package tezos-plonk

  1. Overview
  2. Docs
Plonk zero-knowledge proving system

Install

Dune Dependency

Authors

Maintainers

Sources

privacy-team-v1.0.0.tar.gz
md5=c9007a234fbacaddbc652c139cac56db
sha512=b67825a9259c27ccba51a4cb98056985c93f74f5211d422ce8ee8c35cda748c22bd1e59b3a584a79f96c1be21a409a12ee4b705346e1319c6d8bf45e81029f93

doc/tezos-plonk.aggregation/Aggregation/Polynomial_commitment/Make/argument-2-PC/Polynomial/Domain/index.html

Module Polynomial.Domain

type scalar = scalar
type t
val t : t Repr.t
val length : t -> int

length p returns the length of a given array p

val get : t -> int -> scalar

get p i returns the i-th element of a given array p

val primitive_root_of_unity : int -> scalar

primitive_root_of_unity n returns a primitive n-th root of unity, provided it exists

val build : ?primitive_root:scalar -> int -> t

build n computes [one; g; ..; g^{n-1}] where g is a primitive n-th root of unity

val build_power_of_two : ?primitive_root:scalar -> int -> t

build_power_of_two log computes [one; g; ..; g^{n-1}] where g is a primitive n-th root of unity and n = 2^log

val subgroup : log:int -> t -> t

subgroup log d returns a subgroup of d of order 2^log

val inverse : t -> scalar array

inverse d returns for a domain wⁱᵢ its inverse domain w⁻ⁱᵢ

OCaml

Innovation. Community. Security.