script_int.of_int64 (Tez.to_mutez x) in consume_gas_binop descr ((fun x y -> match Script_int.ediv x y with | None -> None | Some (q, r) -> match Script_int.to_int64 q, Script_int.to_int64 r with | Some q, Some r -> begin match Tez.of_mutez q, Tez.of_mutez r with | Some q, Some r -> Some (q,r) (* Cannot overflow *) | _ -> assert false end (* Cannot overflow *) | _ -> assert false), x, y) Interp_costs.div rest ctxt | Ediv_tez, Item (x, Item (y, rest)) -> Lwt.return (Gas.consume ctxt Interp_costs.int64_to_z) >>=? fun ctxt -> Lwt.return (Gas.consume ctxt Interp_costs.int64_to_z) >>=? fun ctxt -> let x = Script_int.abs (Script_int.of_int64 (Tez.to_mutez x)) in let y = Script_int.abs (Script_int.of_int64 (Tez.to_mutez y)) in consume_gas_binop descr ((fun x y -> match Script_int.ediv_n x y with | None -> None | Some (q, r) -> match Script_int.to_int64 r with | None -> assert false (* Cannot overflow *) | Some r -> match Tez.of_mutez r with | None -> assert false (* Cannot overflow *) | Some r -> Some (q, r)), x, y) Interp_costs.div rest ctxt | Ediv_intint, Item (x, Item (y, rest)) -> consume_gas_binop descr (Script_int.ediv, x, y) Interp_costs.div rest ctxt | Ediv_intnat, Item (x, Item (y, rest)) -> consume_gas_binop descr (Script_int.ediv, x, y) Interp_costs.div rest ctxt | Ediv_natint, Item (x, Item (y, rest)) -> consume_gas_binop descr (Script_int.ediv, x, y) Interp_costs.div rest ctxt | Ediv_natnat, Item (x, Item (y, rest)) -> consume_gas_binop descr (Script_int.ediv_n, x, y) Interp_costs.div rest ctxt | Lsl_nat, Item (x, Item (y, rest)) -> Lwt.return (Gas.consume ctxt (Interp_costs.shift_left x y)) >>=? fun ctxt -> begin match Script_int.shift_left_n x y with | None -> fail (Overflow (loc, get_log log)) | Some x -> logged_return (Item (x, rest), ctxt) end | Lsr_nat, Item (x, Item (y, rest)) -> Lwt.return (Gas.consume ctxt (Interp_costs.shift_right x y)) >>=? fun ctxt -> begin match Script_int.shift_right_n x y with | None -> fail (Overflow (loc, get_log log)) | Some r -> logged_return (Item (r, rest), ctxt) end | Or_nat, Item (x, Item (y, rest)) -> consume_gas_binop descr (Script_int.logor, x, y) Interp_costs.logor rest ctxt | And_nat, Item (x, Item (y, rest)) -> consume_gas_binop descr (Script_int.logand, x, y) Interp_costs.logand rest ctxt | And_int_nat, Item (x, Item (y, rest)) -> consume_gas_binop descr (Script_int.logand, x, y) Interp_costs.logand rest ctxt | Xor_nat, Item (x, Item (y, rest)) -> consume_gas_binop descr (Script_int.logxor, x, y) Interp_costs.logxor rest ctxt | Not_int, Item (x, rest) -> consume_gas_unop descr (Script_int.lognot, x) Interp_costs.lognot rest ctxt | Not_nat, Item (x, rest) -> consume_gas_unop descr (Script_int.lognot, x) Interp_costs.lognot rest ctxt (* control *) | Seq (hd, tl), stack -> step ?log ctxt step_constants hd stack >>=? fun (trans, ctxt) -> step ?log ctxt step_constants tl trans | If (bt, _), Item (true, rest) -> Lwt.return (Gas.consume ctxt Interp_costs.branch) >>=? fun ctxt -> step ?log ctxt step_constants bt rest | If (_, bf), Item (false, rest) -> Lwt.return (Gas.consume ctxt Interp_costs.branch) >>=? fun ctxt -> step ?log ctxt step_constants bf rest | Loop body, Item (true, rest) -> Lwt.return (Gas.consume ctxt Interp_costs.loop_cycle) >>=? fun ctxt -> step ?log ctxt step_constants body rest >>=? fun (trans, ctxt) -> step ?log ctxt step_constants descr trans | Loop _, Item (false, rest) -> logged_return (rest, ctxt) | Loop_left body, Item (L v, rest) -> Lwt.return (Gas.consume ctxt Interp_costs.loop_cycle) >>=? fun ctxt -> step ?log ctxt step_constants body (Item (v, rest)) >>=? fun (trans, ctxt) -> step ?log ctxt step_constants descr trans | Loop_left _, Item (R v, rest) -> Lwt.return (Gas.consume ctxt Interp_costs.loop_cycle) >>=? fun ctxt -> logged_return (Item (v, rest), ctxt) | Dip b, Item (ign, rest) -> Lwt.return (Gas.consume ctxt Interp_costs.stack_op) >>=? fun ctxt -> step ?log ctxt step_constants b rest >>=? fun (res, ctxt) -> logged_return (Item (ign, res), ctxt) | Exec, Item (arg, Item (lam, rest)) -> Lwt.return (Gas.consume ctxt Interp_costs.exec) >>=? fun ctxt -> interp ?log ctxt step_constants lam arg >>=? fun (res, ctxt) -> logged_return (Item (res, rest), ctxt) | Apply capture_ty, Item (capture, Item (lam, rest)) -> ( Lwt.return (Gas.consume ctxt Interp_costs.apply) >>=? fun ctxt -> let (Lam (descr, expr)) = lam in let (Item_t (full_arg_ty , _ , _)) = descr.bef in unparse_data ctxt Optimized capture_ty capture >>=? fun (const_expr, ctxt) -> unparse_ty ctxt capture_ty >>=? fun (ty_expr, ctxt) -> match full_arg_ty with | Pair_t ((capture_ty, _, _), (arg_ty, _, _), _, _) -> ( let arg_stack_ty = Item_t (arg_ty, Empty_t, None) in let const_descr = ({ loc = descr.loc ; bef = arg_stack_ty ; aft = Item_t (capture_ty, arg_stack_ty, None) ; instr = Const capture ; } : (_, _) descr) in let pair_descr = ({ loc = descr.loc ; bef = Item_t (capture_ty, arg_stack_ty, None) ; aft = Item_t (full_arg_ty, Empty_t, None) ; instr = Cons_pair ; } : (_, _) descr) in let seq_descr = ({ loc = descr.loc ; bef = arg_stack_ty ; aft = Item_t (full_arg_ty, Empty_t, None) ; instr = Seq (const_descr, pair_descr) ; } : (_, _) descr) in let full_descr = ({ loc = descr.loc ; bef = arg_stack_ty ; aft = descr.aft ; instr = Seq (seq_descr, descr) ; } : (_, _) descr) in let full_expr = Micheline.Seq (0, [ Prim (0, I_PUSH, [ ty_expr ; const_expr ], []) ; Prim (0, I_PAIR, [], []) ; expr ]) in let lam' = Lam (full_descr, full_expr) in logged_return (Item (lam', rest), ctxt) ) | _ -> assert false ) | Lambda lam, rest -> Lwt.return (Gas.consume ctxt Interp_costs.push) >>=? fun ctxt -> logged_return (Item (lam, rest), ctxt) | Failwith tv, Item (v, _) -> trace Cannot_serialize_failure (unparse_data ctxt Optimized tv v) >>=? fun (v, _ctxt) -> let v = Micheline.strip_locations v in fail (Reject (loc, v, get_log log)) | Nop, stack -> logged_return (stack, ctxt) (* comparison *) | Compare ty, Item (a, Item (b, rest)) -> Lwt.return (Gas.consume ctxt (Interp_costs.compare ty a b)) >>=? fun ctxt -> logged_return (Item (Script_int.of_int @@ Script_ir_translator.compare_comparable ty a b, rest), ctxt) (* comparators *) | Eq, Item (cmpres, rest) -> let cmpres = Script_int.compare cmpres Script_int.zero in let cmpres = Compare.Int.(cmpres = 0) in Lwt.return (Gas.consume ctxt Interp_costs.compare_res) >>=? fun ctxt -> logged_return (Item (cmpres, rest), ctxt) | Neq, Item (cmpres, rest) -> let cmpres = Script_int.compare cmpres Script_int.zero in let cmpres = Compare.Int.(cmpres <> 0) in Lwt.return (Gas.consume ctxt Interp_costs.compare_res) >>=? fun ctxt -> logged_return (Item (cmpres, rest), ctxt) | Lt, Item (cmpres, rest) -> let cmpres = Script_int.compare cmpres Script_int.zero in let cmpres = Compare.Int.(cmpres < 0) in Lwt.return (Gas.consume ctxt Interp_costs.compare_res) >>=? fun ctxt -> logged_return (Item (cmpres, rest), ctxt) | Le, Item (cmpres, rest) -> let cmpres = Script_int.compare cmpres Script_int.zero in let cmpres = Compare.Int.(cmpres <= 0) in Lwt.return (Gas.consume ctxt Interp_costs.compare_res) >>=? fun ctxt -> logged_return (Item (cmpres, rest), ctxt) | Gt, Item (cmpres, rest) -> let cmpres = Script_int.compare cmpres Script_int.zero in let cmpres = Compare.Int.(cmpres > 0) in Lwt.return (Gas.consume ctxt Interp_costs.compare_res) >>=? fun ctxt -> logged_return (Item (cmpres, rest), ctxt) | Ge, Item (cmpres, rest) -> let cmpres = Script_int.compare cmpres Script_int.zero in let cmpres = Compare.Int.(cmpres >= 0) in Lwt.return (Gas.consume ctxt Interp_costs.compare_res) >>=? fun ctxt -> logged_return (Item (cmpres, rest), ctxt) (* packing *) | Pack t, Item (value, rest) -> Script_ir_translator.pack_data ctxt t value >>=? fun (bytes, ctxt) -> logged_return (Item (bytes, rest), ctxt) | Unpack t, Item (bytes, rest) -> Lwt.return (Gas.check_enough ctxt (Script.serialized_cost bytes)) >>=? fun () -> if Compare.Int.(MBytes.length bytes >= 1) && Compare.Int.(MBytes.get_uint8 bytes 0 = 0x05) then let bytes = MBytes.sub bytes 1 (MBytes.length bytes - 1) in match Data_encoding.Binary.of_bytes Script.expr_encoding bytes with | None -> Lwt.return (Gas.consume ctxt (Interp_costs.unpack_failed bytes)) >>=? fun ctxt -> logged_return (Item (None, rest), ctxt) | Some expr -> Lwt.return (Gas.consume ctxt (Script.deserialized_cost expr)) >>=? fun ctxt -> parse_data ctxt ~legacy:false t (Micheline.root expr) >>= function | Ok (value, ctxt) -> logged_return (Item (Some value, rest), ctxt) | Error _ignored -> Lwt.return (Gas.consume ctxt (Interp_costs.unpack_failed bytes)) >>=? fun ctxt -> logged_return (Item (None, rest), ctxt) else logged_return (Item (None, rest), ctxt) (* protocol *) | Address, Item ((_, address), rest) -> Lwt.return (Gas.consume ctxt Interp_costs.address) >>=? fun ctxt -> logged_return (Item (address, rest), ctxt) | Contract (t, entrypoint), Item (contract, rest) -> Lwt.return (Gas.consume ctxt Interp_costs.contract) >>=? fun ctxt -> begin match contract, entrypoint with | (contract, "default"), entrypoint | (contract, entrypoint), "default" -> Script_ir_translator.parse_contract_for_script ~legacy:false ctxt loc t contract ~entrypoint >>=? fun (ctxt, maybe_contract) -> logged_return (Item (maybe_contract, rest), ctxt) | _ -> logged_return (Item (None, rest), ctxt) end | Transfer_tokens, Item (p, Item (amount, Item ((tp, (destination, entrypoint)), rest))) -> Lwt.return (Gas.consume ctxt Interp_costs.transfer) >>=? fun ctxt -> collect_big_maps ctxt tp p >>=? fun (to_duplicate, ctxt) -> let to_update = no_big_map_id in extract_big_map_diff ctxt Optimized tp p ~to_duplicate ~to_update ~temporary:true >>=? fun (p, big_map_diff, ctxt) -> unparse_data ctxt Optimized tp p >>=? fun (p, ctxt) -> let operation = Transaction { amount ; destination ; entrypoint ; parameters = Script.lazy_expr (Micheline.strip_locations p) } in Lwt.return (fresh_internal_nonce ctxt) >>=? fun (ctxt, nonce) -> logged_return (Item ((Internal_operation { source = step_constants.self ; operation ; nonce }, big_map_diff), rest), ctxt) | Create_account, Item (manager, Item (delegate, Item (_delegatable, Item (credit, rest)))) -> Lwt.return (Gas.consume ctxt Interp_costs.create_account) >>=? fun ctxt -> Contract.fresh_contract_from_current_nonce ctxt >>=? fun (ctxt, contract) -> (* store in optimized binary representation - as unparsed with [Optimized]. *) let manager_bytes = Data_encoding.Binary.to_bytes_exn Signature.Public_key_hash.encoding manager in let storage = Script_repr.lazy_expr @@ Micheline.strip_locations @@ Micheline.Bytes (0, manager_bytes) in let script = { code = Legacy_support.manager_script_code ; storage ; } in let operation = Origination { credit ; delegate ; preorigination = Some contract ; script } in Lwt.return (fresh_internal_nonce ctxt) >>=? fun (ctxt, nonce) -> logged_return (Item ((Internal_operation { source = step_constants.self ; operation ; nonce }, None), Item ((contract, "default"), rest)), ctxt) | Implicit_account, Item (key, rest) -> Lwt.return (Gas.consume ctxt Interp_costs.implicit_account) >>=? fun ctxt -> let contract = Contract.implicit_contract key in logged_return (Item ((Unit_t None, (contract, "default")), rest), ctxt) | Create_contract (storage_type, param_type, Lam (_, code), root_name), Item (manager, Item (delegate, Item (spendable, Item (delegatable, Item (credit, Item (init, rest)))))) -> Lwt.return (Gas.consume ctxt Interp_costs.create_contract) >>=? fun ctxt -> unparse_ty ctxt param_type >>=? fun (unparsed_param_type, ctxt) -> let unparsed_param_type = Script_ir_translator.add_field_annot (Option.map ~f:(fun n -> `Field_annot n) root_name) None unparsed_param_type in unparse_ty ctxt storage_type >>=? fun (unparsed_storage_type, ctxt) -> let code = Script.lazy_expr @@ Micheline.strip_locations (Seq (0, [ Prim (0, K_parameter, [ unparsed_param_type ], []) ; Prim (0, K_storage, [ unparsed_storage_type ], []) ; Prim (0, K_code, [ code ], []) ])) in collect_big_maps ctxt storage_type init >>=? fun (to_duplicate, ctxt) -> let to_update = no_big_map_id in extract_big_map_diff ctxt Optimized storage_type init ~to_duplicate ~to_update ~temporary:true >>=? fun (init, big_map_diff, ctxt) -> unparse_data ctxt Optimized storage_type init >>=? fun (storage, ctxt) -> let storage = Script.lazy_expr @@ Micheline.strip_locations storage in begin if spendable then Legacy_support.add_do ~manager_pkh:manager ~script_code:code ~script_storage:storage else if delegatable then Legacy_support.add_set_delegate ~manager_pkh:manager ~script_code:code ~script_storage:storage else if Legacy_support.has_default_entrypoint code then Legacy_support.add_root_entrypoint code >>=? fun code -> return (code, storage) else return (code, storage) end >>=? fun (code, storage) -> Contract.fresh_contract_from_current_nonce ctxt >>=? fun (ctxt, contract) -> let operation = Origination { credit ; delegate ; preorigination = Some contract ; script = { code ; storage } } in Lwt.return (fresh_internal_nonce ctxt) >>=? fun (ctxt, nonce) -> logged_return (Item ((Internal_operation { source = step_constants.self ; operation ; nonce }, big_map_diff), Item ((contract, "default"), rest)), ctxt) | Create_contract_2 (storage_type, param_type, Lam (_, code), root_name), (* Removed the instruction's arguments manager, spendable and delegatable *) Item (delegate, Item (credit, Item (init, rest))) -> Lwt.return (Gas.consume ctxt Interp_costs.create_contract) >>=? fun ctxt -> unparse_ty ctxt param_type >>=? fun (unparsed_param_type, ctxt) -> let unparsed_param_type = Script_ir_translator.add_field_annot (Option.map ~f:(fun n -> `Field_annot n) root_name) None unparsed_param_type in unparse_ty ctxt storage_type >>=? fun (unparsed_storage_type, ctxt) -> let code = Micheline.strip_locations (Seq (0, [ Prim (0, K_parameter, [ unparsed_param_type ], []) ; Prim (0, K_storage, [ unparsed_storage_type ], []) ; Prim (0, K_code, [ code ], []) ])) in collect_big_maps ctxt storage_type init >>=? fun (to_duplicate, ctxt) -> let to_update = no_big_map_id in extract_big_map_diff ctxt Optimized storage_type init ~to_duplicate ~to_update ~temporary:true >>=? fun (init, big_map_diff, ctxt) -> unparse_data ctxt Optimized storage_type init >>=? fun (storage, ctxt) -> let storage = Micheline.strip_locations storage in Contract.fresh_contract_from_current_nonce ctxt >>=? fun (ctxt, contract) -> let operation = Origination { credit ; delegate ; preorigination = Some contract ; script = { code = Script.lazy_expr code ; storage = Script.lazy_expr storage } } in Lwt.return (fresh_internal_nonce ctxt) >>=? fun (ctxt, nonce) -> logged_return (Item ((Internal_operation { source = step_constants.self ; operation ; nonce }, big_map_diff), Item ((contract, "default"), rest)), ctxt) | Set_delegate, Item (delegate, rest) -> Lwt.return (Gas.consume ctxt Interp_costs.create_account) >>=? fun ctxt -> let operation = Delegation delegate in Lwt.return (fresh_internal_nonce ctxt) >>=? fun (ctxt, nonce) -> logged_return (Item ((Internal_operation { source = step_constants.self ; operation ; nonce }, None), rest), ctxt) | Balance, rest -> Lwt.return (Gas.consume ctxt Interp_costs.balance) >>=? fun ctxt -> Contract.get_balance ctxt step_constants.self >>=? fun balance -> logged_return (Item (balance, rest), ctxt) | Now, rest -> Lwt.return (Gas.consume ctxt Interp_costs.now) >>=? fun ctxt -> let now = Script_timestamp.now ctxt in logged_return (Item (now, rest), ctxt) | Check_signature, Item (key, Item (signature, Item (message, rest))) -> Lwt.return (Gas.consume ctxt (Interp_costs.check_signature key message)) >>=? fun ctxt -> let res = Signature.check key signature message in logged_return (Item (res, rest), ctxt) | Hash_key, Item (key, rest) -> Lwt.return (Gas.consume ctxt Interp_costs.hash_key) >>=? fun ctxt -> logged_return (Item (Signature.Public_key.hash key, rest), ctxt) | Blake2b, Item (bytes, rest) -> Lwt.return (Gas.consume ctxt (Interp_costs.hash_blake2b bytes)) >>=? fun ctxt -> let hash = Raw_hashes.blake2b bytes in logged_return (Item (hash, rest), ctxt) | Sha256, Item (bytes, rest) -> Lwt.return (Gas.consume ctxt (Interp_costs.hash_sha256 bytes)) >>=? fun ctxt -> let hash = Raw_hashes.sha256 bytes in logged_return (Item (hash, rest), ctxt) | Sha512, Item (bytes, rest) -> Lwt.return (Gas.consume ctxt (Interp_costs.hash_sha512 bytes)) >>=? fun ctxt -> let hash = Raw_hashes.sha512 bytes in logged_return (Item (hash, rest), ctxt) | Steps_to_quota, rest -> Lwt.return (Gas.consume ctxt Interp_costs.steps_to_quota) >>=? fun ctxt -> let steps = match Gas.level ctxt with | Limited { remaining } -> remaining | Unaccounted -> Z.of_string "99999999" in logged_return (Item (Script_int.(abs (of_zint steps)), rest), ctxt) | Source, rest -> Lwt.return (Gas.consume ctxt Interp_costs.source) >>=? fun ctxt -> logged_return (Item ((step_constants.payer, "default"), rest), ctxt) | Sender, rest -> Lwt.return (Gas.consume ctxt Interp_costs.source) >>=? fun ctxt -> logged_return (Item ((step_constants.source, "default"), rest), ctxt) | Self (t, entrypoint), rest -> Lwt.return (Gas.consume ctxt Interp_costs.self) >>=? fun ctxt -> logged_return (Item ((t, (step_constants.self, entrypoint)), rest), ctxt) | Amount, rest -> Lwt.return (Gas.consume ctxt Interp_costs.amount) >>=? fun ctxt -> logged_return (Item (step_constants.amount, rest), ctxt) | Dig (n, n'), stack -> Lwt.return (Gas.consume ctxt (Interp_costs.stack_n_op n)) >>=? fun ctxt -> interp_stack_prefix_preserving_operation (fun (Item (v, rest)) -> return (rest, v)) n' stack >>=? fun (aft, x) -> logged_return (Item (x, aft), ctxt) | Dug (n, n'), Item (v, rest) -> Lwt.return (Gas.consume ctxt (Interp_costs.stack_n_op n)) >>=? fun ctxt -> interp_stack_prefix_preserving_operation (fun stk -> return (Item (v, stk), ())) n' rest >>=? fun (aft, ()) -> logged_return (aft, ctxt) | Dipn (n, n', b), stack -> Lwt.return (Gas.consume ctxt (Interp_costs.stack_n_op n)) >>=? fun ctxt -> interp_stack_prefix_preserving_operation (fun stk -> step ?log ctxt step_constants b stk >>=? fun (res, ctxt') -> return (res, ctxt')) n' stack >>=? fun (aft, ctxt') -> logged_return (aft, ctxt') | Dropn (n, n'), stack -> Lwt.return (Gas.consume ctxt (Interp_costs.stack_n_op n)) >>=? fun ctxt -> interp_stack_prefix_preserving_operation (fun stk -> return (stk, stk)) n' stack >>=? fun (_, rest) -> logged_return (rest, ctxt) | ChainId, rest -> Lwt.return (Gas.consume ctxt Interp_costs.chain_id) >>=? fun ctxt -> logged_return (Item (step_constants.chain_id, rest), ctxt) and interp : type p r. (?log: execution_trace ref -> context -> step_constants -> (p, r) lambda -> p -> (r * context) tzresult Lwt.t) = fun ?log ctxt step_constants (Lam (code, _)) arg -> let stack = (Item (arg, Empty)) in begin match log with | None -> return_unit | Some log -> trace Cannot_serialize_log (unparse_stack ctxt (stack, code.bef)) >>=? fun stack -> log := (code.loc, Gas.level ctxt, stack) :: !log ; return_unit end >>=? fun () -> step ?log ctxt step_constants code stack >>=? fun (Item (ret, Empty), ctxt) -> return (ret, ctxt) (* ---- contract handling ---------------------------------------------------*) and execute ?log ctxt mode step_constants ~entrypoint unparsed_script arg : (Script.expr * packed_internal_operation list * context * Contract.big_map_diff option) tzresult Lwt.t = parse_script ctxt unparsed_script ~legacy:true >>=? fun (Ex_script { code ; arg_type ; storage ; storage_type ; root_name }, ctxt) -> trace (Bad_contract_parameter step_constants.self) (Lwt.return (find_entrypoint arg_type ~root_name entrypoint)) >>=? fun (box, _) -> trace (Bad_contract_parameter step_constants.self) (parse_data ctxt ~legacy:false arg_type (box arg)) >>=? fun (arg, ctxt) -> Script.force_decode ctxt unparsed_script.code >>=? fun (script_code, ctxt) -> Script_ir_translator.collect_big_maps ctxt arg_type arg >>=? fun (to_duplicate, ctxt) -> Script_ir_translator.collect_big_maps ctxt storage_type storage >>=? fun (to_update, ctxt) -> trace (Runtime_contract_error (step_constants.self, script_code)) (interp ?log ctxt step_constants code (arg, storage)) >>=? fun ((ops, storage), ctxt) -> Script_ir_translator.extract_big_map_diff ctxt mode ~temporary:false ~to_duplicate ~to_update storage_type storage >>=? fun (storage, big_map_diff, ctxt) -> trace Cannot_serialize_storage (unparse_data ctxt mode storage_type storage) >>=? fun (storage, ctxt) -> let ops, op_diffs = List.split ops in let big_map_diff = match List.flatten (List.map (Option.unopt ~default:[]) (op_diffs @ [ big_map_diff ])) with | [] -> None | diff -> Some diff in return (Micheline.strip_locations storage, ops, ctxt, big_map_diff) type execution_result = { ctxt : context ; storage : Script.expr ; big_map_diff : Contract.big_map_diff option ; operations : packed_internal_operation list } let trace ctxt mode step_constants ~script ~entrypoint ~parameter = let log = ref [] in execute ~log ctxt mode step_constants ~entrypoint script (Micheline.root parameter) >>=? fun (storage, operations, ctxt, big_map_diff) -> let trace = List.rev !log in return ({ ctxt ; storage ; big_map_diff ; operations }, trace) let execute ctxt mode step_constants ~script ~entrypoint ~parameter = execute ctxt mode step_constants ~entrypoint script (Micheline.root parameter) >>=? fun (storage, operations, ctxt, big_map_diff) -> return { ctxt ; storage ; big_map_diff ; operations }
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>