package ppx_hardcaml
Install
Dune Dependency
Authors
Maintainers
Sources
sha256=e4ea96d3edd794a1e3128b9c42eb97da41c95c78371caa1e9cd6842244766e1c
doc/ppx_hardcaml.runtime/Ppx_hardcaml_runtime/Array/index.html
Module Ppx_hardcaml_runtime.Array
Source
include module type of struct include Base.Array end
include Base.Binary_searchable.S1 with type 'a t := 'a t
include Base.Indexed_container.S1_with_creators with type 'a t := 'a t
include Base.Container.S1_with_creators with type 'a t := 'a t
Returns the sum of f i
for all i
in the container.
E.g., append (of_list [1; 2]) (of_list [3; 4; 5])
is of_list [1; 2; 3; 4; 5]
map f (of_list [a1; ...; an])
applies f
to a1
, a2
, ..., an
, in order, and builds a result equivalent to of_list [f a1; ...; f an]
.
filter t ~f
returns all the elements of t
that satisfy the predicate f
.
filter_map t ~f
applies f
to every x
in t
. The result contains every y
for which f x
returns Some y
.
concat_map t ~f
is equivalent to concat (map t ~f)
.
partition_tf t ~f
returns a pair t1, t2
, where t1
is all elements of t
that satisfy f
, and t2
is all elements of t
that do not satisfy f
. The "tf" suffix is mnemonic to remind readers that the result is (trues, falses).
include Base.Container.S1 with type 'a t := 'a t
Checks whether the provided element is there, using equal
.
fold t ~init ~f
returns f (... f (f (f init e1) e2) e3 ...) en
, where e1..en
are the elements of t
val fold_result :
'a t ->
init:'acc ->
f:('acc -> 'a -> ('acc, 'e) Base.Result.t) ->
('acc, 'e) Base.Result.t
fold_result t ~init ~f
is a short-circuiting version of fold
that runs in the Result
monad. If f
returns an Error _
, that value is returned without any additional invocations of f
.
val fold_until :
'a t ->
init:'acc ->
f:('acc -> 'a -> ('acc, 'final) Base.Container.Continue_or_stop.t) ->
finish:('acc -> 'final) ->
'final
fold_until t ~init ~f ~finish
is a short-circuiting version of fold
. If f
returns Stop _
the computation ceases and results in that value. If f
returns Continue _
, the fold will proceed. If f
never returns Stop _
, the final result is computed by finish
.
Example:
type maybe_negative =
| Found_negative of int
| All_nonnegative of { sum : int }
(** [first_neg_or_sum list] returns the first negative number in [list], if any,
otherwise returns the sum of the list. *)
let first_neg_or_sum =
List.fold_until ~init:0
~f:(fun sum x ->
if x < 0
then Stop (Found_negative x)
else Continue (sum + x))
~finish:(fun sum -> All_nonnegative { sum })
;;
let x = first_neg_or_sum [1; 2; 3; 4; 5]
val x : maybe_negative = All_nonnegative {sum = 15}
let y = first_neg_or_sum [1; 2; -3; 4; 5]
val y : maybe_negative = Found_negative -3
Returns true
if and only if there exists an element for which the provided function evaluates to true
. This is a short-circuiting operation.
Returns true
if and only if the provided function evaluates to true
for all elements. This is a short-circuiting operation.
Returns the number of elements for which the provided function evaluates to true.
Returns the sum of f i
for all i
in the container.
val sum :
(module Base.Container.Summable with type t = 'sum) ->
'a t ->
f:('a -> 'sum) ->
'sum
Returns as an option
the first element for which f
evaluates to true.
Returns the first evaluation of f
that returns Some
, and returns None
if there is no such element.
Returns a minimum (resp maximum) element from the collection using the provided compare
function, or None
if the collection is empty. In case of a tie, the first element encountered while traversing the collection is returned. The implementation uses fold
so it has the same complexity as fold
.
These are all like their equivalents in Container
except that an index starting at 0 is added as the first argument to f
.
init n ~f
is equivalent to of_list [f 0; f 1; ...; f (n-1)]
. It raises an exception if n < 0
.
mapi
is like map. Additionally, it passes in the index of each element as the first argument to the mapped function.
filter_mapi is like filter_map
. Additionally, it passes in the index of each element as the first argument to the mapped function.
include Base.Invariant.S1 with type 'a t := 'a t
Maximum length of a normal array. The maximum length of a float array is max_length/2
on 32-bit machines and max_length
on 64-bit machines.
Array.get a n
returns the element number n
of array a
. The first element has number 0. The last element has number Array.length a - 1
. You can also write a.(n)
instead of Array.get a n
.
Raise Invalid_argument "index out of bounds"
if n
is outside the range 0 to (Array.length a - 1)
.
Array.set a n x
modifies array a
in place, replacing element number n
with x
. You can also write a.(n) <- x
instead of Array.set a n x
.
Raise Invalid_argument "index out of bounds"
if n
is outside the range 0 to Array.length a - 1
.
Unsafe version of get
. Can cause arbitrary behavior when used for an out-of-bounds array access.
Unsafe version of set
. Can cause arbitrary behavior when used for an out-of-bounds array access.
create ~len x
creates an array of length len
with the value x
populated in each element.
create_local ~len x
is like create
. It allocates the array on the local stack. The array's elements are still global.
create_float_uninitialized ~len
creates a float array of length len
with uninitialized elements -- that is, they may contain arbitrary, nondeterministic float values. This can be significantly faster than using create
, when unboxed float array representations are enabled.
Array.make_matrix dimx dimy e
returns a two-dimensional array (an array of arrays) with first dimension dimx
and second dimension dimy
. All the elements of this new matrix are initially physically equal to e
. The element (x,y
) of a matrix m
is accessed with the notation m.(x).(y)
.
Raise Invalid_argument
if dimx
or dimy
is negative or greater than Array.max_length
.
If the value of e
is a floating-point number, then the maximum size is only Array.max_length / 2
.
Array.copy_matrix t
returns a fresh copy of the array of arrays t
. This is typically used when t
is a matrix created by Array.make_matrix
.
Array.copy a
returns a copy of a
, that is, a fresh array containing the same elements as a
.
Array.fill a ofs len x
modifies the array a
in place, storing x
in elements number ofs
to ofs + len - 1
.
Raise Invalid_argument "Array.fill"
if ofs
and len
do not designate a valid subarray of a
.
Array.blit v1 o1 v2 o2 len
copies len
elements from array v1
, starting at element number o1
, to array v2
, starting at element number o2
. It works correctly even if v1
and v2
are the same array, and the source and destination chunks overlap.
Raise Invalid_argument "Array.blit"
if o1
and len
do not designate a valid subarray of v1
, or if o2
and len
do not designate a valid subarray of v2
.
int_blit
and float_blit
provide fast bound-checked blits for immediate data types. The unsafe versions do not bound-check the arguments.
include Base.Blit.S1 with type 'a t := 'a t
folding_map
is a version of map
that threads an accumulator through calls to f
.
Array.fold_map
is a combination of Array.fold
and Array.map
that threads an accumulator through calls to f
.
Array.fold_right f a ~init
computes f a.(0) (f a.(1) ( ... (f a.(n-1) init) ...))
, where n
is the length of the array a
.
All sort functions in this module sort in increasing order by default.
sort
uses constant heap space. stable_sort
uses linear heap space.
To sort only part of the array, specify pos
to be the index to start sorting from and len
indicating how many elements to sort.
is_sorted_strictly xs ~compare
iff is_sorted xs ~compare
and no two consecutive elements in xs
are equal according to compare
.
Merges two arrays: assuming that a1
and a2
are sorted according to the comparison function compare
, merge a1 a2 ~compare
will return a sorted array containing all the elements of a1
and a2
. If several elements compare equal, the elements of a1
will be before the elements of a2
.
transpose
in the sense of a matrix transpose. It returns None
if the arrays are not all the same length.
filter_opt array
returns a new array where None
entries are omitted and Some x
entries are replaced with x
. Note that this changes the index at which elements will appear.
Functions with the 2 suffix raise an exception if the lengths of the two given arrays aren't the same.
for_all2_exn t1 t2 ~f
fails if length t1 <> length t2
.
exists2_exn t1 t2 ~f
fails if length t1 <> length t2
.
swap arr i j
swaps the value at index i
with that at index j
.
of_list_map l ~f
is the same as of_list (List.map l ~f)
.
of_list_mapi l ~f
is the same as of_list (List.mapi l ~f)
.
of_list_rev_map l ~f
is the same as of_list (List.rev_map l ~f)
.
of_list_rev_mapi l ~f
is the same as of_list (List.rev_mapi l ~f)
.
Modifies an array in place, applying f
to every element of the array
find_exn f t
returns the first a
in t
for which f t.(i)
is true. It raises Stdlib.Not_found
or Not_found_s
if there is no such a
.
Returns the first evaluation of f
that returns Some
. Raises Stdlib.Not_found
or Not_found_s
if f
always returns None
.
findi_exn t f
returns the first index i
of t
for which f i t.(i)
is true. It raises Stdlib.Not_found
or Not_found_s
if there is no such element.
find_mapi_exn
is like find_map_exn
but passes the index as an argument.
find_consecutive_duplicate t ~equal
returns the first pair of consecutive elements (a1, a2)
in t
such that equal a1 a2
. They are returned in the same order as they appear in t
.
reduce f [a1; ...; an]
is Some (f (... (f (f a1 a2) a3) ...) an)
. Returns None
on the empty array.
permute ?random_state ?pos ?len t
randomly permutes t
in place.
To permute only part of the array, specify pos
to be the index to start permuting from and len
indicating how many elements to permute.
permute
side-effects random_state
by repeated calls to Random.State.int
. If random_state
is not supplied, permute
uses Random.State.default
.
random_element ?random_state t
is None
if t
is empty, else it is Some x
for some x
chosen uniformly at random from t
.
random_element
side-effects random_state
by calling Random.State.int
. If random_state
is not supplied, random_element
uses Random.State.default
.
sorted_copy ar compare
returns a shallow copy of ar
that is sorted. Similar to List.sort
The input array is copied internally so that future modifications of it do not change the sequence.
The input array is shared with the sequence and modifications of it will result in modification of the sequence.