package tezos-plonk

  1. Overview
  2. Docs
Plonk zero-knowledge proving system

Install

Dune Dependency

Authors

Maintainers

Sources

privacy-team-v1.0.1.tar.gz
md5=03d6ca5fb1c6865b6628e0dd49575895
sha512=20494d1d00ded43f3625e06e037d3bad04f0a7320914b542b882d3d0293c9b02845b7ca9ee4ff0eb8ea495eff5633016861c39370cca92c12aacae0e84483ca4

doc/tezos-plonk.aggregation/Aggregation/Main_protocol/Make/argument-1-PP/PC/Polynomial/Domain/index.html

Module Polynomial.Domain

type scalar = scalar
type t
val t : t Repr.t
val length : t -> int

length p returns the length of a given array p

val get : t -> int -> scalar

get p i returns the i-th element of a given array p

val primitive_root_of_unity : int -> scalar

primitive_root_of_unity n returns a primitive n-th root of unity, provided it exists

val build : ?primitive_root:scalar -> int -> t

build n computes [one; g; ..; g^{n-1}] where g is a primitive n-th root of unity

val build_power_of_two : ?primitive_root:scalar -> int -> t

build_power_of_two log computes [one; g; ..; g^{n-1}] where g is a primitive n-th root of unity and n = 2^log

val subgroup : log:int -> t -> t

subgroup log d returns a subgroup of d of order 2^log

val inverse : t -> scalar array

inverse d returns for a domain wⁱᵢ its inverse domain w⁻ⁱᵢ

OCaml

Innovation. Community. Security.