package tensorboard
No synopsis
Install
Dune Dependency
Authors
Maintainers
Sources
0.0.1.tar.gz
md5=91035b4a9827fdf6e2fb61d0edb1bb2c
sha512=7f09994c0bb844429b795b971ae3bacd927eae4854a4efc36dbf8d6f4ea24e7f05f754f7191747e32b4fef1922589d1db8d2622147a1706efe7e79201329400b
doc/src/tensorboard.protobuf/pbrt.ml.html
Source file pbrt.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
(* Copyright (c) 2014 Peter Zotov <whitequark@whitequark.org> Copyright (c) 2016 Maxime Ransan <maxime.ransan@gmail.com> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *) type payload_kind = Protobuf.payload_kind = | Varint | Bits32 | Bits64 | Bytes module Decoder = struct type t = Protobuf.Decoder.t let of_bytes = Protobuf.Decoder.of_bytes let malformed_variant variant_name = raise (Protobuf.Decoder.Failure ( Protobuf.Decoder.Malformed_variant variant_name)) let unexpected_payload field_name pk = raise (Protobuf.Decoder.Failure ( Protobuf.Decoder.Unexpected_payload (field_name, pk))) let missing_field field_name = raise (Protobuf.Decoder.Failure ( Protobuf.Decoder.Missing_field field_name)) let key = Protobuf.Decoder.key let skip = Protobuf.Decoder.skip let nested = Protobuf.Decoder.nested let map_entry d ~decode_key ~decode_value = let d = nested d in let key_v = ref None in let value_v = ref None in let rec loop () = match key d with | None -> () | Some (1, _) -> key_v := Some (decode_key d); loop () | Some (2, _) -> value_v := Some (decode_value d); loop () | Some (_, pk) -> ( skip d pk; loop () ) in loop (); match !key_v, !value_v with | Some key, Some value -> (key, value) | _ -> failwith "Missing key or value for map entry" let empty_nested d = let len = Protobuf.Decoder.varint d in if len <> 0L then raise (Protobuf.Decoder.Failure Protobuf.Decoder.Incomplete) else () let packed_fold f e0 d = let d' = nested d in let rec loop acc = if Protobuf.Decoder.at_end d' then acc else loop (f acc d') in loop e0 let int_as_varint d = Int64.to_int @@ Protobuf.Decoder.varint d let int_as_zigzag d = Int64.to_int @@ Protobuf.Decoder.zigzag d let int32_as_varint d = Int64.to_int32 (Protobuf.Decoder.varint d) let int32_as_zigzag d = Int64.to_int32 (Protobuf.Decoder.zigzag d) let int64_as_varint = Protobuf.Decoder.varint let int64_as_zigzag = Protobuf.Decoder.zigzag let int32_as_bits32 = Protobuf.Decoder.bits32 let int64_as_bits64 = Protobuf.Decoder.bits64 let bool d = Protobuf.Decoder.bool_of_int64 "" (Protobuf.Decoder.varint d) let float_as_bits32 d = Int32.float_of_bits (Protobuf.Decoder.bits32 d) let float_as_bits64 d = Int64.float_of_bits (Protobuf.Decoder.bits64 d) let int_as_bits32 d = Protobuf.Decoder.int_of_int32 "" (Protobuf.Decoder.bits32 d) let int_as_bits64 d = Protobuf.Decoder.int_of_int64 "" (Protobuf.Decoder.bits64 d) let string d = Bytes.to_string (Protobuf.Decoder.bytes d) let bytes = Protobuf.Decoder.bytes let wrapper_double_value d = let d = nested d in match key d with | Some (1, Bits64) -> Some (float_as_bits64 d) | _ -> None let wrapper_float_value d = let d = nested d in match key d with | Some (1, Bits32) -> Some (float_as_bits32 d) | _ -> None let wrapper_int64_value d = let d = nested d in match key d with | Some (1, Varint) -> Some (int64_as_varint d) | _ -> None let wrapper_int32_value d = let d = nested d in match key d with | Some (1, Varint) -> Some (int32_as_varint d) | _ -> None let wrapper_bool_value d = let d = nested d in match key d with | Some (1, Varint) -> Some (bool d) | _ -> None let wrapper_string_value d = let d = nested d in match key d with | Some (1, Bytes) -> Some (string d) | _ -> None let wrapper_bytes_value d = let d = nested d in match key d with | Some (1, Bytes) -> Some (bytes d) | _ -> None end module Encoder = struct type t = Protobuf.Encoder.t let create = Protobuf.Encoder.create let to_bytes = Protobuf.Encoder.to_bytes let key = Protobuf.Encoder.key let nested = Protobuf.Encoder.nested let map_entry ~encode_key ~encode_value ((key_value, key_pk), (value_value, value_pk)) t = nested (fun t -> key (1, key_pk) t; encode_key key_value t; key (2, value_pk) t; encode_value value_value t; ) t let empty_nested e = Protobuf.Encoder.varint 0L e let int_as_varint i e = Protobuf.Encoder.varint (Int64.of_int i) e let int_as_zigzag i e = Protobuf.Encoder.zigzag (Int64.of_int i) e let int32_as_varint i e = Protobuf.Encoder.varint (Int64.of_int32 i) e let int32_as_zigzag i e = Protobuf.Encoder.zigzag (Int64.of_int32 i) e let int64_as_varint = Protobuf.Encoder.varint let int64_as_zigzag = Protobuf.Encoder.zigzag let int32_as_bits32 = Protobuf.Encoder.bits32 let int64_as_bits64 = Protobuf.Encoder.bits64 let bool b e = Protobuf.Encoder.varint (if b then 1L else 0L) e let float_as_bits32 f e = Protobuf.Encoder.bits32 (Int32.bits_of_float f) e let float_as_bits64 f e = Protobuf.Encoder.bits64 (Int64.bits_of_float f) e let int_as_bits32 i e = Protobuf.Encoder.bits32 (Int32.of_int i) e let int_as_bits64 i e = Protobuf.Encoder.bits64 (Int64.of_int i) e let string s e = Protobuf.Encoder.bytes (Bytes.of_string s) e let bytes = Protobuf.Encoder.bytes let double_value_key = (1, Protobuf.Bits64) let wrapper_double_value v e = Protobuf.Encoder.nested (fun e -> key double_value_key e; begin match v with | None -> () | Some f -> float_as_bits64 f e end ) e let float_value_key = (1, Protobuf.Bits32) let wrapper_float_value v e = Protobuf.Encoder.nested (fun e -> key float_value_key e; begin match v with | None -> () | Some f -> float_as_bits32 f e end ) e let int64_value_key = (1, Protobuf.Varint) let wrapper_int64_value v e = Protobuf.Encoder.nested (fun e -> key int64_value_key e; begin match v with | None -> () | Some i -> int64_as_varint i e end ) e let int32_value_key = (1, Protobuf.Varint) let wrapper_int32_value v e = Protobuf.Encoder.nested (fun e -> key int32_value_key e; begin match v with | None -> () | Some i -> int32_as_varint i e end ) e let bool_value_key = (1, Protobuf.Varint) let wrapper_bool_value v e = Protobuf.Encoder.nested (fun e -> key bool_value_key e; begin match v with | None -> () | Some b -> bool b e end ) e let string_value_key = (1, Protobuf.Bytes) let wrapper_string_value v e = Protobuf.Encoder.nested (fun e -> key string_value_key e; begin match v with | None -> () | Some s -> string s e end ) e let bytes_value_key = (1, Protobuf.Bytes) let wrapper_bytes_value v e = Protobuf.Encoder.nested (fun e -> key bytes_value_key e; begin match v with | None -> () | Some b -> bytes b e end ) e end module Repeated_field = struct (** [t] is a container optimized for fast repeated inserts. It is made of a list of growing size array [l] as well as a current array [a] in which inserts are performed until [a] is full and appended to [l]. The main growing logic is implemented in the [add] functions. *) type 'a t = { mutable s : int; (* total size (allocated) of the partial array [a] *) mutable i : int; (* current number of inserted element in [a] *) mutable a : 'a array; (* partial array *) mutable l : 'a array list; (* previously filled array [List.hd l] is the last filled array *) } let make v = { s = 16; i = 0; a = Array.make 16 v; l = []; } let of_array_no_copy a = { (* We intentionally don't put [a] argument in [l] directly since it would require the allocation of a new array and an initial value. Since [Array.length a] could be [0] we would not be able to get such a value from the [a] argument. Hence the transfer of [a] to [l] will be done in the subsequent [add v t] call in which [v] argument is used to initialize the new array. *) s = Array.length a; i = Array.length a; a = a; l = []; } let add v ({s; i; a; l} as tmp) = match i with | i when i = s -> ( (* [1.3] is an emperical growth factor found to be a good balance for allocation of a new array. *) tmp.s <- int_of_float (float_of_int s *. 1.3); tmp.i <- 1; tmp.l <- a :: l; tmp.a <- Array.make tmp.s v; ) | i -> ( Array.unsafe_set a i v; tmp.i <- i + 1; ) let to_array {s; i; a; l} = let l = match i with | 0 -> l | i when i = s -> a :: l | i -> (Array.sub a 0 i) :: l in Array.concat (List.rev l) (** [list_rev_iter f l] iterate over the list in reverse order *) let rec list_rev_iter f = function | [] -> () | hd::tl -> ( list_rev_iter f tl; f hd ) let iter f {i; a; l; _} = list_rev_iter (fun a -> let len = Array.length a - 1 in for j = 0 to len do f (Array.unsafe_get a j) done ) l; let len = i - 1 in for j = 0 to len do f (Array.unsafe_get a j) done let iteri f {i; a; l; _} = let counter = ref 0 in list_rev_iter (fun a -> let len = Array.length a - 1 in for j = 0 to len do f !counter (Array.unsafe_get a j); incr counter; done ) l; let len = i - 1 in for j = 0 to len do f !counter (Array.unsafe_get a j); incr counter; done let fold_left f e0 t = let acc = ref e0 in iter (fun e -> acc := f !acc e ) t; !acc let length {s = _ ; i; a=_; l } : int= let len = List.fold_left (fun len a -> len + (Array.length a) ) 0 l in len + i let map_to_array f t = let len = length t in let dest = Array.make len (f @@ Array.unsafe_get t.a 0) in let index = ref 0 in iter (fun e -> Array.unsafe_set dest !index (f e); incr index ) t; dest let map_to_list f ({s = _ ; i; a; l}) = let rec a_to_list a i res = if i < 0 then res else a_to_list a (i - 1) (f (Array.unsafe_get a i) :: res) in (* start with last (partial) array and its last index *) let res = a_to_list a (i - 1) [] in (* go over the filled array *) List.fold_left (fun acc a -> a_to_list a (Array.length a - 1) acc ) res l external identity : 'a -> 'a = "%identity" let to_list t = map_to_list identity t end (* Repeated_field*) module Pp = struct module F = Format type formatter = F.formatter let pp_unit fmt () = F.pp_print_string fmt "()" let pp_int = F.pp_print_int let pp_float = F.pp_print_float let pp_bool = F.pp_print_bool let pp_int32 fmt i = F.pp_print_string fmt (Int32.to_string i) let pp_int64 fmt i = F.pp_print_string fmt (Int64.to_string i) let pp_string fmt s = F.fprintf fmt "\"%a\"" F.pp_print_string s let pp_bytes fmt b = pp_string fmt (Bytes.to_string b) let pp_option pp_f fmt = function | None -> F.fprintf fmt "@[None@]" | Some x -> F.fprintf fmt "@[Some(%a)@]" pp_f x let pp_wrapper_float fmt v = pp_option pp_float fmt v let pp_wrapper_bool fmt v = pp_option pp_bool fmt v let pp_wrapper_int32 fmt v = pp_option pp_int32 fmt v let pp_wrapper_int64 fmt v = pp_option pp_int64 fmt v let pp_wrapper_string fmt v = pp_option pp_string fmt v let pp_wrapper_bytes fmt v = pp_option pp_bytes fmt v let pp_list pp_element fmt l = let rec pp_i fmt = function | [h] -> Format.fprintf fmt "%a" pp_element h | h::t -> Format.fprintf fmt "%a;@,%a" pp_element h pp_i t | [] -> () in F.fprintf fmt "@[<v 1>[%a@,@]]" pp_i l let pp_associative_list pp_key pp_value fmt l = let pp_element fmt (k, v) = F.fprintf fmt "(%a, %a)" pp_key k pp_value v in pp_list pp_element fmt l let pp_hastable pp_key pp_value fmt h = let l = Hashtbl.fold (fun a b l -> (a, b)::l ) h [] in pp_associative_list pp_key pp_value fmt l let pp_record_field field_name pp_val fmt val_ = F.fprintf fmt "@,@[<h>%s = %a;@]" field_name pp_val val_ let pp_brk pp_record (fmt:F.formatter) r : unit = F.fprintf fmt "@[<v>{%a@,@]}" pp_record r end (* Pp *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>