package qcheck-core
Core qcheck library
Install
Dune Dependency
Authors
Maintainers
Sources
v0.25.tar.gz
md5=e1e928bf792c27de5c072f9123eeaec9
sha512=a0b5791cea09f98f1f17221e6289b87a7a1c16ae1c9af0c2e5bd6a170f2cf8727dba0759a7fd932d5d617e8c242562d69187c7e74eefd5262bc5fd75a322699e
doc/src/qcheck-core/QCheck2.ml.html
Source file QCheck2.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
(* QCheck: Random testing for OCaml copyright (c) 2013-2017, Guillaume Bury, Simon Cruanes, Vincent Hugot, Jan Midtgaard, Julien Debon, Valentin Chaboche all rights reserved. *) (** {1 Quickcheck inspired property-based testing} *) let poly_compare=compare module RS = struct (* Poor man's splitter for version < 5.0 *) (* This definition is shadowed by the [include] on OCaml >=5.0 *) (* For the record, this is a hack: Seeding a child RNG based on the output of a parent RNG does not create an independent RNG. *) (* copy of 4.14 Random.State.t to create a record of the right shape *) type rs = { st : int array; mutable idx : int } [@@warning "-69"] let split rs : Random.State.t = let rs' = { st = Array.init 55 (fun _i -> Random.State.bits rs); idx = 0 } in for i = 0 to 54 do rs'.st.(i) <- (rs'.st.(i) lxor rs'.st.((i+1) mod 55)) land 0x3FFFFFFF; done; Obj.magic rs' (* sorry! *) include Random.State (* This is how OCaml 5.0 splits: *) (* Split a new PRNG off the given PRNG *) (* let split s = let i1 = bits64 s in let i2 = bits64 s in let i3 = bits64 s in let i4 = bits64 s in mk i1 i2 i3 i4 *) end let rec foldn ~f ~init:acc i = if i = 0 then acc else foldn ~f ~init:(f acc i) (i-1) let _opt_map_2 ~f a b = match a, b with | Some x, Some y -> Some (f x y) | _ -> None let _opt_map_3 ~f a b c = match a, b, c with | Some x, Some y, Some z -> Some (f x y z) | _ -> None let _opt_map_4 ~f a b c d = match a, b, c, d with | Some x, Some y, Some z, Some w -> Some (f x y z w) | _ -> None let _opt_sum a b = match a, b with | Some _, _ -> a | None, _ -> b let sum_int = List.fold_left (+) 0 let rec list_split l len acc = match len,l with | _,[] | 0,_ -> List.rev acc, l | _,x::xs -> list_split xs (len-1) (x::acc) exception Failed_precondition (* raised if precondition is false *) exception No_example_found of string (* raised if an example failed to be found *) let assume b = if not b then raise Failed_precondition let assume_fail () = raise Failed_precondition let (==>) b1 b2 = if b1 then b2 else raise Failed_precondition (** Enhancement of Stdlib [Seq] to backport some recent functions, and add a few useful others. *) module Seq = struct include Seq (* The following functions are copied from https://github.com/ocaml/ocaml/blob/trunk/stdlib/seq.ml to support older OCaml versions. *) let rec unfold f u () = match f u with | None -> Nil | Some (x, u') -> Cons (x, unfold f u') let rec append seq1 seq2 () = match seq1() with | Nil -> seq2() | Cons (x, next) -> Cons (x, append next seq2) let cons x next () = Cons (x, next) let rec force_drop n xs = match xs() with | Nil -> Nil | Cons (_, xs) -> let n = n - 1 in if n = 0 then xs() else force_drop n xs let drop n xs = if n < 0 then invalid_arg "Seq.drop" else if n = 0 then xs else fun () -> force_drop n xs (* End of copy of old functions. *) let is_empty (seq : _ t) : bool = match seq () with | Nil -> true | _ -> false (** Take at most [n] values. *) let rec take (n : int) (seq : _ t) : _ t = fun () -> match (n, seq ()) with | (0, _) | (_, Nil) -> Nil | (n, Cons (a, rest)) -> Cons (a, take (n - 1) rest) let hd (l : 'a t) : 'a option = match l () with | Nil -> None | Cons (hd, _) -> Some hd (** Useful to improve [Seq] code perf when chaining functions *) let apply (l : 'a t) : 'a node = l () end module Shrink = struct module type Number = sig type t val equal : t -> t -> bool val div : t -> t -> t val add : t -> t -> t val sub : t -> t -> t val of_int : int -> t end let number_towards (type a) (module Number : Number with type t = a) ~(destination : a) (x : a) : a Seq.t = fun () -> Seq.unfold (fun current_shrink -> if Number.equal current_shrink x then None else ( (* Halve the operands before subtracting them so they don't overflow. Consider [number_towards min_int max_int] *) let half_diff = Number.sub (Number.div x (Number.of_int 2)) (Number.div current_shrink (Number.of_int 2)) in if half_diff = Number.of_int 0 (* [current_shrink] is the last valid shrink candidate, put [x] as next step to make sure we stop *) then Some (current_shrink, x) else Some (current_shrink, Number.add current_shrink half_diff) )) destination () let int_towards destination x = fun () -> let module Int : Number with type t = int = struct include Int let of_int = Fun.id end in number_towards (module Int) ~destination x () let int32_towards destination x = fun () -> number_towards (module Int32) ~destination x () let int64_towards destination x = fun () -> number_towards (module Int64) ~destination x () (** Arbitrarily limit to 15 elements as dividing a [float] by 2 doesn't converge quickly towards the destination. *) let float_towards destination x = fun () -> number_towards (module Float) ~destination x |> Seq.take 15 |> Seq.apply let int_aggressive_towards (destination : int) (n : int) : int Seq.t = fun () -> Seq.unfold (fun current -> if current = n then None else if current < n then let next = succ current in Some (next, next) else let next = pred current in Some (next, next) ) destination () let int_aggressive n = fun () -> int_aggressive_towards 0 n () end module Tree = struct type 'a t = Tree of 'a * ('a t) Seq.t let root (Tree (root, _) : 'a t) : 'a = root let children (Tree (_, children) : 'a t) : ('a t) Seq.t = children let rec pp ?(depth : int option) (inner_pp : Format.formatter -> 'a -> unit) (ppf : Format.formatter) (t : 'a t) : unit = let Tree (x, xs) = t in let wrapper_box ppf inner = Format.fprintf ppf "@[<hv2>Tree(@,%a@]@,)" inner () in let inner ppf () = Format.fprintf ppf "@[<hv2>Node(@,%a@]@,),@ @[<hv>Shrinks(" inner_pp x; if Option.fold depth ~none:false ~some:(fun depth -> depth <= 0) then ( Format.fprintf ppf "<max depth reached>@])") else if Seq.is_empty xs then Format.fprintf ppf "@])" else ( Format.fprintf ppf "@,%a@]@,)" (Format.pp_print_list ~pp_sep:(fun ppf () -> Format.fprintf ppf ",@ ") (pp ?depth:(Option.map pred depth) inner_pp)) (List.of_seq xs); ) in wrapper_box ppf inner let rec map (f : 'a -> 'b) (a : 'a t) : 'b t = let Tree (x, xs) = a in let y = f x in let ys = fun () -> Seq.map (fun smaller_x -> map f smaller_x) xs () in Tree (y, ys) (** Note that parameter order is reversed. *) let (>|=) a f = map f a let rec ap (f : ('a -> 'b) t) (a : 'a t) : 'b t = let Tree (x0, xs) = a in let Tree (f0, fs) = f in let y = f0 x0 in let ys = fun () -> Seq.append (Seq.map (fun f' -> ap f' a) fs) (Seq.map (fun x' -> ap f x') xs) () in Tree (y, ys) let (<*>) = ap let liftA2 (f : 'a -> 'b -> 'c) (a : 'a t) (b : 'b t) : 'c t = (a >|= f) <*> b let rec bind (a : 'a t) (f : 'a -> 'b t) : 'b t = let Tree (x, xs) = a in let Tree (y, ys_of_x) = f x in let ys_of_xs = fun () -> Seq.map (fun smaller_x -> bind smaller_x f) xs () in let ys = fun () -> Seq.append ys_of_xs ys_of_x () in Tree (y, ys) let (>>=) = bind let pure x = Tree (x, Seq.empty) let rec make_primitive (shrink : 'a -> 'a Seq.t) (x : 'a) : 'a t = let shrink_trees = fun () -> shrink x |> Seq.map (make_primitive shrink) |> Seq.apply in Tree (x, shrink_trees) let rec opt (a : 'a t) : 'a option t = let Tree (x, xs) = a in let shrinks = fun () -> Seq.cons (pure None) (Seq.map opt xs) () in Tree (Some x, shrinks) let rec sequence_list (l : 'a t list) : 'a list t = match l with | [] -> pure [] | hd :: tl -> liftA2 List.cons hd (sequence_list tl) let rec add_shrink_invariant (p : 'a -> bool) (a : 'a t) : 'a t = let Tree (x, xs) = a in let xs' = fun () -> Seq.filter_map (fun (Tree (x', _) as t) -> if p x' then Some (add_shrink_invariant p t) else None) xs () in Tree (x, xs') (** [applicative_take n trees] returns a tree of lists with at most the [n] first elements of the input list. *) let rec applicative_take (n : int) (l : 'a t list) : 'a list t = match (n, l) with | (0, _) | (_, []) -> pure [] | (n, (tree :: trees)) -> liftA2 List.cons tree (applicative_take (pred n) trees) (** [drop_one l []] returns all versions of [l] with one element removed, for example [drop_one [1;2;3] [] = [ [2;3]; [1;3]; [1;2] ]] *) let rec drop_one (l : 'a list) (rev_prefix : 'a list) : 'a list list = match l with | [] -> [] | x::xs -> (List.rev rev_prefix @ xs) :: drop_one xs (x::rev_prefix) let rec build_list_shrink_tree (l : 'a t list) : 'a list t Seq.t = match l with | [] -> Seq.empty | _::_ -> fun () -> let len = List.length l in if len < 4 then let candidates = drop_one l [] in List.fold_right (* try dropping each element in turn, starting with the list head *) (fun cand acc -> Seq.cons (Tree (List.map root cand, build_list_shrink_tree cand)) acc) candidates (fun () -> children (sequence_list l) ()) () (* otherwise, reduce element(s) *) else let xs,ys = list_split l ((1 + len) / 2) [] in let xs_roots = List.map root xs in let ys_roots = List.map root ys in (* Try reducing a list [1;2;3;4] in halves: [1;2] and [3;4] *) Seq.cons (Tree (xs_roots, build_list_shrink_tree xs)) (Seq.cons (Tree (ys_roots, build_list_shrink_tree ys)) (fun () -> (* Try dropping an element from either half: [2;3;4] and [1;2;4] *) let rest = List.tl l in let rest_roots = List.map root rest in (Seq.cons (Tree (rest_roots, build_list_shrink_tree rest)) (Seq.cons (Tree (xs_roots@(List.tl ys_roots), build_list_shrink_tree (xs@(List.tl ys)))) (fun () -> children (sequence_list l) ()))) (* at bottom: reduce elements *) () )) () end module Gen = struct type 'a t = RS.t -> 'a Tree.t type 'a sized = int -> RS.t -> 'a Tree.t let map f x = fun st -> Tree.map f (x st) (** Note that parameter order is reversed. *) let (>|=) x f = map f x let (<$>) = map let pure (a : 'a) : 'a t = fun _ -> Tree.pure a let ap (f : ('a -> 'b) t) (x : 'a t) : 'b t = fun st -> let st' = RS.split st in let ftree = f st in let xtree = x st' in Tree.ap ftree xtree let (<*>) = ap let liftA2 (f : 'a -> 'b -> 'c) (a : 'a t) (b : 'b t) : 'c t = (a >|= f) <*> b let liftA3 (f : 'a -> 'b -> 'c -> 'd) (a : 'a t) (b : 'b t) (c : 'c t) : 'd t = (a >|= f) <*> b <*> c let liftA4 (f : 'a -> 'b -> 'c -> 'd -> 'e) (a : 'a t) (b : 'b t) (c : 'c t) (d : 'd t) : 'e t = (a >|= f) <*> b <*> c <*> d let liftA5 (f : 'a -> 'b -> 'c -> 'd -> 'e -> 'f) (a : 'a t) (b : 'b t) (c : 'c t) (d : 'd t) (e : 'e t) : 'f t = (a >|= f) <*> b <*> c <*> d <*> e let map2 = liftA2 let map3 = liftA3 let map4 = liftA4 let map5 = liftA5 let return = pure let bind (gen : 'a t) (f : 'a -> ('b t)) : 'b t = fun st -> let st' = RS.split st in let gentree = gen st in Tree.bind gentree (fun a -> f a (RS.copy st')) let (>>=) = bind let sequence_list (l : 'a t list) : 'a list t = fun st -> List.map (fun gen -> gen st) l |> Tree.sequence_list let make_primitive ~(gen : RS.t -> 'a) ~(shrink : 'a -> 'a Seq.t) : 'a t = fun st -> Tree.make_primitive shrink (gen st) let parse_origin (loc : string) (pp : Format.formatter -> 'a -> unit) ~(origin : 'a) ~(low : 'a) ~(high : 'a) : 'a = if origin < low then invalid_arg Format.(asprintf "%s: origin value %a is lower than low value %a" loc pp origin pp low) else if origin > high then invalid_arg Format.(asprintf "%s: origin value %a is greater than high value %a" loc pp origin pp high) else origin let small_nat : int t = fun st -> let p = RS.float st 1. in let x = if p < 0.75 then RS.int st 10 else RS.int st 100 in let shrink a = fun () -> Shrink.int_towards 0 a () in Tree.make_primitive shrink x (** Natural number generator *) let nat : int t = fun st -> let p = RS.float st 1. in let x = if p < 0.5 then RS.int st 10 else if p < 0.75 then RS.int st 100 else if p < 0.95 then RS.int st 1_000 else RS.int st 10_000 in let shrink a = fun () -> Shrink.int_towards 0 a () in Tree.make_primitive shrink x let big_nat : int t = fun st -> let p = RS.float st 1. in if p < 0.75 then nat st else let shrink a = fun () -> Shrink.int_towards 0 a () in Tree.make_primitive shrink (RS.int st 1_000_000) let unit : unit t = fun _st -> Tree.pure () let bool : bool t = fun st -> let false_gen = Tree.pure false in if RS.bool st then Tree.Tree (true, Seq.return false_gen) else false_gen let float : float t = fun st -> let x = exp (RS.float st 15. *. (if RS.bool st then 1. else -1.)) *. (if RS.bool st then 1. else -1.) in let shrink a = fun () -> Shrink.float_towards 0. a () in Tree.make_primitive shrink x let pfloat : float t = float >|= abs_float let nfloat : float t = pfloat >|= Float.neg let float_bound_inclusive ?(origin : float = 0.) (bound : float) : float t = fun st -> let (low, high) = Float.min_max_num 0. bound in let shrink a = fun () -> let origin = parse_origin "Gen.float_bound_inclusive" Format.pp_print_float ~origin ~low ~high in Shrink.float_towards origin a () in let x = RS.float st bound in Tree.make_primitive shrink x let float_bound_exclusive ?(origin : float = 0.) (bound : float) : float t = if bound = 0. then invalid_arg "Gen.float_bound_exclusive"; fun st -> let (low, high) = Float.min_max_num 0. bound in let shrink a = fun () -> let origin = parse_origin "Gen.float_bound_exclusive" Format.pp_print_float ~origin ~low ~high in Shrink.float_towards origin a () in let bound = if bound > 0. then bound -. epsilon_float else bound +. epsilon_float in let x = RS.float st bound in Tree.make_primitive shrink x let pick_origin_within_range ~low ~high ~goal = if low > goal then low else if high < goal then high else goal let float_range ?(origin : float option) (low : float) (high : float) : float t = if high < low then invalid_arg "Gen.float_range: high < low" else if high -. low > max_float then invalid_arg "Gen.float_range: high -. low > max_float"; let origin = parse_origin "Gen.float_range" Format.pp_print_float ~origin:(Option.value ~default:(pick_origin_within_range ~low ~high ~goal:0.) origin) ~low ~high in (float_bound_inclusive ~origin (high -. low)) >|= (fun x -> low +. x) let (--.) low high = float_range ?origin:None low high let exponential (mean : float) = if Float.is_nan mean then invalid_arg "Gen.exponential"; let unit_gen = float_bound_inclusive 1.0 in map (fun p -> -. mean *. (log p)) unit_gen (* See https://en.wikipedia.org/wiki/Relationships_among_probability_distributions *) let neg_int : int t = nat >|= Int.neg (** [option gen] shrinks towards [None] then towards shrinks of [gen]. *) let option ?(ratio : float = 0.85) (gen : 'a t) : 'a option t = fun st -> let p = RS.float st 1. in if p < (1. -. ratio) then Tree.pure None else Tree.opt (gen st) (** [opt] is an alias of {!val:option} for backward compatibility. *) let opt = option let result ?(ratio : float = 0.75) (ok_gen : 'a t) (err_gen : 'e t) : ('a, 'e) result t = fun st -> let p = RS.float st 1. in if p < (1. -. ratio) then Tree.map (fun e -> Error e) (err_gen st) else Tree.map (fun o -> Ok o) (ok_gen st) (* Uniform positive random int generator. We can't use {!RS.int} because the upper bound must be positive and is excluded, so {!Int.max_int} would never be reached. We have to manipulate bits directly. Note that the leftmost bit is used for negative numbers, so it must be [0]. {!RS.bits} only generates 30 bits, which is exactly enough on 32-bits architectures (i.e. {!Sys.int_size} = 31, i.e. 30 bits for positive numbers) but not on 64-bits ones. That's why for 64-bits, 3 30-bits segments are generated and shifted to craft a 62-bits number (i.e. {!Sys.int_size} = 63). The leftmost segment is masked to keep only the last 2 bits. The current implementation hard-codes 30/32/62/64 values, but technically we should rely on {!Sys.int_size} to find the number of bits. Note that we could also further generalize this function to merge it with [random_binary_string]. Technically this function is a special case of [random_binary_string] where the size is {!Sys.int_size}. *) let pint_raw : RS.t -> int = if Sys.word_size = 32 then fun st -> RS.bits st else (* word size = 64 *) fun st -> (* Technically we could write [3] but this is clearer *) let two_bits_mask = 0b11 in (* Top 2 bits *) let left = ((RS.bits st land two_bits_mask) lsl 60) in (* Middle 30 bits *) let middle = (RS.bits st lsl 30) in (* Bottom 30 bits *) let right = RS.bits st in left lor middle lor right let pint ?(origin : int = 0) : int t = fun st -> let x = pint_raw st in let shrink a = fun () -> let origin = parse_origin "Gen.pint" Format.pp_print_int ~origin ~low:0 ~high:max_int in Shrink.int_towards origin a () in Tree.make_primitive shrink x let number_towards = Shrink.number_towards let int_towards = Shrink.int_towards let int64_towards = Shrink.int64_towards let int32_towards = Shrink.int32_towards let float_towards = Shrink.float_towards let int : int t = bool >>= fun b -> if b then pint ~origin:0 >|= (fun n -> - n - 1) else pint ~origin:0 let int_bound (n : int) : int t = if n < 0 then invalid_arg "Gen.int_bound"; fun st -> if n <= (1 lsl 30) - 2 then Tree.make_primitive (fun a () -> Shrink.int_towards 0 a ()) (RS.int st (n + 1)) else Tree.map (fun r -> r mod (n + 1)) (pint st) (** To support ranges wider than [Int.max_int], the general idea is to find the center, and generate a random half-difference number as well as whether we add or subtract that number from the center. *) let int_range ?(origin : int option) (low : int) (high : int) : int t = if high < low then invalid_arg "Gen.int_range: high < low"; fun st -> let Tree.Tree(n, _shrinks) = if low >= 0 || high < 0 then ( (* range smaller than max_int *) Tree.map (fun n -> low + n) (int_bound (high - low) st) ) else ( (* range potentially bigger than max_int: we split on 0 and choose the interval with regard to their size ratio *) let f_low = float_of_int low in let f_high = float_of_int high in let ratio = (-.f_low) /. (1. +. f_high -. f_low) in if RS.float st 1. <= ratio then Tree.map (fun n -> -n - 1) (int_bound (- (low + 1)) st) else int_bound high st ) in let shrink a = fun () -> let origin = match origin with | None -> pick_origin_within_range ~low ~high ~goal:0 | Some origin -> if origin < low then invalid_arg "Gen.int_range: origin < low" else if origin > high then invalid_arg "Gen.int_range: origin > high" else origin in Shrink.int_towards origin a () in Tree.make_primitive shrink n let (--) low high = int_range ?origin:None low high let oneof (l : 'a t list) : 'a t = int_bound (List.length l - 1) >>= List.nth l let oneofl (l : 'a list) : 'a t = int_bound (List.length l - 1) >|= List.nth l let oneofa (a : 'a array) : 'a t = int_bound (Array.length a - 1) >|= Array.get a (* NOTE: we keep this alias to not break code that uses [small_int] for sizes of strings, arrays, etc. *) let small_int = small_nat let small_signed_int : int t = fun st -> if RS.bool st then small_nat st else (small_nat >|= Int.neg) st (** Shrink towards the first element of the list *) let frequency (l : (int * 'a t) list) : 'a t = if l = [] then failwith "QCheck2.frequency called with an empty list"; let sums = sum_int (List.map fst l) in if sums < 1 then failwith "QCheck2.frequency called with weight sum < 1"; int_bound (sums - 1) >>= fun i -> let rec aux acc = function | ((x, g) :: xs) -> if i < acc + x then g else aux (acc + x) xs | _ -> assert false in aux 0 l let frequencyl (l : (int * 'a) list) : 'a t = List.map (fun (weight, value) -> (weight, pure value)) l |> frequency let frequencya a = frequencyl (Array.to_list a) let char_range ?(origin : char option) (a : char) (b : char) : char t = (int_range ~origin:(Char.code (Option.value ~default:a origin)) (Char.code a) (Char.code b)) >|= Char.chr let random_binary_string (length : int) (st : RS.t) : string = (* 0b011101... *) let s = Bytes.create (length + 2) in Bytes.set s 0 '0'; Bytes.set s 1 'b'; for i = 0 to length - 1 do Bytes.set s (i+2) (if RS.bool st then '0' else '1') done; Bytes.unsafe_to_string s let int32 : int32 t = fun st -> let x = random_binary_string 32 st |> Int32.of_string in let shrink a = fun () -> Shrink.int32_towards 0l a () in Tree.make_primitive shrink x let ui32 : int32 t = map Int32.abs int32 let int64 : int64 t = fun st -> let x = random_binary_string 64 st |> Int64.of_string in let shrink a = fun () -> Shrink.int64_towards 0L a () in Tree.make_primitive shrink x let ui64 : int64 t = map Int64.abs int64 (* A tail-recursive implementation over Tree.t *) let list_size (size : int t) (gen : 'a t) : 'a list t = fun st -> let st' = RS.split st in Tree.bind (size st) @@ fun size -> let st' = RS.copy st' in (* start each loop from same Random.State to recreate same element (prefix) *) let rec loop n acc = (* phase 1: build a list of element trees, tail recursively *) if n <= 0 (* phase 2: build a list shrink Tree of element trees, tail recursively *) then List.fold_left (fun acc t -> Tree.liftA2 List.cons t acc) (Tree.pure []) acc else (loop [@tailcall]) (n - 1) ((gen st')::acc) in loop size [] (** [list_ignore_size_tree] is a helper applying its own size shrinking heuristic, and thus using only the root of [size]'s output shrink [Tree]. *) let list_ignore_size_tree (size : int t) (gen : 'a t) : 'a list t = fun st -> let st' = RS.split st in let size = Tree.root (size st) in let st' = RS.copy st' in (* start each loop from same Random.State to recreate same element (prefix) *) let rec loop n acc = (* phase 1: build a list of element trees, tail recursively *) if n <= 0 (* phase 2: build a list shrink Tree of element trees, tail recursively *) then let l = List.rev acc in Tree.Tree (List.map Tree.root l, Tree.build_list_shrink_tree l) else (loop [@tailcall]) (n - 1) ((gen st')::acc) in loop size [] let list (gen : 'a t) : 'a list t = list_ignore_size_tree nat gen let list_repeat (n : int) (gen : 'a t) : 'a list t = list_size (pure n) gen let array_size (size : int t) (gen : 'a t) : 'a array t = (list_size size gen) >|= Array.of_list let array (gen : 'a t) : 'a array t = list gen >|= Array.of_list let array_repeat (n : int) (gen : 'a t) : 'a array t = list_repeat n gen >|= Array.of_list let rec flatten_l (l : 'a t list) : 'a list t = match l with | [] -> pure [] | gen :: gens -> liftA2 List.cons gen (flatten_l gens) let flatten_a (a : 'a t array) : 'a array t = Array.to_list a |> flatten_l >|= Array.of_list let flatten_opt (o : 'a t option) : 'a option t = match o with | None -> pure None | Some gen -> option gen let flatten_res (res : ('a t, 'e) result) : ('a, 'e) result t = match res with | Ok gen -> gen >|= Result.ok | Error e -> pure (Error e) let shuffle_a (a : 'a array) : 'a array t = fun st -> let a = Array.copy a in for i = Array.length a - 1 downto 1 do let j = RS.int st (i + 1) in let tmp = a.(i) in a.(i) <- a.(j); a.(j) <- tmp; done; Tree.pure a let shuffle_l (l : 'a list) : 'a list t = Array.of_list l |> shuffle_a >|= Array.to_list let shuffle_w_l (l : ((int * 'a) list)) : 'a list t = fun st -> let sample (w, v) = let Tree.Tree (p, _) = float_bound_inclusive 1. st in let fl_w = float_of_int w in (p ** (1. /. fl_w), v) in let samples = List.rev_map sample l in samples |> List.sort (fun (w1, _) (w2, _) -> poly_compare w1 w2) |> List.rev_map snd |> Tree.pure let pair (g1 : 'a t) (g2 : 'b t) : ('a * 'b) t = liftA2 (fun a b -> (a, b)) g1 g2 let triple (g1 : 'a t) (g2 : 'b t) (g3 : 'c t) : ('a * 'b * 'c) t = (fun a b c -> (a, b, c)) <$> g1 <*> g2 <*> g3 let quad (g1 : 'a t) (g2 : 'b t) (g3 : 'c t) (g4 : 'd t) : ('a * 'b * 'c * 'd) t = (fun a b c d -> (a, b, c, d)) <$> g1 <*> g2 <*> g3 <*> g4 let tup2 = pair let tup3 = triple let tup4 = quad let tup5 (g1 : 'a t) (g2 : 'b t) (g3 : 'c t) (g4 : 'd t) (g5 : 'e t) : ('a * 'b * 'c * 'd * 'e) t = (fun a b c d e -> (a, b, c, d, e)) <$> g1 <*> g2 <*> g3 <*> g4 <*> g5 let tup6 (g1 : 'a t) (g2 : 'b t) (g3 : 'c t) (g4 : 'd t) (g5 : 'e t) (g6 : 'f t) : ('a * 'b * 'c * 'd * 'e * 'f) t = (fun a b c d e f -> (a, b, c, d, e, f)) <$> g1 <*> g2 <*> g3 <*> g4 <*> g5 <*> g6 let tup7 (g1 : 'a t) (g2 : 'b t) (g3 : 'c t) (g4 : 'd t) (g5 : 'e t) (g6 : 'f t) (g7 : 'g t) : ('a * 'b * 'c * 'd * 'e * 'f * 'g) t = (fun a b c d e f g -> (a, b, c, d, e, f, g)) <$> g1 <*> g2 <*> g3 <*> g4 <*> g5 <*> g6 <*> g7 let tup8 (g1 : 'a t) (g2 : 'b t) (g3 : 'c t) (g4 : 'd t) (g5 : 'e t) (g6 : 'f t) (g7 : 'g t) (g8 : 'h t) : ('a * 'b * 'c * 'd * 'e * 'f * 'g * 'h) t = (fun a b c d e f g h -> (a, b, c, d, e, f, g, h)) <$> g1 <*> g2 <*> g3 <*> g4 <*> g5 <*> g6 <*> g7 <*> g8 let tup9 (g1 : 'a t) (g2 : 'b t) (g3 : 'c t) (g4 : 'd t) (g5 : 'e t) (g6 : 'f t) (g7 : 'g t) (g8 : 'h t) (g9 : 'i t) : ('a * 'b * 'c * 'd * 'e * 'f * 'g * 'h * 'i) t = (fun a b c d e f g h i -> (a, b, c, d, e, f, g, h, i)) <$> g1 <*> g2 <*> g3 <*> g4 <*> g5 <*> g6 <*> g7 <*> g8 <*> g9 (** Don't reuse {!int_range} which is much less performant (many more checks because of the possible range and origins). As a [string] generator may call this hundreds or even thousands of times for a single value, it's worth optimizing. *) let char : char t = fun st -> let c = RS.int st 256 in let shrink a = fun () -> Shrink.int_towards (int_of_char 'a') a |> Seq.apply in Tree.map char_of_int (Tree.make_primitive shrink c) (** The first characters are the usual lower case alphabetical letters to help shrinking. *) let printable_chars : char list = (* Left and right inclusive *) let range min max = List.init (max - min + 1) (fun i -> char_of_int (i + min)) in let a = 97 in let z = 122 in let lower_alphabet = range a z in (* ' ' *) let first_printable_char = 32 in let before_lower_alphabet = range first_printable_char (a - 1) in (* '~' *) let last_printable_char = 126 in let after_lower_alphabet = range (z + 1) last_printable_char in let newline = ['\n'] in (* Put alphabet first for shrinking *) List.flatten [lower_alphabet; before_lower_alphabet; after_lower_alphabet; newline] let printable : char t = int_range ~origin:0 0 (List.length printable_chars - 1) >|= List.nth printable_chars let numeral : char t = let zero = 48 in let nine = 57 in int_range ~origin:zero zero nine >|= char_of_int let bytes_size ?(gen = char) (size : int t) : bytes t = fun st -> let open Tree in let st' = RS.split st in size st >>= fun size -> (* Adding char shrinks to a mutable list is expensive: ~20-30% cost increase *) (* Adding char shrinks to a mutable lazy list is less expensive: ~15% cost increase *) let st' = RS.copy st' in (* start char generation from same Random.State to recreate same char prefix (when size shrinking) *) let char_trees_rev = ref [] in let bytes = Bytes.init size (fun _ -> let char_tree = gen st' in char_trees_rev := char_tree :: !char_trees_rev ; (* Performance: return the root right now, the heavy processing of shrinks can wait until/if there is a need to shrink *) root char_tree) in let shrink = fun () -> let char_trees = List.rev !char_trees_rev in let char_list_tree = sequence_list char_trees in let bytes_tree = char_list_tree >|= (fun char_list -> let bytes = Bytes.create size in List.iteri (Bytes.set bytes) char_list ; bytes) in (* Technically [bytes_tree] is the whole tree, but for perf reasons we eagerly created the root above *) children bytes_tree () in Tree (bytes, shrink) let string_size ?(gen = char) (size : int t) : string t = bytes_size ~gen size >|= Bytes.unsafe_to_string let bytes_of_char_list cs = let b = Buffer.create (List.length cs) in List.iter (fun c -> Buffer.add_char b c) cs; let bytes = Buffer.to_bytes b in Buffer.clear b; bytes let bytes : bytes t = list char >|= bytes_of_char_list let bytes_of gen = list gen >|= bytes_of_char_list let bytes_printable = list printable >|= bytes_of_char_list let bytes_small = list_ignore_size_tree small_nat char >|= bytes_of_char_list let bytes_small_of gen = list_ignore_size_tree small_nat gen >|= bytes_of_char_list let string_of_char_list cs = let b = Buffer.create (List.length cs) in List.iter (fun c -> Buffer.add_char b c) cs; let str = Buffer.contents b in Buffer.clear b; str let string : string t = list char >|= string_of_char_list let string_of gen = list gen >|= string_of_char_list let string_printable = list printable >|= string_of_char_list let string_small = list_ignore_size_tree small_nat char >|= string_of_char_list let string_small_of gen = list_ignore_size_tree small_nat gen >|= string_of_char_list let small_string ?(gen=char) = string_small_of gen let small_list gen = list_ignore_size_tree small_nat gen let small_array gen = list_ignore_size_tree small_nat gen >|= Array.of_list let join (gen : 'a t t) : 'a t = gen >>= Fun.id (* corner cases *) let graft_corners (gen : 'a t) (corners : 'a list) () : 'a t = let cors = ref corners in fun st -> match !cors with [] -> gen st | e::l -> cors := l; Tree.pure e let int_pos_corners = [0; 1; 2; max_int] let int_corners = int_pos_corners @ [min_int] let small_int_corners () : int t = graft_corners nat int_pos_corners () (* sized, fix *) let sized_size (size : int t) (gen : 'a sized) : 'a t = size >>= gen let sized (gen : 'a sized) : 'a t = sized_size nat gen let fix f = let rec f' n st = f f' n st in f' let generate ?(rand=RS.make_self_init()) ~(n : int) (gen : 'a t) : 'a list = list_repeat n gen rand |> Tree.root let generate1 ?(rand=RS.make_self_init()) (gen : 'a t) : 'a = gen rand |> Tree.root let generate_tree ?(rand=RS.make_self_init()) (gen : 'a t) : 'a Tree.t = gen rand let delay (f : unit -> 'a t) : 'a t = fun st -> f () st let add_shrink_invariant (p : 'a -> bool) (gen : 'a t) : 'a t = fun st -> gen st |> Tree.add_shrink_invariant p let set_shrink shrink gen = make_primitive ~gen:(fun st -> gen st |> Tree.root) ~shrink let no_shrink (gen: 'a t) : 'a t = set_shrink (fun _ -> Seq.empty) gen let (let+) = (>|=) let (and+) = pair let (let*) = (>>=) let (and*) = pair end module Print = struct type 'a t = 'a -> string let unit _ = "()" let int = string_of_int let int32 i = Int32.to_string i ^ "l" let int64 i = Int64.to_string i ^ "L" let bool = string_of_bool let float = string_of_float let string s = Printf.sprintf "%S" s let bytes b = string (Bytes.to_string b) let char c = Printf.sprintf "%C" c let option f = function | None -> "None" | Some x -> "Some (" ^ f x ^ ")" let result vp ep = function | Error e -> "Error (" ^ ep e ^ ")" | Ok v -> "Ok (" ^ vp v ^ ")" let pair a b (x,y) = Printf.sprintf "(%s, %s)" (a x) (b y) let triple a b c (x,y,z) = Printf.sprintf "(%s, %s, %s)" (a x) (b y) (c z) let quad a b c d (x,y,z,w) = Printf.sprintf "(%s, %s, %s, %s)" (a x) (b y) (c z) (d w) let list pp l = let b = Buffer.create 25 in Buffer.add_char b '['; List.iteri (fun i x -> if i > 0 then Buffer.add_string b "; "; Buffer.add_string b (pp x)) l; Buffer.add_char b ']'; Buffer.contents b let array pp a = let b = Buffer.create 25 in Buffer.add_string b "[|"; Array.iteri (fun i x -> if i > 0 then Buffer.add_string b "; "; Buffer.add_string b (pp x)) a; Buffer.add_string b "|]"; Buffer.contents b let contramap f p x = p (f x) let comap = contramap let default = fun _ -> "<no printer>" let tup2 p_a p_b (a, b) = Printf.sprintf "(%s, %s)" (p_a a) (p_b b) let tup2_opt p_a p_b (a, b) = let p_a = Option.value ~default p_a in let p_b = Option.value ~default p_b in tup2 p_a p_b (a, b) let tup3 p_a p_b (p_c) (a, b, c) = Printf.sprintf "(%s, %s, %s)" (p_a a) (p_b b) (p_c c) let tup3_opt p_a p_b p_c (a, b, c) = let p_a = Option.value ~default p_a in let p_b = Option.value ~default p_b in let p_c = Option.value ~default p_c in tup3 p_a p_b p_c (a, b, c) let tup4 p_a p_b p_c p_d (a, b, c, d) = Printf.sprintf "(%s, %s, %s, %s)" (p_a a) (p_b b) (p_c c) (p_d d) let tup4_opt p_a p_b p_c p_d (a, b, c, d) = let p_a = Option.value ~default p_a in let p_b = Option.value ~default p_b in let p_c = Option.value ~default p_c in let p_d = Option.value ~default p_d in tup4 p_a p_b p_c p_d (a, b, c, d) let tup5 p_a p_b p_c p_d p_e (a, b, c, d, e) = Printf.sprintf "(%s, %s, %s, %s, %s)" (p_a a) (p_b b) (p_c c) (p_d d) (p_e e) let tup5_opt p_a p_b p_c p_d p_e (a, b, c, d, e) = let p_a = Option.value ~default p_a in let p_b = Option.value ~default p_b in let p_c = Option.value ~default p_c in let p_d = Option.value ~default p_d in let p_e = Option.value ~default p_e in tup5 p_a p_b p_c p_d p_e (a, b, c, d, e) let tup6 p_a p_b p_c p_d p_e p_f (a, b, c, d, e, f) = Printf.sprintf "(%s, %s, %s, %s, %s, %s)" (p_a a) (p_b b) (p_c c) (p_d d) (p_e e) (p_f f) let tup6_opt p_a p_b p_c p_d p_e p_f (a, b, c, d, e, f) = let p_a = Option.value ~default p_a in let p_b = Option.value ~default p_b in let p_c = Option.value ~default p_c in let p_d = Option.value ~default p_d in let p_e = Option.value ~default p_e in let p_f = Option.value ~default p_f in tup6 p_a p_b p_c p_d p_e p_f (a, b, c, d, e, f) let tup7 p_a p_b p_c p_d p_e p_f p_g (a, b, c, d, e, f, g) = Printf.sprintf "(%s, %s, %s, %s, %s, %s, %s)" (p_a a) (p_b b) (p_c c) (p_d d) (p_e e) (p_f f) (p_g g) let tup7_opt p_a p_b p_c p_d p_e p_f p_g (a, b, c, d, e, f, g) = let p_a = Option.value ~default p_a in let p_b = Option.value ~default p_b in let p_c = Option.value ~default p_c in let p_d = Option.value ~default p_d in let p_e = Option.value ~default p_e in let p_f = Option.value ~default p_f in let p_g = Option.value ~default p_g in tup7 p_a p_b p_c p_d p_e p_f p_g (a, b, c, d, e, f, g) let tup8 p_a p_b p_c p_d p_e p_f p_g p_h (a, b, c, d, e, f, g, h) = Printf.sprintf "(%s, %s, %s, %s, %s, %s, %s, %s)" (p_a a) (p_b b) (p_c c) (p_d d) (p_e e) (p_f f) (p_g g) (p_h h) let tup8_opt p_a p_b p_c p_d p_e p_f p_g p_h (a, b, c, d, e, f, g, h) = let p_a = Option.value ~default p_a in let p_b = Option.value ~default p_b in let p_c = Option.value ~default p_c in let p_d = Option.value ~default p_d in let p_e = Option.value ~default p_e in let p_f = Option.value ~default p_f in let p_g = Option.value ~default p_g in let p_h = Option.value ~default p_h in tup8 p_a p_b p_c p_d p_e p_f p_g p_h (a, b, c, d, e, f, g, h) let tup9 p_a p_b p_c p_d p_e p_f p_g p_h p_i (a, b, c, d, e, f, g, h, i) = Printf.sprintf "(%s, %s, %s, %s, %s, %s, %s, %s, %s)" (p_a a) (p_b b) (p_c c) (p_d d) (p_e e) (p_f f) (p_g g) (p_h h) (p_i i) let tup9_opt p_a p_b p_c p_d p_e p_f p_g p_h p_i (a, b, c, d, e, f, g, h, i) = let p_a = Option.value ~default p_a in let p_b = Option.value ~default p_b in let p_c = Option.value ~default p_c in let p_d = Option.value ~default p_d in let p_e = Option.value ~default p_e in let p_f = Option.value ~default p_f in let p_g = Option.value ~default p_g in let p_h = Option.value ~default p_h in let p_i = Option.value ~default p_i in tup9 p_a p_b p_c p_d p_e p_f p_g p_h p_i (a, b, c, d, e, f, g, h, i) end (** {2 Observe Values} *) module Observable = struct (** An observable is a (random) predicate on ['a] *) type -'a t = { print: 'a Print.t; eq: ('a -> 'a -> bool); hash: ('a -> int); } let hash o x = o.hash x let equal o x y = o.eq x y let print o x = o.print x let make ?(eq=(=)) ?(hash=Hashtbl.hash) print = {print; eq; hash; } module H = struct let combine a b = Hashtbl.seeded_hash a b let combine_f f s x = Hashtbl.seeded_hash s (f x) let int i = i land max_int let int32 (i:int32) = Hashtbl.hash i let int64 (i:int64) = Hashtbl.hash i let bool b = if b then 1 else 2 let char x = Char.code x let bytes (x:bytes) = Hashtbl.hash x let string (x:string) = Hashtbl.hash x let option f = function | None -> 42 | Some x -> combine 43 (f x) let result vh eh = function | Error e -> combine 17 (eh e) | Ok v -> combine 19 (vh v) let list f l = List.fold_left (combine_f f) 0x42 l let array f l = Array.fold_left (combine_f f) 0x42 l let pair f g (x,y) = combine (f x) (g y) end module Eq = struct type 'a t = 'a -> 'a -> bool let int : int t = (=) let int32 : int32 t = (=) let int64 : int64 t = (=) let bytes : bytes t = (=) let string : string t = (=) let bool : bool t = (=) let float = Float.equal let unit () () = true let char : char t = (=) let rec list f l1 l2 = match l1, l2 with | [], [] -> true | [], _ | _, [] -> false | x1::l1', x2::l2' -> f x1 x2 && list f l1' l2' let array eq a b = let rec aux i = if i = Array.length a then true else eq a.(i) b.(i) && aux (i+1) in Array.length a = Array.length b && aux 0 let option f o1 o2 = match o1, o2 with | None, None -> true | Some _, None | None, Some _ -> false | Some x, Some y -> f x y let result ok error r1 r2 = Result.equal ~ok ~error r1 r2 let pair f g (x1,y1)(x2,y2) = f x1 x2 && g y1 y2 end let unit : unit t = make ~hash:(fun _ -> 1) ~eq:Eq.unit Print.unit let bool : bool t = make ~hash:H.bool ~eq:Eq.bool Print.bool let int : int t = make ~hash:H.int ~eq:Eq.int Print.int let int32 : int32 t = make ~hash:H.int32 ~eq:Eq.int32 Print.int32 let int64 : int64 t = make ~hash:H.int64 ~eq:Eq.int64 Print.int64 let float : float t = make ~eq:Eq.float Print.float let bytes = make ~hash:H.bytes ~eq:Eq.bytes Print.bytes let string = make ~hash:H.string ~eq:Eq.string Print.string let char = make ~hash:H.char ~eq:Eq.char Print.char let option p = make ~hash:(H.option p.hash) ~eq:(Eq.option p.eq) (Print.option p.print) let result op rp = make ~hash:(H.result op.hash rp.hash) ~eq:(Eq.result op.eq rp.eq) (Print.result op.print rp.print) let array p = make ~hash:(H.array p.hash) ~eq:(Eq.array p.eq) (Print.array p.print) let list p = make ~hash:(H.list p.hash) ~eq:(Eq.list p.eq) (Print.list p.print) let contramap f p = make ~hash:(fun x -> p.hash (f x)) ~eq:(fun x y -> p.eq (f x)(f y)) (fun x -> p.print (f x)) let map = contramap let pair a b = make ~hash:(H.pair a.hash b.hash) ~eq:(Eq.pair a.eq b.eq) (Print.pair a.print b.print) let triple a b c = contramap (fun (x,y,z) -> x,(y,z)) (pair a (pair b c)) let quad a b c d = contramap (fun (x,y,z,u) -> x,(y,z,u)) (pair a (triple b c d)) end type 'a stat = string * ('a -> int) (** A statistic on a distribution of values of type ['a] *) (** Internal module taking care of storing generated function bindings. In essence, a generated function of type ['a -> 'b] is a map (table) where keys are input values of type ['a] and values are output values of type ['b], plus a default value of type ['b]. This module provides the "map of input/output" part. *) module Poly_tbl : sig type ('key, 'value) t val create: 'key Observable.t -> ?v_print:'value Print.t -> 'value Gen.t -> int -> ('key, 'value) t Gen.t val get : ('key, 'value) t -> 'key -> 'value option val size : ('value -> int) -> ('key, 'value) t -> int val print : ('key, 'value) t Print.t end = struct type ('key, 'value) t = { get : 'key -> 'value option; (** Don't be fooled by its name and signature: this function mutates the table during test execution by adding entries (key is the value on which the function is applied in the test, and the value is generated on the fly). *) p_size: ('value -> int) -> int; p_print: unit -> string; p_tree_bindings_rev : ('key * 'value Tree.t) list ref; } let create (type k) (type v) (k_obs : k Observable.t) ?(v_print: v Print.t option) (v_gen : v Gen.t) (size : int) : (k, v) t Gen.t = fun st -> let module T = Hashtbl.Make(struct type t = k let equal = k_obs.Observable.eq let hash = k_obs.Observable.hash end) in (* split random state to avoid later failed [get]s to side-effect the current [st] *) let st' = RS.split st in (* make a table @param extend if [true], extend table [tbl] on the fly (during test execution, to "record" input values and generate an associated output value). [false] during shrinking (use the default value if the input value is not in the table). *) let make ~extend tbl = let initial_tree_bindings_rev = T.to_seq tbl |> List.of_seq |> List.rev_map (fun (k, v) -> k, Tree.pure v) in let p_tree_bindings_rev = ref initial_tree_bindings_rev in let get = (fun key -> try Some (T.find tbl key) with Not_found -> if extend then ( (* Generate a new value and "record" the binding for potential future display/shrinking *) let value_tree = v_gen st' in p_tree_bindings_rev := (key, value_tree) :: !p_tree_bindings_rev; let v = Tree.root value_tree in T.add tbl key v; Some v ) else None) in let p_print = (fun () -> let pp_v = Option.value ~default:(fun _ -> "<opaque>") v_print in let b = Buffer.create 64 in let to_b = Format.formatter_of_buffer b in T.iter (fun key value -> Format.fprintf to_b "%s -> %s; " (k_obs.Observable.print key) (pp_v value)) tbl; Format.pp_print_flush to_b (); Buffer.contents b) in let p_size=(fun size_v -> T.fold (fun _ v n -> n + size_v v) tbl 0) in {get; p_print; p_size; p_tree_bindings_rev} in let root_tbl = T.create size in (* During initial running of the test, record bindings, hence [~extend:true]. *) let root = make ~extend:true root_tbl in (* Build the (lazy!) shrink tree of tables here *) let shrinks : (k, v) t Tree.t Seq.t = fun () -> (* This only gets evaluated *after* the test was run for [tbl], meaning it is correctly populated with bindings recorded during the test already *) let current_bindings : (k * v Tree.t) list = List.rev !(root.p_tree_bindings_rev) in let current_tree_bindings : (k * v) Tree.t list = List.map (fun (k, tree) -> Tree.map (fun v -> (k, v)) tree) current_bindings in let shrunk_bindings_tree_seq : (k * v) list Tree.t Seq.t = Tree.build_list_shrink_tree current_tree_bindings in (* During shrinking, we don't want to record/add bindings, so [~extend:false]. *) let shrunk_poly_tbl_tree_seq : (k, v) t Tree.t Seq.t = Seq.map (fun t -> Tree.map (fun bindings -> List.to_seq bindings |> T.of_seq |> make ~extend:false) t) shrunk_bindings_tree_seq in (* [shrunk_poly_tbl_tree_seq] is a bit misleading: its head *should* be the same as [root] but because of the required laziness induced by the mutation of bindings, we don't use it, only graft its tail to the original [root]. *) Seq.drop 1 shrunk_poly_tbl_tree_seq () in Tree.Tree (root, shrinks) let get t x = t.get x let print t = t.p_print () let size p t = t.p_size p end (** Internal representation of functions, used for shrinking and printing (in case of error). *) type ('a, 'b) fun_repr_tbl = { fun_tbl: ('a, 'b) Poly_tbl.t; (** Input-output bindings *) fun_print: 'b Print.t option; (** How to print output values *) fun_default: 'b; (** Default value for all inputs not explicitly mapped in {!fun_tbl} *) } type 'f fun_repr = | Fun_tbl : ('a, 'ret) fun_repr_tbl -> ('a -> 'ret) fun_repr (** Input-output list of bindings *) | Fun_map : ('f1 -> 'f2) * 'f1 fun_repr -> 'f2 fun_repr (** Mapped from another function (typically used for currying) *) (** A QCheck function, as in Koen Claessen's paper "Shrinking and showing functions". Such a function is a pair of the function representation (used for shrinking and printing the function) and a "real" function, which can be seen as an input-output map + a default value for all other inputs. - Test developers will only use the "real" function inside their tests (and ignore the function representation). - During shrinking/printing, QCheck will ignore the "real" function and only use its representation. *) type 'f fun_ = Fun of 'f fun_repr * 'f (** Reifying functions *) module Fn = struct let apply (Fun (_repr, real_function)) = real_function (** [function_of_repr repr] creates the "real" function (that will be used in tests) from its representation. *) let rec function_of_repr : type f. f fun_repr -> f = function | Fun_tbl {fun_tbl; fun_default; _} -> (fun x -> match Poly_tbl.get fun_tbl x with | None -> fun_default | Some y -> y) | Fun_map (g, sub_repr) -> g (function_of_repr sub_repr) let make_ (r : 'a fun_repr) : 'a fun_ = Fun (r, function_of_repr r) let mk_repr tbl ?print def = Fun_tbl { fun_tbl=tbl; fun_print=print; fun_default=def; } let map_repr f repr = Fun_map (f, repr) let map_fun f (Fun (repr, _real_function)) = make_ (map_repr f repr) (** [print_rep repr] returns a string representation of [repr]. *) let print_repr r = let buf = Buffer.create 32 in let rec aux : type f. Buffer.t -> f fun_repr -> unit = fun buf r -> match r with | Fun_map (_, sub_repr) -> aux buf sub_repr | Fun_tbl r -> Buffer.add_string buf (Poly_tbl.print r.fun_tbl); Printf.bprintf buf "_ -> %s" (match r.fun_print with | None -> "<opaque>" | Some print -> print r.fun_default); in Printf.bprintf buf "{"; aux buf r; Printf.bprintf buf "}"; Buffer.contents buf let print (Fun (repr, _real_function)) = print_repr repr (** [gen_rep obs gen] creates a function generator. Input values are observed with [obs] and output values are generated with [gen]. *) let gen_rep (obs : 'a Observable.t) ?(print : 'b Print.t option) (gen : 'b Gen.t) : ('a -> 'b) fun_repr Gen.t = Gen.liftA2 (fun default_value poly_tbl -> mk_repr poly_tbl ?print default_value) gen (Poly_tbl.create ?v_print:print obs gen 8) let gen (obs : 'a Observable.t) ?(print : 'b Print.t option) (gen : 'b Gen.t) : ('a -> 'b) fun_ Gen.t = Gen.map make_ (gen_rep obs gen ?print) end let fun1 obs ?print gen = Fn.gen obs ?print gen module Tuple = struct (** heterogeneous list (generic tuple) used to uncurry functions *) type 'a t = | Nil : unit t | Cons : 'a * 'b t -> ('a * 'b) t let nil = Nil let cons x tail = Cons (x,tail) type 'a obs = | O_nil : unit obs | O_cons : 'a Observable.t * 'b obs -> ('a * 'b) obs let o_nil = O_nil let o_cons x tail = O_cons (x,tail) let rec hash : type a. a obs -> a t -> int = fun o t -> match o, t with | O_nil, Nil -> 42 | O_cons (o,tail_o), Cons (x, tail) -> Observable.H.combine (Observable.hash o x) (hash tail_o tail) let rec equal : type a. a obs -> a t -> a t -> bool = fun o a b -> match o, a, b with | O_nil, Nil, Nil -> true | O_cons (o, tail_o), Cons (x1, tail1), Cons (x2,tail2) -> Observable.equal o x1 x2 && equal tail_o tail1 tail2 let print o tup = let rec aux : type a. a obs -> Buffer.t -> a t -> unit = fun o buf t -> match o, t with | O_nil, Nil -> Printf.bprintf buf "()" | O_cons (o, O_nil), Cons (x,Nil) -> Printf.bprintf buf "%s" (Observable.print o x) | O_cons (o, tail_o), Cons (x,tail) -> Printf.bprintf buf "%s, %a" (Observable.print o x) (aux tail_o) tail in let buf = Buffer.create 64 in Buffer.add_string buf "("; aux o buf tup; Buffer.add_string buf ")"; Buffer.contents buf let observable (o:'a obs) : 'a t Observable.t = Observable.make ~eq:(equal o) ~hash:(hash o) (print o) let gen (o:'a obs) ?(print:'b Print.t option) (ret:'b Gen.t) : ('a t -> 'b) fun_ Gen.t = Fn.gen (observable o) ?print ret module Infix = struct let (@::) x tail = cons x tail let (@->) o tail = o_cons o tail end include Infix end let fun_nary (o:_ Tuple.obs) ?print ret : _ Gen.t = Tuple.gen o ?print ret let fun2 o1 o2 ?print ret = Gen.map (Fn.map_fun (fun g x y -> g Tuple.(x @:: y @:: nil))) (fun_nary Tuple.(o1 @-> o2 @-> o_nil) ?print ret) let fun3 o1 o2 o3 ?print ret = Gen.map (Fn.map_fun (fun g x y z -> g Tuple.(x @:: y @:: z @:: nil))) (fun_nary Tuple.(o1 @-> o2 @-> o3 @-> o_nil) ?print ret) let fun4 o1 o2 o3 o4 ?print ret = Gen.map (Fn.map_fun (fun g x y z w -> g Tuple.(x @:: y @:: z @:: w @:: nil))) (fun_nary Tuple.(o1 @-> o2 @-> o3 @-> o4 @-> o_nil) ?print ret) module TestResult = struct type 'a counter_ex = { instance: 'a; (** The counter-example(s) *) shrink_steps: int; (** How many shrinking steps for this counterex *) msg_l: string list; (** messages. @since 0.7 *) } (** Result state. changed in 0.10 (move to inline records) *) type 'a state = | Success | Failed of { instances: 'a counter_ex list; (** Failed instance(s) *) } | Failed_other of {msg: string} | Error of { instance: 'a counter_ex; exn: exn; backtrace: string; } (** Error, backtrace, and instance that triggered it *) (* result returned by running a test *) type 'a t = { mutable state : 'a state; mutable count: int; (* number of tests *) mutable count_gen: int; (* number of generated cases *) collect_tbl: (string, int) Hashtbl.t lazy_t; stats_tbl: ('a stat * (int, int) Hashtbl.t) list; mutable warnings: string list; } let get_state {state; _} = state let get_count {count; _} = count let get_count_gen {count_gen; _} = count_gen (* indicate failure on the given [instance] *) let fail ~msg_l ~steps:shrink_steps res instance = let c_ex = {instance; shrink_steps; msg_l; } in match res.state with | Success -> res.state <- Failed {instances=[ c_ex ]} | Error _ | Failed_other _ -> () | Failed {instances=[]} -> assert false | Failed {instances=l} -> res.state <- Failed {instances=c_ex :: l} let error ~msg_l ~steps res instance exn backtrace = res.state <- Error {instance={instance; shrink_steps=steps; msg_l; }; exn; backtrace} let get_collect r = if Lazy.is_val r.collect_tbl then Some (Lazy.force r.collect_tbl) else None let collect = get_collect let get_stats r = r.stats_tbl let stats = get_stats let get_warnings r = r.warnings let warnings = get_warnings let is_success r = match r.state with | Success -> true | Failed _ | Error _ | Failed_other _ -> false let is_failed r = match r.state with | Failed _ -> true | Success | Error _ | Failed_other _ -> false end module Test_exceptions = struct exception Test_fail of string * string list exception Test_error of string * string * exn * string exception Test_unexpected_success of string end module Test = struct type 'a cell = { count : int; (* number of tests to do *) long_factor : int; (* multiplicative factor for long test count *) positive : bool; (* indicates whether test is considered positive or negative *) max_gen : int; (* max number of instances to generate (>= count) *) max_fail : int; (* max number of failures *) retries : int; (* max number of retries during shrinking *) law : 'a -> bool; (* the law to check *) gen : 'a Gen.t; (* how to generate/shrink instances *) print : 'a Print.t option; (* how to print values *) collect : ('a -> string) option; (* collect values by tag, useful to display distribution of generated *) stats : 'a stat list; (* distribution of values of type 'a *) qcheck1_shrink : ('a -> ('a -> unit) -> unit) option; (* QCheck1-backward-compatible shrinking *) if_assumptions_fail: [`Fatal | `Warning] * float; mutable name : string; (* name of the law *) } type t = | Test : 'a cell -> t let get_name {name; _} = name let set_name c name = c.name <- name let get_law {law; _} = law let get_gen {gen; _} = gen let get_print_opt {print; _} = print let get_collect_opt {collect; _} = collect let get_stats {stats; _} = stats let get_count {count; _ } = count let get_long_factor {long_factor; _} = long_factor let get_positive {positive; _} = positive let default_count = 100 let default_long_factor = 1 let global_nonnegative_var default env_var var = let var = match (var, Sys.getenv_opt env_var) with | (Some x, _) -> x | (_, Some x) -> int_of_string x | (None, None) -> default in if var < 0 then invalid_arg (env_var ^ " must be >= 0 but value is " ^ string_of_int var) else var let global_count count = global_nonnegative_var default_count "QCHECK_COUNT" count let global_long_factor long_factor = global_nonnegative_var default_long_factor "QCHECK_LONG_FACTOR" long_factor let fresh_name = let r = ref 0 in (fun () -> incr r; Printf.sprintf "anon_test_%d" !r) let default_if_assumptions_fail = `Warning, 0.05 let make_cell ?(if_assumptions_fail=default_if_assumptions_fail) ?(count) ?long_factor ?(negative=false) ?max_gen ?(max_fail=1) ?(retries=1) ?(name=fresh_name()) ?print ?collect ?(stats=[]) gen law = let count = global_count count in let long_factor = global_long_factor long_factor in let positive = not negative in let max_gen = match max_gen with None -> count + 200 | Some x->x in { law; gen; collect; print; stats; max_gen; max_fail; retries; name; count; long_factor; positive; if_assumptions_fail; qcheck1_shrink = None; } let make_cell_from_QCheck1 ?(if_assumptions_fail=default_if_assumptions_fail) ?(count) ?long_factor ?(negative=false) ?max_gen ?(max_fail=1) ?(retries=1) ?(name=fresh_name()) ~gen ?shrink ?print ?collect ~stats law = let count = global_count count in let long_factor = global_long_factor long_factor in let positive = not negative in (* Make a "fake" QCheck2 arbitrary with no shrinking *) let fake_gen = Gen.make_primitive ~gen ~shrink:(fun _ -> Seq.empty) in let max_gen = match max_gen with None -> count + 200 | Some x->x in { law; gen = fake_gen; print; collect; stats; max_gen; max_fail; retries; name; count; long_factor; positive; if_assumptions_fail; qcheck1_shrink = shrink; } let make' ?if_assumptions_fail ?count ?long_factor ?max_gen ?max_fail ?retries ?name ?print ?collect ?stats ~negative arb law = Test (make_cell ?if_assumptions_fail ?count ?long_factor ?max_gen ?max_fail ?retries ?name ?print ?collect ?stats ~negative arb law) let make = make' ~negative:false let make_neg = make' ~negative:true let test_get_count (Test cell) = get_count cell let test_get_long_factor (Test cell) = get_long_factor cell (** {6 Running the test} *) module R = TestResult (* Result of an instance run *) type res = | Success | Failure | FalseAssumption | Error of exn * string (* Step function, called after each instance test *) type 'a step = string -> 'a cell -> 'a -> res -> unit let step_nil_ _ _ _ _ = () (* Events of a test *) type 'a event = | Generating | Collecting of 'a | Testing of 'a | Shrunk of int * 'a | Shrinking of int * int * 'a type 'a handler = string -> 'a cell -> 'a event -> unit let handler_nil_ _ _ _ = () (* state required by {!check} to execute *) type 'a state = { test: 'a cell; step: 'a step; handler : 'a handler; rand: RS.t; res: 'a TestResult.t; mutable cur_count: int; (** number of iterations remaining to do *) mutable cur_max_gen: int; (** maximum number of generations allowed *) mutable cur_max_fail: int; (** maximum number of counter-examples allowed *) } let is_done state = state.cur_count <= 0 || state.cur_max_gen <= 0 let decr_count state = state.res.R.count <- state.res.R.count + 1; state.cur_count <- state.cur_count - 1 let new_input_tree state = state.res.R.count_gen <- state.res.R.count_gen + 1; state.cur_max_gen <- state.cur_max_gen - 1; state.test.gen state.rand (* statistics on inputs *) let collect st i = match st.test.collect with | None -> () | Some f -> let key = f i in let (lazy tbl) = st.res.R.collect_tbl in let n = try Hashtbl.find tbl key with Not_found -> 0 in Hashtbl.replace tbl key (n+1) let update_stats st i = List.iter (fun ((_,f), tbl) -> let key = f i in let n = try Hashtbl.find tbl key with Not_found -> 0 in Hashtbl.replace tbl key (n+1)) st.res.R.stats_tbl type res_or_exn = | Shrink_fail | Shrink_exn of exn (* triggered by user to fail with a message *) exception User_fail of string let fail_report m = raise (User_fail m) let fail_reportf m = let buf = Buffer.create 64 in Format.kfprintf (fun out -> Format.fprintf out "@?"; fail_report (Buffer.contents buf)) (Format.formatter_of_buffer buf) m type 'a run_res = | Run_ok | Run_fail of string list (* run_law is a helper function for testing a property [law] on a generated input [x]. When passed a ~retries number n>1, the tested property is checked n times for each shrunk input candidate. The default value is 1, thus causing no change in behaviour. Retrying a property can be useful when testing non-deterministic code with QCheck, e.g., for multicore execution. The idea is described in 'Testing a Database for Race Conditions with QuickCheck' Hughes and Bolinder, Erlang 2011, Sec.6: "As we explained in section 4, we ensure that tests fail when races are present simply by repeating each test a large number of times, and by running on a dual core machine. We obtained the minimal failing cases in the previous section by repeating each test 100 times during shrinking: thus we stopped shrinking a test case only when all of its candidate shrinkings passed 100 tests in a row." *) let run_law ~retries law x = let rec loop i = match law x with | false -> Run_fail [] | true -> if i<=1 then Run_ok else loop (i-1) in try loop retries with User_fail msg -> Run_fail [msg] (* QCheck1-compatibility code *) exception Iter_exit let iter_find_map p iter = let r = ref None in (try iter (fun x -> match p x with Some _ as y -> r := y; raise Iter_exit | None -> ()) with Iter_exit -> () ); !r (* try to shrink counter-ex [i] into a smaller one. Returns shrinked value and number of steps *) let shrink st (i_tree : 'a Tree.t) (r : res_or_exn) m : 'a * res_or_exn * string list * int = let is_err = match r with | Shrink_exn _ -> true | _ -> false in let rec shrink_ st i_tree r m ~steps = let Tree.Tree (i, shrinks) = i_tree in st.handler st.test.name st.test (Shrunk (steps, i)); let count = ref 0 in let i' = match st.test.qcheck1_shrink with | Some f -> (* QCheck1-compatibility, copied almost verbatim from QCheck.ml old code *) iter_find_map (fun x -> (* let Tree.Tree (x, _) = x_tree in *) try incr count; st.handler st.test.name st.test (Shrinking (steps, !count, x)); begin match run_law ~retries:st.test.retries st.test.law x with | Run_fail m when not is_err -> Some (Tree.pure x, Shrink_fail, m) | _ -> None end with | Failed_precondition | No_example_found _ -> None | e when is_err -> Some (Tree.pure x, Shrink_exn e, []) (* fail test (by error) *) ) (f i) | None -> (* QCheck2 (or QCheck1 with a shrinkless tree): use the shrink tree *) Seq.filter_map (fun x_tree -> let Tree.Tree (x, _) = x_tree in try incr count; st.handler st.test.name st.test (Shrinking (steps, !count, x)); begin match run_law ~retries:st.test.retries st.test.law x with | Run_fail m when not is_err -> Some (x_tree, Shrink_fail, m) | _ -> None end with | Failed_precondition | No_example_found _ -> None | e when is_err -> Some (x_tree, Shrink_exn e, []) (* fail test (by error) *) ) shrinks |> Seq.hd in match i' with | None -> i, r, m, steps | Some (i_tree',r',m') -> shrink_ st i_tree' r' m' ~steps:(steps + 1) (* shrink further *) in shrink_ ~steps:0 st i_tree r m type 'a check_result = | CR_continue | CR_yield of 'a TestResult.t (* test raised [e] on [input]; try to shrink then fail *) let handle_exn state input e bt : _ check_result = (* first, shrink TODO: shall we shrink differently (i.e. expected only an error)? *) let input, r, msg_l, steps = shrink state input (Shrink_exn e) [] in (* recover exception of shrunk input *) let e = match r with | Shrink_fail -> e | Shrink_exn e' -> e' in state.step state.test.name state.test input (Error (e, bt)); R.error state.res ~steps ~msg_l input e bt; CR_yield state.res (* test failed on [input], which means the law is wrong. Continue if we should. *) let handle_fail state input msg_l : _ check_result = (* first, shrink *) let input, _, msg_l, steps = shrink state input Shrink_fail msg_l in (* fail *) decr_count state; state.step state.test.name state.test input Failure; state.cur_max_fail <- state.cur_max_fail - 1; R.fail state.res ~steps ~msg_l input; if state.cur_max_fail > 0 then CR_continue else CR_yield state.res (* [check_state state] applies [state.test] repeatedly ([iter] times) on output of [test.rand], and if [state.test] ever returns false, then the input that caused the failure is returned in [Failed]. If [func input] raises [Failed_precondition] then the input is discarded, unless max_gen is 0. *) let rec check_state state : _ R.t = if is_done state then state.res else ( state.handler state.test.name state.test Generating; match new_input_tree state with | i_tree -> check_state_input state i_tree | exception e -> (* turn it into an error *) let bt = Printexc.get_backtrace() in let msg = Printf.sprintf "ERROR: uncaught exception in generator for test %s after %d steps:\nException: %s\nBacktrace: %s" state.test.name state.test.count (Printexc.to_string e) bt in state.res.R.state <- R.Failed_other {msg}; state.res ) and check_state_input state input_tree = let Tree.Tree (input, _) = input_tree in state.handler state.test.name state.test (Collecting input); collect state input; update_stats state input; let res = try state.handler state.test.name state.test (Testing input); begin match run_law ~retries:1 state.test.law input with | Run_ok -> (* one test ok *) decr_count state; state.step state.test.name state.test input Success; CR_continue | Run_fail msg_l -> handle_fail state input_tree msg_l end with | Failed_precondition | No_example_found _ -> state.step state.test.name state.test input FalseAssumption; CR_continue | e -> let bt = Printexc.get_backtrace () in handle_exn state input_tree e bt in match res with | CR_continue -> check_state state | CR_yield x -> x type 'a callback = string -> 'a cell -> 'a TestResult.t -> unit let callback_nil_ : _ callback = fun _ _ _ -> () (* check that there are sufficiently many tests which passed, to avoid the case where they all passed by failed precondition *) let check_if_assumptions target_count cell res : unit = let percentage_of_count = float_of_int res.R.count /. float_of_int target_count in let assm_flag, assm_frac = cell.if_assumptions_fail in if R.is_success res && percentage_of_count < assm_frac then ( let msg = format_of_string "%s: \ only %.1f%% tests (of %d) passed precondition for %S\n\n\ NOTE: it is likely that the precondition is too strong, or that \ the generator is buggy.\n%!" in match assm_flag with | `Warning -> let msg = Printf.sprintf msg "WARNING" (percentage_of_count *. 100.) cell.count cell.name in res.R.warnings <- msg :: res.R.warnings | `Fatal -> (* turn it into an error *) let msg = Printf.sprintf msg "ERROR" (percentage_of_count *. 100.) cell.count cell.name in res.R.state <- R.Failed_other {msg} ) (* main checking function *) let check_cell ?(long=false) ?(call=callback_nil_) ?(step=step_nil_) ?(handler=handler_nil_) ?(rand=RS.make [| 0 |]) cell = let factor = if long then cell.long_factor else 1 in let target_count = factor*cell.count in let state = { test=cell; rand; step; handler; cur_count=target_count; cur_max_gen=factor*cell.max_gen; cur_max_fail=factor*cell.max_fail; res = {R. state=R.Success; count=0; count_gen=0; collect_tbl=lazy (Hashtbl.create 10); warnings=[]; stats_tbl= List.map (fun stat -> stat, Hashtbl.create 10) cell.stats; }; } in let res = check_state state in check_if_assumptions target_count cell res; call cell.name cell res; res include Test_exceptions (* print instance using [arb] *) let print_instance arb i = match arb.print with | None -> "<instance>" | Some pp -> pp i let print_c_ex arb c : string = let buf = Buffer.create 64 in begin if c.R.shrink_steps > 0 then Printf.bprintf buf "%s (after %d shrink steps)" (print_instance arb c.R.instance) c.R.shrink_steps else Buffer.add_string buf (print_instance arb c.R.instance) end; List.iter (fun msg -> Buffer.add_char buf '\n'; Buffer.add_string buf msg; Buffer.add_char buf '\n') c.R.msg_l; Buffer.contents buf let pp_print_test_fail name out l = let rec pp_list out = function | [] -> () | [x] -> Format.fprintf out "%s@," x | x :: y -> Format.fprintf out "%s@,%a" x pp_list y in Format.fprintf out "@[test `%s`@ failed on ≥ %d cases:@ @[<v>%a@]@]" name (List.length l) pp_list l let asprintf fmt = let buf = Buffer.create 128 in let out = Format.formatter_of_buffer buf in Format.kfprintf (fun _ -> Buffer.contents buf) out fmt let print_test_fail name l = asprintf "@[%a@]@?" (pp_print_test_fail name) l let print_unexpected_success name = Format.sprintf "@[negative test `%s`@ succeeded unexpectedly@]" name let print_test_error name i e stack = Format.sprintf "@[test `%s`@ raised exception `%s`@ on `%s`@,%s@]" name (Printexc.to_string e) i stack let print_collect c = let out = Buffer.create 64 in Hashtbl.iter (fun case num -> Printf.bprintf out "%s: %d cases\n" case num) c; Buffer.contents out let stat_max_lines = 20 (* maximum number of lines for a histogram *) let print_stat ((name,_), tbl) = let neg_avg_summands = ref [] in let pos_avg_summands = ref [] in let num = ref 0 in let min_idx, max_idx = Hashtbl.fold (fun i res (m1,m2) -> let avg_summand = float_of_int (i * res) in if avg_summand < 0. then neg_avg_summands := avg_summand::!neg_avg_summands else pos_avg_summands := avg_summand::!pos_avg_summands; num := !num + res; min i m1, max i m2) tbl (max_int,min_int) in (* compute average, summing positive/negative separately by order of magnitude *) let neg_avg_sums = List.sort Float.compare !neg_avg_summands |> fun xs -> List.fold_right (+.) xs 0. in let pos_avg_sums = List.sort Float.compare !pos_avg_summands |> List.fold_left (+.) 0. in let avg = ref (neg_avg_sums +. pos_avg_sums) in if !num > 0 then ( avg := !avg /. float_of_int !num ); (* compute std-dev: sqroot of sum of squared distance-to-average https://en.wikipedia.org/wiki/Standard_deviation *) let stddev = Hashtbl.fold (fun i res acc -> float_of_int res *. ((float_of_int i -. !avg) ** 2.) :: acc) tbl [] |> List.sort Float.compare (* add summands in increasing order to preserve precision *) |> List.fold_left (+.) 0. |> (fun s -> if !num>0 then s /. float_of_int !num else s) |> sqrt in (* compute median *) let median = ref 0 in let median_num = ref 0 in (* how many values have we seen yet? once >= !n/2 we set median *) (Hashtbl.fold (fun i cnt acc -> (i,cnt)::acc) tbl []) |> List.sort (fun (i,_) (j,_) -> poly_compare i j) |> List.iter (fun (i,cnt) -> if !median_num < !num/2 then ( median_num := !median_num + cnt; (* just went above median! *) if !median_num >= !num/2 then median := i)); (* group by buckets, if there are too many entries: *) (* first compute histogram and bucket size *) let min_idx64, max_idx64 = Int64.(of_int min_idx, of_int max_idx) in let hist_size, bucket_size = let sample_width = Int64.sub max_idx64 min_idx64 in if sample_width > Int64.of_int stat_max_lines then stat_max_lines, int_of_float (ceil (Int64.to_float sample_width /. float_of_int stat_max_lines)) else max_idx-min_idx, 1 in let hist_size = if Int64.(add min_idx64 (mul (of_int bucket_size) (of_int hist_size))) <= max_idx64 then 1+hist_size else hist_size in (* accumulate bucket counts *) let max_val = ref 0 in (* max value after grouping by buckets *) let bucket_count = Array.init hist_size (fun _ -> 0) in Hashtbl.iter (fun j count -> let bucket = Int64.(to_int (div (sub (of_int j) min_idx64) (of_int bucket_size))) in let new_count = bucket_count.(bucket) + count in bucket_count.(bucket) <- new_count; max_val := max !max_val new_count) tbl; (* print entries of the table, sorted by increasing index *) let out = Buffer.create 128 in (* Windows workaround to avoid annoying exponent zero such as "1.859e+018" *) let cut_exp_zero s = match String.split_on_char '+' s with | [signif;exponent] -> Printf.sprintf "%s+%i" signif (int_of_string exponent) | _ -> failwith "cut_exp_zero failed to parse scientific notation " ^ s in let fmt_float f = if f > 1e7 || f < -1e7 then cut_exp_zero (Printf.sprintf "%.3e" f) else Printf.sprintf "%.2f" f in Printf.bprintf out "stats %s:\n" name; Printf.bprintf out " num: %d, avg: %s, stddev: %s, median %d, min %d, max %d\n" !num (fmt_float !avg) (fmt_float stddev) !median min_idx max_idx; let indwidth = let str_width i = String.length (Printf.sprintf "%d" i) in List.map str_width [min_idx; max_idx; min_idx + bucket_size * hist_size] |> List.fold_left max min_int in let labwidth = if bucket_size=1 then indwidth else 2+2*indwidth in for i = 0 to hist_size - 1 do let i' = min_idx + i * bucket_size in let blabel = if bucket_size=1 then Printf.sprintf "%*d" indwidth i' else let bucket_bound = i'+bucket_size-1 in Printf.sprintf "%*d..%*d" indwidth i' indwidth (if bucket_bound < i' then max_int else bucket_bound) in let bcount = bucket_count.(i) in (* NOTE: keep in sync *) let bar_len = bcount * 55 / !max_val in Printf.bprintf out " %*s: %-56s %10d\n" labwidth blabel (String.make bar_len '#') bcount done; Buffer.contents out let () = Printexc.register_printer (function | Test_fail (name,l) -> Some (print_test_fail name l) | Test_error (name,i,e,st) -> Some (print_test_error name i e st) | Test_unexpected_success name -> Some (print_unexpected_success name) | User_fail s -> Some ("qcheck: user fail:\n" ^ s) | _ -> None) let print_fail arb name l = print_test_fail name (List.map (print_c_ex arb) l) let print_fail_other name ~msg = print_test_fail name [msg] let print_expected_failure cell c_exs = match c_exs with | [] -> Format.sprintf "negative test `%s` failed as expected\n" (get_name cell) | c_ex::_ -> Format.sprintf "negative test `%s` failed as expected on: %s\n" (get_name cell) (print_c_ex cell c_ex) let print_error ?(st="") arb name (i,e) = print_test_error name (print_c_ex arb i) e st let check_result cell res = match res.R.state, cell.positive with | R.Success, true -> () | R.Success, false -> raise (Test_unexpected_success cell.name) | R.Error {instance; exn; backtrace}, _ -> raise (Test_error (cell.name, print_c_ex cell instance, exn, backtrace)) | R.Failed {instances=l}, true -> let l = List.map (print_c_ex cell) l in raise (Test_fail (cell.name, l)) | R.Failed _, false -> () | R.Failed_other {msg}, _ -> raise (Test_fail (cell.name, [msg])) let check_cell_exn ?long ?call ?step ?handler ?rand cell = let res = check_cell ?long ?call ?step ?handler ?rand cell in check_result cell res let check_exn ?long ?rand (Test cell) = check_cell_exn ?long ?rand cell end let find_example ?(name : string = "<example>") ?(count : int option) ~(f : 'a -> bool) (gen : 'a Gen.t) : 'a Gen.t = (* the random generator of examples satisfying [f]. To do that we test the property [fun x -> not (f x)]; any counter-example *) let gen st = let cell = Test.make_cell ~max_fail:1 ?count gen (fun x -> not (f x)) in let res = Test.check_cell ~rand:st cell in begin match res.TestResult.state with | TestResult.Success -> raise (No_example_found name) | TestResult.Error _ -> raise (No_example_found name) | TestResult.Failed {instances=[]} -> assert false | TestResult.Failed {instances=failed::_} -> (* found counter-example! *) Tree.pure failed.TestResult.instance | TestResult.Failed_other {msg=_} -> raise (No_example_found name) end in gen let find_example_gen ?(rand : RS.t option) ?(name : string option) ?(count : int option) ~(f : 'a -> bool) (gen : 'a Gen.t) : 'a = let g = find_example ?name ?count ~f gen in Gen.generate1 ?rand g
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>