package tezos-plonk
Plonk zero-knowledge proving system
Install
Dune Dependency
Authors
Maintainers
Sources
privacy-team-v1.0.1.tar.gz
md5=03d6ca5fb1c6865b6628e0dd49575895
sha512=20494d1d00ded43f3625e06e037d3bad04f0a7320914b542b882d3d0293c9b02845b7ca9ee4ff0eb8ea495eff5633016861c39370cca92c12aacae0e84483ca4
doc/src/tezos-plonk.aggregation/pack.ml.html
Source file pack.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
(*****************************************************************************) (* *) (* MIT License *) (* Copyright (c) 2022 Nomadic Labs <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) open Plonk (* Our version of SnarkPack for PLONK *) module type Aggregator = sig type scalar type g1 type g2 type gt (* Public parameters *) type prover_public_parameters [@@deriving repr] type verifier_public_parameters [@@deriving repr] (* Data to be aggregated *) type data = g1 (* Commitment to the data *) type commitment = { cmt_t : gt; cmt_len : int } [@@deriving repr] (* Randomness used to pack the data, usually derived from a commitment to it *) type randomness = scalar (* Packed/aggregated data *) type packed = g1 [@@deriving repr] (* Proof that the data was correctly aggregated *) type proof [@@deriving repr] type transcript = Bytes.t type setup_params val setup : int -> Bls12_381_polynomial.Srs.t -> prover_public_parameters * verifier_public_parameters val get_setup_params : prover_public_parameters -> setup_params val public_parameters_to_bytes : prover_public_parameters -> Bytes.t val commit : prover_public_parameters -> data array -> commitment val commitment_cardinal : commitment -> int val partial_commit : relevant_positions:int list -> prover_public_parameters -> data array -> commitment val empty_commitment : commitment val combine : commitment -> commitment -> commitment val prove_single : prover_public_parameters -> transcript -> randomness -> data array -> (packed * proof) * transcript val prove : prover_public_parameters -> transcript -> randomness -> data array list -> (packed list * proof) * transcript val verify_single : verifier_public_parameters -> transcript -> commitment -> randomness -> packed * proof -> bool * transcript val verify : verifier_public_parameters -> transcript -> commitment list -> randomness -> packed list * proof -> bool * transcript end module Pack_impl = struct include Bls module Fr_generation = Fr_generation.Make (Scalar) module Polynomial = Bls12_381_polynomial.Polynomial module Poly = Bls12_381_polynomial.Polynomial module Srs_g1 = Bls12_381_polynomial.Srs.Srs_g1 module Srs_g2 = Bls12_381_polynomial.Srs.Srs_g2 type scalar = Scalar.t type g1 = G1.t type g2 = G2.t type gt = GT.t type prover_public_parameters = { length : int; srs2_t : G2.t array; g1_t : G1.t; } [@@deriving repr] type verifier_public_parameters = G1.t [@@deriving repr] type data = G1.t type commitment = { cmt_t : GT.t; cmt_len : int } [@@deriving repr] type randomness = Scalar.t type packed = G1.t [@@deriving repr] type ipa_proof = { t_Ls : GT.t array; t_Rs : GT.t array; r_Ls : G1.t array; r_Rs : G1.t array; a0 : G1.t; t0 : G2.t; } [@@deriving repr] let empty_ipa_proof len = { t_Ls = Array.init len (fun _i -> GT.zero); t_Rs = Array.init len (fun _i -> GT.zero); r_Ls = Array.init len (fun _i -> G1.zero); r_Rs = Array.init len (fun _i -> G1.zero); a0 = G1.zero; t0 = G2.zero; } type kzg_proof = G2.t [@@deriving repr] type proof = ipa_proof * kzg_proof [@@deriving repr] type transcript = Bytes.t type setup_params = int let powers ~one ~mul d x = Utils.build_array one (fun g -> mul g x) d let hash ~transcript ~random ?(g1s = [ [||] ]) ?(g2s = [ [||] ]) ?(gts = [ [||] ]) ?(scalars = [ [||] ]) () = let transcript = let open Utils.Hash in let st = init () in update st transcript; List.iter (Array.iter (fun key -> update st (G1.to_bytes key))) g1s; List.iter (Array.iter (fun key -> update st (G2.to_bytes key))) g2s; List.iter (Array.iter (fun key -> update st (GT.to_bytes key))) gts; List.iter (Array.iter (fun key -> update st (Scalar.to_bytes key))) scalars; finish st in let seed, _ = Utils.Hash.bytes_to_seed transcript in let state = Some (Random.State.make seed) in (random ?state (), transcript) let ip_pairing array1 array2 = if Array.length array1 = 0 then GT.zero else let min_length = min (Array.length array1) (Array.length array2) in let list_combined = List.init min_length (fun i -> (array1.(i), array2.(i))) in Pairing.(miller_loop list_combined |> final_exponentiation_exn) let setup_verifier srs_g1_t = Srs_g1.get srs_g1_t 1 let setup_prover d (srs_g1_t, srs_g2_t) = let srs2_t = Srs_g2.to_array ~len:d srs_g2_t in let g1_t = setup_verifier srs_g1_t in { length = d; srs2_t; g1_t } let setup d srs_t = let prv = setup_prover d srs_t in let vrf = setup_verifier (fst srs_t) in (prv, vrf) let get_setup_params public_parameters = public_parameters.length let public_parameters_to_bytes { srs2_t; g1_t; _ } = hash ~transcript:Bytes.empty ~random:Scalar.random ~g1s:[ [| g1_t |] ] ~g2s:[ srs2_t ] () |> fst |> Scalar.to_bytes let commit pp data = { cmt_t = ip_pairing data pp.srs2_t; cmt_len = Array.length data } let commitment_cardinal cmt = cmt.cmt_len let partial_commit ~relevant_positions pp data = let filter_srs : G2.t array -> G2.t array = let module ISet = Set.Make (Int) in let pos_set = ISet.of_list relevant_positions in fun srs -> List.filteri (fun i _proof -> ISet.mem i pos_set) (Array.to_list srs) |> Array.of_list in { cmt_t = ip_pairing data (filter_srs pp.srs2_t); cmt_len = Array.length data; } let bytes_of_commitment cmt = Bytes.cat (Bytes.of_string (string_of_int cmt.cmt_len)) (GT.to_bytes cmt.cmt_t) let empty_commitment = { cmt_t = GT.zero; cmt_len = 0 } let combine c0 c1 = let cmt_t = GT.add c0.cmt_t c1.cmt_t in let cmt_len = Int.add c0.cmt_len c1.cmt_len in { cmt_t; cmt_len } let pack rs data = if Array.length data = 0 then G1.zero else (* rs can be longer than needed *) let rs = Array.sub rs 0 (Array.length data) in let packed = G1.pippenger data rs in packed let array_split_in_half a = let len = Array.length a in let len2 = len / 2 in match len mod 2 with | 0 -> (Array.sub a 0 len2, Array.sub a len2 len2) | _ -> raise (Invalid_argument (Printf.sprintf "split_in_half: length %d not even." len)) let array_padded_with_zero src dst_len zero = let src_len = Array.length src in assert (src_len <= dst_len); if src_len = dst_len then src else let dst = Array.init dst_len (fun _i -> zero) in Array.blit src 0 dst 0 src_len; dst let prove_but_not_pack pp transcript r data packed = (* Assert that the data length is a power of 2 *) let data_length = Array.length data in if data_length = 0 then raise @@ Invalid_argument "[Array.length data] cannot be 0"; let nb_iter = Z.(log2up @@ of_int data_length) in let next_2power = Int.shift_left 1 nb_iter in let diff_from_2power = next_2power - data_length in let data = if diff_from_2power = 0 then data else ( Format.printf "\nWARNING: [Array.length data] is %d, not a power of 2, we pad it\n" data_length; array_padded_with_zero data next_2power G1.zero) in let data_length = next_2power in let rs = Scalar.(powers ~one ~mul data_length r) in let transcript = Bytes.cat transcript @@ G1.to_bytes packed in let rec loop transcript g_poly ipa_proof a b t i = if i = nb_iter then match (a, b, t) with | [| a0 |], [| _ |], [| t0 |] -> (g_poly, { ipa_proof with a0; t0 }, transcript) | _ -> raise @@ Invalid_argument "Aggregation: IPA loop" else let a_left, a_right = array_split_in_half a in let b_left, b_right = array_split_in_half b in let t_left, t_right = array_split_in_half t in let t_L = ip_pairing a_left t_right in let t_R = ip_pairing a_right t_left in let r_L = G1.pippenger a_left b_right in let r_R = G1.pippenger a_right b_left in let u, transcript = let g1s = [ [| r_L; r_R |] ] in let gts = [ [| t_L; t_R |] ] in Scalar.(hash ~transcript ~random ~g1s ~gts ()) in let u_inv = Scalar.inverse_exn u in let merge ~add ~mul x y = add (mul x u) (mul y u_inv) in let a' = Array.map2 G1.(merge ~add ~mul) a_left a_right in let b' = Array.map2 Scalar.(merge ~add ~mul) b_right b_left in let t' = Array.map2 G2.(merge ~add ~mul) t_right t_left in ipa_proof.t_Ls.(i) <- t_L; ipa_proof.t_Rs.(i) <- t_R; ipa_proof.r_Ls.(i) <- r_L; ipa_proof.r_Rs.(i) <- r_R; let xn = Int.shift_left 1 (nb_iter - 1 - i) in let g'_poly = Poly.(g_poly * of_coefficients [ (u_inv, 0); (u, xn) ]) in loop transcript g'_poly ipa_proof a' b' t' (i + 1) in let srs2_t = Array.sub pp.srs2_t 0 data_length in let g, ipa_proof, transcript = loop transcript Poly.one (empty_ipa_proof nb_iter) data rs srs2_t 0 in let gts = [ ipa_proof.t_Ls; ipa_proof.t_Rs ] in let g1s = [ [| ipa_proof.a0 |]; ipa_proof.r_Ls; ipa_proof.r_Rs ] in let g2s = [ [| ipa_proof.t0 |] ] in let rho, transcript = Scalar.(hash ~transcript ~random ~g1s ~g2s ~gts ()) in let h = fst @@ Poly.( division_xn (g - (constant @@ evaluate g rho)) 1 (Scalar.negate rho)) in let h_coeffs = Poly.to_dense_coefficients h in let kzg_proof_t = G2.pippenger srs2_t h_coeffs in let proof = (ipa_proof, kzg_proof_t) in (proof, transcript) let prove_single pp transcript r data = let rs = Scalar.(powers ~one ~mul (Array.length data) r) in let packed = pack rs data in let proof, transcript = prove_but_not_pack pp transcript r data packed in ((packed, proof), transcript) let prove pp transcript r data_list = let n = List.length data_list in if n = 0 then raise @@ Failure "data_list cannot be empty"; let max_length_datas = List.fold_left max 0 @@ List.map Array.length data_list in (* Pad with zeros at the tail so that all datas have the same length *) let padded_datas = List.map (fun l -> array_padded_with_zero l max_length_datas G1.zero) data_list in let delta, transcript = Scalar.(hash ~transcript ~random ()) in let deltas = Scalar.(powers ~one ~mul n delta) |> Array.to_list in let data = (* data = delta^0·padded_datas.(0) +...+ delta^(n-1)·padded_datas.(n-1) *) let safe_tl = function _ :: tl -> tl | _ -> [] in List.fold_left2 (fun acc padded_data d -> Array.map2 (fun a b -> G1.(add a (mul b d))) acc padded_data) (List.hd padded_datas) (safe_tl padded_datas) (safe_tl deltas) in let rs = Scalar.(powers ~one ~mul max_length_datas r) in let packed = pack rs data in let packed_list = List.map (pack rs) data_list in let proof, transcript = prove_but_not_pack pp transcript r data packed in ((packed_list, proof), transcript) let verify_single pp transcript cmt r (packed, (ipa_proof, kzg_proof)) = let transcript = Bytes.cat transcript @@ G1.to_bytes packed in (* FIXME: assert that the length of these six arrays (or at least one of them) equals the log2 of cmt.cmt_len *) let us, transcript = let len = Array.length ipa_proof.t_Ls in let us = Array.init len (fun _i -> Scalar.zero) in let transcript_i = ref transcript in for i = 0 to len - 1 do let u, transcript = let g1s = [ [| ipa_proof.r_Ls.(i); ipa_proof.r_Rs.(i) |] ] in let gts = [ [| ipa_proof.t_Ls.(i); ipa_proof.t_Rs.(i) |] ] in Scalar.(hash ~transcript:!transcript_i ~random ~g1s ~gts ()) in us.(i) <- u; transcript_i := transcript done; (us, !transcript_i) in (* g(X) := (u₁⁻¹ + u₁ X^{2ᵏ⁻¹}) · (u₂⁻¹ + u₂ X^{2ᵏ⁻²}) ··· (uₖ⁻¹ + uₖ X) *) let eval_g x = let len = Array.length us in let acc = ref Scalar.one in let x_power = ref x in for i = 0 to len - 1 do let u = us.(len - 1 - i) in let term = Scalar.(inverse_exn u + (u * !x_power)) in acc := Scalar.mul !acc term; x_power := Scalar.square !x_power done; !acc in (* Verify the IPA proof *) let r0 = eval_g r in (* Computes [init + sum_j (u_j^2 L_j + u_j^{-2} R_j)] *) let rhs ~init ~add ~mul us gLs gRs = let len = Array.length us in let acc = ref init in for i = 0 to len - 1 do let u2 = Scalar.square us.(i) in let u2_inv = Scalar.inverse_exn u2 in acc := add !acc @@ add (mul gLs.(i) u2) (mul gRs.(i) u2_inv) done; !acc in let lhs_t = Pairing.pairing ipa_proof.a0 ipa_proof.t0 in let rhs_t = GT.(rhs ~init:cmt.cmt_t ~add ~mul us ipa_proof.t_Ls ipa_proof.t_Rs) in let lhs_r = G1.mul ipa_proof.a0 r0 in let rhs_r = G1.(rhs ~init:packed ~add ~mul us ipa_proof.r_Ls ipa_proof.r_Rs) in let ipa_ok = GT.eq lhs_t rhs_t && G1.eq lhs_r rhs_r in (* Verify the KZG proof *) let gts = [ ipa_proof.t_Ls; ipa_proof.t_Rs ] in let g1s = [ [| ipa_proof.a0 |]; ipa_proof.r_Ls; ipa_proof.r_Rs ] in let g2s = [ [| ipa_proof.t0 |] ] in let rho, transcript = Scalar.(hash ~transcript ~random ~g1s ~g2s ~gts ()) in let m_v = eval_g rho |> Scalar.negate |> G2.(mul one) in let st0 = ipa_proof.t0 in let rho_g1 = G1.mul G1.one @@ Scalar.negate rho in let rhs = ip_pairing G1.[| negate one; add pp rho_g1 |] G2.[| add st0 m_v; kzg_proof |] in let kzg_ok = GT.is_zero rhs in (ipa_ok && kzg_ok, transcript) let verify pp transcript cmt_list r (packed_list, proof) = let delta, transcript = Scalar.(hash ~transcript ~random ()) in let combine_cmt d c1 c2 = { cmt_t = GT.add c1.cmt_t (GT.mul c2.cmt_t d); cmt_len = max c1.cmt_len c2.cmt_len; } in let combine_packed d p1 p2 = G1.add p1 (G1.mul p2 d) in let cmt, packed, _ = List.fold_left2 (fun (cmt, packed, d) c p -> (combine_cmt d cmt c, combine_packed d packed p, Scalar.mul d delta)) ({ cmt_t = GT.zero; cmt_len = 0 }, G1.zero, Scalar.one) cmt_list packed_list in verify_single pp transcript cmt r (packed, proof) end include ( Pack_impl : Aggregator with type scalar = Bls.Scalar.t and type g1 = Bls.G1.t and type g2 = Bls.G2.t and type gt = Bls.GT.t)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>