package patdiff

  1. Overview
  2. Docs
File Diff using the Patience Diff algorithm

Install

Dune Dependency

Authors

Maintainers

Sources

v0.17.0.tar.gz
sha256=f4f2b060ea39870e238f5be744e84d1d8030864a02f8fc2368866e4d3d7e1b72

doc/src/patdiff.kernel/patdiff_core.ml.html

Source file patdiff_core.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
open! Core
open! Import
include Patdiff_core_intf

include struct
  open Configuration

  let default_context = default_context
  let default_line_big_enough = default_line_big_enough
  let default_word_big_enough = default_word_big_enough
end

(* Strip whitespace from a string by stripping and replacing with spaces *)
let ws_rex = Re.compile Re.(rep1 space)
let ws_rex_anchored = Re.compile Re.(seq [ bol; rep space; eol ])
let ws_sub = " "
let remove_ws s = String.strip (Re.replace_string ws_rex s ~by:ws_sub)
let is_ws = Re.execp ws_rex_anchored

(* This regular expression describes the delimiters on which to split the string *)
let words_rex =
  let open Re in
  let delim = set {|"{}[]#,.;()_|} in
  let punct = rep1 (set {|=`+-/!@$%^&*:|<>|}) in
  let space = rep1 space in
  (* We don't want to split up ANSI color sequences, so let's make sure they get through
     intact. *)
  let ansi_sgr_sequence =
    let esc = char '\027' in
    seq [ esc; char '['; rep (alt [ char ';'; digit ]); char 'm' ]
  in
  compile (alt [ delim; punct; space; ansi_sgr_sequence ])
;;

(* Split a string into a list of string options delimited by words_rex
   (delimiters included) *)
let split s ~keep_ws =
  let s = if keep_ws then s else String.rstrip s in
  if String.is_empty s && keep_ws
  then [ "" ]
  else
    Re.split_full words_rex s
    |> List.filter_map ~f:(fun token ->
         let string =
           match token with
           | `Delim d -> Re.Group.get d 0
           | `Text t -> t
         in
         if String.is_empty string then None else Some string)
;;

(* This function ensures that the tokens passed to Patience diff do not include
   whitespace.  Whitespace is appended to words, and then removed by [~transform] later
   on. The point is to make the semantic cleanup go well -- we don't want whitespace
   matches to "count" as part of the length of a match. *)
let whitespace_ignorant_split s =
  if String.is_empty s
  then []
  else (
    let istext s = not (Re.execp ws_rex s) in
    split s ~keep_ws:false
    |> List.group ~break:(fun split_result1 _ -> istext split_result1)
    |> List.map ~f:String.concat)
;;

include struct
  let%expect_test _ =
    print_s ([%sexp_of: string list] (split ~keep_ws:true ""));
    [%expect {| ("") |}]
  ;;
end

module Make (Output_impls : Output_impls) = struct
  module Output_ops = struct
    module Rule = struct
      let apply text ~rule ~output ~refined =
        let (module O) = Output_impls.implementation output in
        O.Rule.apply text ~rule ~refined
      ;;
    end

    module Rules = struct
      let to_string (rules : Format.Rules.t) output
        : string Patience_diff.Range.t -> string Patience_diff.Range.t
        =
        let apply text ~rule ~refined = Rule.apply text ~rule ~output ~refined in
        function
        | Same ar ->
          let formatted_ar =
            Array.map ar ~f:(fun (x, y) ->
              let app = apply ~rule:rules.line_same ~refined:false in
              app x, app y)
          in
          Same formatted_ar
        | Next (ar, move_kind) ->
          Next
            ( Array.map
                ar
                ~f:
                  (apply
                     ~refined:false
                     ~rule:
                       (match move_kind with
                        | Some (Move _) -> rules.moved_to_next
                        | Some (Within_move _) -> rules.added_in_move
                        | None -> rules.line_next))
            , move_kind )
        | Prev (ar, move_kind) ->
          Prev
            ( Array.map
                ar
                ~f:
                  (apply
                     ~refined:false
                     ~rule:
                       (match move_kind with
                        | Some (Move _) -> rules.moved_from_prev
                        | Some (Within_move _) -> rules.removed_in_move
                        | None -> rules.line_prev))
            , move_kind )
        | Unified (ar, move_id) ->
          Unified
            ( Array.map
                ar
                ~f:
                  (apply
                     ~refined:true
                     ~rule:
                       (match move_id with
                        | None -> rules.line_unified
                        | Some _ -> rules.line_unified_in_move))
            , move_id )
        | Replace (ar1, ar2, move_id) ->
          let prev_rule, next_rule =
            match move_id with
            | None -> rules.line_prev, rules.line_next
            | Some _ -> rules.removed_in_move, rules.added_in_move
          in
          let ar1 = Array.map ar1 ~f:(apply ~refined:true ~rule:prev_rule) in
          let ar2 = Array.map ar2 ~f:(apply ~refined:true ~rule:next_rule) in
          Replace (ar1, ar2, move_id)
      ;;

      let map_ranges (hunks : _ Patience_diff.Hunk.t list) ~f =
        List.map hunks ~f:(fun hunk -> { hunk with ranges = List.map hunk.ranges ~f })
      ;;

      let apply hunks ~rules ~output = map_ranges hunks ~f:(to_string rules output)
    end

    let print ~print_global_header ~file_names ~rules ~output ~print ~location_style hunks
      =
      let formatted_hunks = Rules.apply ~rules ~output hunks in
      let (module O) = Output_impls.implementation output in
      O.print
        ~print_global_header
        ~file_names
        ~rules
        ~print
        ~location_style
        formatted_hunks
    ;;
  end

  let indentation line =
    let rec loop line len i n =
      if i >= len
      then n, i
      else (
        match line.[i] with
        | ' ' -> loop line len (i + 1) (n + 1)
        (* tabs count for 4 spaces *)
        | '\t' -> loop line len (i + 1) (n + 4)
        | _ -> n, i)
    in
    loop line (String.length line) 0 0
  ;;

  let score_line (side : [ `left | `right ]) line1 line2 : int =
    let i1, start_of_1 = indentation line1 in
    let i2, start_of_2 = indentation line2 in
    (* Order of priority is roughly:
       1. low indentation for second line
       2. lower indentation for second line than first
       3. bonus points for certain patterns at the (non-whitespace) start of the line

       But it isn’t priority, we just add things. So a failure case may cause us to pick a
       boundary like this:
       {v
               (some subfield)))
        ------------- BOUNDARY ----------------
          (other_field .))
         ((new entry)
          ....)
       v}
       instead of between other_field and new entry.

       We try to counteract that for the case where the line below the boundary starts
       with e.g. ‘;;’ by removing the ‘decreasing indentation bonus’ in that case.
       Plausibly we could do something by taking into account the count of closing parens
       minus opening parens.

       A secondary issue is that [line1] or [line2] may be entirely whitespace which can
       be misleading (e.g. editors will typically remove indentation from pure-whitespace
       lines) and cause us to miss good information (e.g. for an added function we would
       like to have bonus points for the boundaries being just before ‘let ...’ and just
       after ‘;;’ but typically there is some whitespace added to be put before/after the
       function instead and that is what we score) *)
    let some_lines_are_blank = String.length line1 = 0 || String.length line2 = 0 in
    let base_score =
      let i2 = if some_lines_are_blank then max i1 i2 else i2 in
      max (-90) (90 - (i2 * 2))
    in
    let decreasing_indentation_bonus =
      if some_lines_are_blank
      then 0
      else
        (if i1 = i2
            (* This funky thing hopefully us to prefer a diff like ‘end [ module ... end ]’
           to one like ‘[ end module ... ] end’, where [] marks the boundary of the
           diff. *)
         then (
           match side with
           | `left -> 1
           | `right -> 0)
         else i1 - i2)
        |> Int.clamp_exn ~min:(-2) ~max:3
    in
    let bonus_for_chars =
      (* [bonus n line sides str] returns [n] if a bonus score applies, or 0 otherwise.

         [line] can be [`above] or [`below].  [sides] can be [`left], [`right], or [`any].

         The bonus score applies if [str] is found at the beginning of the line
         immediately [`above] or [`below] the boundary of the inserted/deleted region.

         If [sides] is [`left] or [`right], the bonus score only applies to that boundary
         of the diff region.

         So for example, [bonus 5 `above `any "</"] would add a bonus score of 5 if either
         boundary is immediately before a closing XML tag. *)
      let bonus n line sides str =
        let line, i =
          match line with
          | `above -> line1, start_of_1
          | `below -> line2, start_of_2
        in
        match sides, side with
        | `any, _ | `left, `left | `right, `right ->
          if String.is_substring_at line ~substring:str ~pos:i then n else 0
        | _ -> 0
      in
      bonus 1 `below `any "((" (* start of record bonus *)
      + bonus 3 `below `any "("
      + bonus 1 `above `right "}"
      + bonus (-1) `below `any "}"
      + bonus 1 `below `any "{"
      (* XML. Big bonus here as we prefer to break between </ and < despite equal
         indentation. *)
      + bonus 5 `above `any "</"
      + bonus (-4) `below `left "</" (* discount for starting diff on a </...> *)
      + bonus 3 `below `any "<"
      + bonus 2 `below `any "*" (* heading *)
      + bonus 1 `below `any "-" (* bullet point *)
      + bonus 3 `above `right ";;"
      + bonus 1 `above `left ";;"
      + bonus 4 `below `left "let"
      + bonus (-1) `below `left "let%"
      + bonus 2 `below `left "let%test"
      + bonus 2 `below `left "let%expect"
      + bonus 2 `below `right "let"
      + bonus 1 `above `any "in"
      + bonus 4 `below `left "module"
      + bonus 3 `above `right "end"
      (* In these cases, we typically get decreasing indentation but we want the ending
         token (e.g. ;;) above the boundaries *)
      + bonus (min (-1) (-decreasing_indentation_bonus)) `below `any ";;"
      + bonus (min (-1) (-decreasing_indentation_bonus)) `below `any "end"
      (* starting on a blank line gives bonus *)
      + if start_of_2 >= String.length line2 then 2 else 0
    in
    base_score + decreasing_indentation_bonus + bonus_for_chars
  ;;

  module Range_info = struct
    module T = struct
      type t =
        { range_index : int
        ; size_of_range : int
        ; replace_id : int option
        }
      [@@deriving compare, hash, sexp_of, fields ~getters]

      let compare_by_size = Comparable.lift Int.compare ~f:size_of_range
    end

    include T
    include Hashable.Make_plain (T)
  end

  (* Used to track the state of [Replace] ranges when we explode them into
     a [Prev] and a [Next] *)
  module Range_with_replaces_info = struct
    type t =
      { hunk_index : int
      ; range_type : [ `Original | `Former_replace of int | `Move ]
      }
  end

  let find_moves ~line_big_enough ~keep_ws (hunks : Hunks.t) =
    let minimum_match_perc = 0.7 in
    let minimum_lines = 3 in
    (* Rewrite [Replace] ranges as a [Prev] and [Next] so we can consider them for moves.
       Extract all ranges from the hunks so they are easier to work with *)
    let all_ranges = Queue.create () in
    let replace_id = ref 0 in
    List.iteri hunks ~f:(fun hunk_index hunk ->
      List.iter hunk.ranges ~f:(fun range ->
        match range with
        | Replace (prev, next, None) ->
          Queue.enqueue
            all_ranges
            ( { Range_with_replaces_info.hunk_index
              ; range_type = `Former_replace !replace_id
              }
            , Patience_diff.Range.Prev (prev, None) );
          Queue.enqueue
            all_ranges
            ( { Range_with_replaces_info.hunk_index
              ; range_type = `Former_replace !replace_id
              }
            , Patience_diff.Range.Next (next, None) );
          Int.incr replace_id
        | _ ->
          Queue.enqueue
            all_ranges
            ({ Range_with_replaces_info.hunk_index; range_type = `Original }, range)));
    let prev_ranges = Queue.create () in
    let next_ranges =
      Pairing_heap.create ~cmp:(Comparable.lift Range_info.compare_by_size ~f:fst) ()
    in
    Queue.iteri all_ranges ~f:(fun range_index (replace_info, range) ->
      let replace_id =
        match replace_info.range_type with
        | `Former_replace id -> Some id
        | `Move | `Original -> None
      in
      match range with
      | Prev (range_contents, None) when Array.length range_contents >= minimum_lines ->
        Queue.enqueue
          prev_ranges
          ( { Range_info.range_index
            ; size_of_range = Array.sum (module Int) ~f:String.length range_contents
            ; replace_id
            }
          , range_contents )
      | Next (range_contents, None) when Array.length range_contents >= minimum_lines ->
        Pairing_heap.add
          next_ranges
          ( { Range_info.range_index
            ; size_of_range = Array.sum (module Int) ~f:String.length range_contents
            ; replace_id
            }
          , range_contents )
      | _ -> ());
    let prevs_used = Range_info.Table.create () in
    let nexts_to_replace = Range_info.Table.create () in
    (* Find ranges that are similar enough to be moves *)
    let next_ranges =
      Array.init (Pairing_heap.length next_ranges) ~f:(fun _ ->
        Pairing_heap.pop_exn next_ranges)
    in
    let move_id = ref Patience_diff.Move_id.zero in
    Queue.iter prev_ranges ~f:(fun (prev_location, prev_contents) ->
      let starting_index =
        Array.binary_search
          next_ranges
          ~compare:(fun (next_range_info, _next_contents) prev_range_info ->
            Range_info.compare_by_size next_range_info prev_range_info)
          `Last_less_than_or_equal_to
          prev_location
        |> Option.value ~default:(Array.length next_ranges - 1)
      in
      let starting_index = if starting_index < 0 then 0 else starting_index in
      let left_index = ref starting_index in
      let right_index = ref (starting_index + 1) in
      let max_similarity range_a range_b =
        let a_size = Int.to_float range_a.Range_info.size_of_range in
        let b_size = Int.to_float range_b.Range_info.size_of_range in
        Float.min a_size b_size /. Float.max a_size b_size
      in
      let next_closest_range () =
        let left_range =
          if !left_index < 0 || !left_index >= Array.length next_ranges
          then None
          else Some next_ranges.(!left_index)
        in
        let right_range =
          if !right_index < 0 || !right_index >= Array.length next_ranges
          then None
          else Some next_ranges.(!right_index)
        in
        match left_range, right_range with
        | None, None -> None
        | Some left_range, None ->
          Int.decr left_index;
          Some left_range
        | None, Some right_range ->
          Int.incr right_index;
          Some right_range
        | Some (left_info, left_range), Some (right_info, right_range) ->
          if Float.compare
               (max_similarity left_info prev_location)
               (max_similarity right_info prev_location)
             >= 0
          then (
            Int.decr left_index;
            Some (left_info, left_range))
          else (
            Int.incr right_index;
            Some (right_info, right_range))
      in
      let rec find_best_next_range best_match_so_far =
        let finish () =
          match best_match_so_far with
          | None -> ()
          | Some (_, select_hunk) -> select_hunk ()
        in
        match next_closest_range () with
        | None -> finish ()
        | Some (next_location, next_contents) ->
          let max_similarity = max_similarity prev_location next_location in
          (* If this range can't possibly have the required similarity then none of the
             subsequent ranges can either so stop our search here *)
          if Float.(max_similarity < minimum_match_perc)
             ||
             match best_match_so_far with
             | None -> false
             | Some (best_match_ratio, _) -> Float.(max_similarity < best_match_ratio)
          then finish ()
          else if Hashtbl.mem nexts_to_replace next_location
                  (* Don't use the two parts of a the same replace for moves *)
                  ||
                  match next_location.replace_id, prev_location.replace_id with
                  | Some next_id, Some prev_id when next_id = prev_id -> true
                  | _ -> false
          then find_best_next_range best_match_so_far
          else (
            let match_ratio =
              Patience_diff.String.match_ratio prev_contents next_contents
            in
            let select_hunk () =
              let hunk =
                let transform = if keep_ws then Fn.id else remove_ws in
                Patience_diff.String.get_hunks
                  ~transform
                  ~context:(-1)
                  ~big_enough:line_big_enough
                  ~max_slide:100
                  ~score:score_line
                  ~prev:prev_contents
                  ~next:next_contents
                  ()
                (* Negative [context] returns a singleton hunk *)
                |> List.hd_exn
              in
              let move_index = !move_id in
              Hashtbl.add_exn prevs_used ~key:prev_location ~data:(move_index, None, None);
              move_id := Patience_diff.Move_id.succ !move_id;
              let num_ranges = List.length hunk.ranges in
              let range_index_is_on_edge range_index =
                range_index = 0 || range_index = num_ranges - 1
              in
              Hashtbl.add_exn
                nexts_to_replace
                ~key:next_location
                ~data:
                  (List.filter_mapi hunk.ranges ~f:(fun range_index_within_move range ->
                     match range with
                     | Same contents ->
                       Some
                         (Patience_diff.Range.Next
                            (Array.map ~f:snd contents, Some (Move move_index)))
                     | Replace (prev, next, _) ->
                       Some (Replace (prev, next, Some move_index))
                     | Prev (prev, _) ->
                       if range_index_is_on_edge range_index_within_move
                       then (
                         Hashtbl.update prevs_used prev_location ~f:(function
                           | Some (move_index, beg_lines, end_lines) ->
                             ( move_index
                             , (if range_index_within_move = 0
                                then Some (Array.length prev)
                                else beg_lines)
                             , if range_index_within_move = num_ranges - 1
                               then Some (Array.length prev)
                               else end_lines )
                           (* We should have added this prev range above *)
                           | None -> assert false);
                         None)
                       else Some (Prev (prev, Some (Within_move move_index)))
                     | Next (next, _) ->
                       Some
                         (Next
                            ( next
                            , if range_index_is_on_edge range_index_within_move
                              then None
                              else Some (Within_move move_index) ))
                     | Unified (contents, _) -> Some (Unified (contents, Some move_index))))
            in
            let best_match_so_far =
              match best_match_so_far with
              | None when Float.(match_ratio >= minimum_match_perc) ->
                Some (match_ratio, select_hunk)
              | None -> None
              | Some (best_match_ratio, _) ->
                if Float.(match_ratio > best_match_ratio)
                then Some (match_ratio, select_hunk)
                else best_match_so_far
            in
            find_best_next_range best_match_so_far)
      in
      find_best_next_range None);
    let prevs_by_range_index =
      Hashtbl.to_alist prevs_used
      |> List.map ~f:(fun (range_info, move_info) ->
           range_info.Range_info.range_index, move_info)
      |> Int.Table.of_alist_exn
    in
    let nexts_by_range_index =
      Hashtbl.to_alist nexts_to_replace
      |> List.map ~f:(fun (range_info, ranges_to_insert) ->
           range_info.Range_info.range_index, ranges_to_insert)
      |> Int.Table.of_alist_exn
    in
    (* update the [Next] ranges *)
    let ranges =
      Queue.mapi all_ranges ~f:(fun range_index (range_data, range) ->
        match
          ( Hashtbl.find prevs_by_range_index range_index
          , Hashtbl.find nexts_by_range_index range_index )
        with
        (* This means we think the range is both a next and prev which is impossible *)
        | Some _, Some _ -> assert false
        | None, None -> [ range_data, range ]
        | Some (move_id, lines_to_trim_at_beg, lines_to_trim_at_end), None ->
          (match range with
           | Patience_diff.Range.Prev (contents, None) ->
             let lines_to_trim_at_beg = Option.value lines_to_trim_at_beg ~default:0 in
             let lines_to_trim_at_end = Option.value lines_to_trim_at_end ~default:0 in
             List.filter_opt
               [ (if lines_to_trim_at_beg = 0
                  then None
                  else
                    Some
                      ( { range_data with range_type = `Original }
                      , Patience_diff.Range.Prev
                          (Array.sub contents ~pos:0 ~len:lines_to_trim_at_beg, None) ))
               ; Some
                   ( { range_data with range_type = `Move }
                   , Patience_diff.Range.Prev
                       ( Array.sub
                           contents
                           ~pos:lines_to_trim_at_beg
                           ~len:
                             (Array.length contents
                              - lines_to_trim_at_beg
                              - lines_to_trim_at_end)
                       , Some (Move move_id) ) )
               ; (if lines_to_trim_at_end = 0
                  then None
                  else
                    Some
                      ( { range_data with range_type = `Original }
                      , Patience_diff.Range.Prev
                          ( Array.sub
                              contents
                              ~pos:(Array.length contents - lines_to_trim_at_end)
                              ~len:lines_to_trim_at_end
                          , None ) ))
               ]
           | _ ->
             (* we should never reference anything except a [Prev] that hasn't been moved *)
             assert false)
        | None, Some ranges_to_replace ->
          let range_data = { range_data with range_type = `Move } in
          List.map ranges_to_replace ~f:(fun range -> range_data, range))
      |> Queue.to_list
      |> List.concat
    in
    (* Recover any [Replace] ranges we broke up if we didn't use them for moves. *)
    let final_ranges = Queue.create () in
    let rec recover_replaces = function
      | ( { Range_with_replaces_info.range_type = `Former_replace _; hunk_index }
        , Patience_diff.Range.Prev (prev, None) )
        :: ( { Range_with_replaces_info.range_type = `Former_replace _; hunk_index = _ }
           , Next (next, None) )
        :: rest_ranges ->
        Queue.enqueue
          final_ranges
          ( { Range_with_replaces_info.range_type = `Original; hunk_index }
          , Patience_diff.Range.Replace (prev, next, None) );
        recover_replaces rest_ranges
      | range :: rest_ranges ->
        Queue.enqueue final_ranges range;
        recover_replaces rest_ranges
      | [] -> ()
    in
    recover_replaces ranges;
    (* Place the ranges in the correct hunks *)
    let final_hunks =
      List.mapi hunks ~f:(fun hunk_index hunk ->
        let ranges =
          let hunk_ranges = Queue.create () in
          Queue.drain
            final_ranges
            ~f:(fun (_, range) -> Queue.enqueue hunk_ranges range)
            ~while_:(fun (range_data, _) ->
              range_data.Range_with_replaces_info.hunk_index = hunk_index);
          Queue.to_list hunk_ranges
        in
        { hunk with ranges })
    in
    final_hunks
  ;;

  let diff ~context ~line_big_enough ~keep_ws ~find_moves:should_find_moves ~prev ~next =
    let transform = if keep_ws then Fn.id else remove_ws in
    Patience_diff.String.get_hunks
      ~transform
      ~context
      ~big_enough:line_big_enough
      ~max_slide:100
      ~score:score_line
      ~prev
      ~next
      ()
    |> fun hunks ->
    if should_find_moves then find_moves ~line_big_enough ~keep_ws hunks else hunks
  ;;

  type word_or_newline =
    [ `Newline of int * string option (* (number of newlines, subsequent_whitespace) *)
    | `Word of string
    ]
  [@@deriving sexp_of]

  (* Splits an array of lines into an array of pieces (`Newlines and R.Words) *)
  let explode ar ~keep_ws =
    let words = Array.to_list ar in
    let words =
      if keep_ws
      then List.map words ~f:(split ~keep_ws)
      else List.map words ~f:whitespace_ignorant_split
    in
    let to_words l = List.map l ~f:(fun s -> `Word s) in
    (*
       [`Newline of (int * string option)]

       can be thought of as:

       [`Newline of
       ([`How_many_consecutive_newlines of int]
     * [`Some_subsequent_whitespace of string
       |`Empty_string
       ])]

       This representation is used to try to collapse consecutive whitespace as tightly as
       possible, but it's not a great abstraction, so some consecutive whitespace does not
       get collapsed.

     *)
    let words =
      List.concat_map words ~f:(fun x ->
        match x with
        | hd :: tl ->
          if keep_ws && (not (String.is_empty hd)) && is_ws hd
          then `Newline (1, Some hd) :: to_words tl
          else `Newline (1, None) :: `Word hd :: to_words tl
        | [] -> [ `Newline (1, None) ])
    in
    let words =
      List.fold_right words ~init:[] ~f:(fun x acc ->
        (* look back at what we've accumulated so far to see if there's any whitespace that
           can be collapsed. *)
        match acc with
        | `Word s :: tl -> x :: `Word s :: tl
        | `Newline (i, None) :: tl ->
          (match x with
           | `Word s -> `Word s :: `Newline (i, None) :: tl
           | `Newline (j, opt) ->
             (* collapse the whitespace from each [`Newline] by summing
                how_many_consecutive_newlines from each (i+j) *)
             `Newline (i + j, opt) :: tl)
        | `Newline (i, Some s1) :: tl ->
          (match x with
           | `Word s2 -> `Word s2 :: `Newline (i, Some s1) :: tl
           | `Newline (j, opt) ->
             (* collapse the whitespace from each [`Newline] by concatenating any
                subsequent_whitespace (opt ^ s1) and summing how_many_consecutive_newlines
                (i+j) from each. *)
             let s1 = Option.value opt ~default:"" ^ s1 in
             `Newline (i + j, Some s1) :: tl)
        | [] -> [ x ])
    in
    (* Throw away the very first `Newline *)
    let words =
      match words with
      | `Newline (i, opt) :: tl -> `Newline (i - 1, opt) :: tl
      | `Word _ :: _ | [] ->
        raise_s
          [%message
            "Expected words to start with a `Newline." (words : word_or_newline list)]
    in
    (* Append a newline to the end, if this array has any words *)
    let words =
      match words with
      | [] -> []
      | [ `Newline (0, None) ] -> []
      | list -> List.append list [ `Newline (1, None) ]
    in
    Array.of_list words
  ;;

  (* Takes hunks of `Words and `Newlines and collapses them back into lines,
   * formatting appropriately. *)
  let collapse ranges ~rule_same ~rule_prev ~rule_next ~kind ~output =
    (* flag indicates what kind of range is currently being collapsed *)
    let flag = ref `Same in
    (* segment is the current series of words being processed. *)
    let segment = ref [] in
    (* line is the current series of formatted segments *)
    let line = ref [] in
    (* lines is the return array *)
    let lines = ref [] in
    let apply ~rule = function
      | "" -> ""
      | s -> Output_ops.Rule.apply s ~rule ~output ~refined:false
    in
    (*
     * Finish the current segment by applying the appropriate format
     * and popping it on to the end of the current line
     *)
    let finish_segment () =
      let rule =
        match !flag with
        | `Same -> rule_same
        | `Prev -> rule_prev
        | `Next -> rule_next
      in
      let formatted_segment = List.rev !segment |> String.concat |> apply ~rule in
      line := formatted_segment :: !line;
      segment := []
    in
    (*
     * Finish the current segment, apply the reset rule to the line,
     * and pop the finished line onto the return array
     *)
    let newline i =
      for _ = 1 to i do
        finish_segment ();
        lines := String.concat (List.rev !line) :: !lines;
        line := []
      done
    in
    let f range =
      (* Extract the array, set flag appropriately, *)
      let ar =
        match (range : _ Patience_diff.Range.t) with
        | Same ar ->
          flag := `Same;
          (* R.Same ar is an array of tuples.  The first tuple is an
           * element from the old file, the second tuple, an element
           * from the new file.  Depending on what kind of collapse
           * this is, we want only one or the other. *)
          let f =
            match kind with
            | `Prev_only -> fst
            | `Next_only -> snd
            | `Unified -> snd
          in
          Array.map ar ~f
        | Prev (ar, _) ->
          flag := `Prev;
          ar
        | Next (ar, _) ->
          flag := `Next;
          ar
        | Replace _ | Unified _ ->
          (* When calling collapse, we always call
           * Patience_diff.unified first, which removes all R.Replaces
           * and R.Unifieds. *)
          assert false
      in
      (* Iterate through the elements of the range, appending each `Word to
       * segment and calling newline on each `Newline
       *)
      Array.iter ar ~f:(function
        | `Newline (i, None) -> newline i
        | `Newline (i, Some s) ->
          newline i;
          segment := s :: !segment
        | `Word s -> segment := s :: !segment);
      finish_segment ()
    in
    List.iter ranges ~f;
    (match !line with
     | [] | [ "" ] -> ()
     | line ->
       let line = String.concat (List.rev line) in
       if is_ws line
       then
         (* This branch was unreachable in our regression tests, but I can't prove it's
            unreachable in all cases. Rather than raise in production, let's drop this
            whitespace. *)
         ()
       else
         raise_s
           [%message
             "Invariant violated: [collapse] got a line not terminated with a newline"
               (line : string)]);
    Array.of_list (List.rev !lines)
  ;;

  (* Get the hunks from two arrays of pieces (`Words and `Newlines) *)
  let diff_pieces ~prev_pieces ~next_pieces ~keep_ws ~word_big_enough =
    let context = -1 in
    let transform =
      if keep_ws
      then
        function
        | `Word s -> s
        | `Newline (lines, trailing_whitespace) ->
          Option.fold trailing_whitespace ~init:(String.make lines '\n') ~f:String.( ^ )
      else
        function
        | `Word s -> remove_ws s
        | `Newline (0, _) -> ""
        | `Newline (_, _) -> " "
    in
    Patience_diff.String.get_hunks
      ~transform
      ~context
      ~big_enough:word_big_enough
      ~max_slide:0
      ~prev:prev_pieces
      ~next:next_pieces
      ()
  ;;

  let ranges_are_just_whitespace (ranges : _ Patience_diff.Range.t list) =
    List.for_all ranges ~f:(function
      | Prev (piece_array, _) | Next (piece_array, _) ->
        Array.for_all piece_array ~f:(function
          | `Word s -> String.is_empty (remove_ws s)
          | `Newline _ -> true)
      | _ -> true)
  ;;

  (* Interleaves the display of minus lines and plus lines so that equal words are presented
     close together.  There is some heuristic for when we think doing this improves the
     diff. *)
  let split_for_readability rangelist =
    let ans : _ Patience_diff.Range.t list list ref = ref [] in
    let pending_ranges : _ Patience_diff.Range.t list ref = ref [] in
    let append_range range = pending_ranges := range :: !pending_ranges in
    List.iter rangelist ~f:(fun range ->
      let split_was_executed =
        match (range : _ Patience_diff.Range.t) with
        | Next _ | Prev _ | Replace _ | Unified _ -> false
        | Same seq ->
          let first_newline =
            Array.find_mapi seq ~f:(fun i -> function
              | `Word _, _ | _, `Word _ | `Newline (0, _), _ | _, `Newline (0, _) -> None
              | `Newline first_nlA, `Newline first_nlB -> Some (i, first_nlA, first_nlB))
          in
          (match first_newline with
           | None -> false
           | Some (i, first_nlA, first_nlB) ->
             if Array.length seq - i <= Configuration.too_short_to_split
             then false
             else (
               append_range (Same (Array.sub seq ~pos:0 ~len:i));
               (* A non-zero `Newline is required for [collapse] to work properly. *)
               append_range (Same [| `Newline (1, None), `Newline (1, None) |]);
               ans := List.rev !pending_ranges :: !ans;
               pending_ranges := [];
               let suf = Array.sub seq ~pos:i ~len:(Array.length seq - i) in
               let decr_first (x, y) = x - 1, y in
               suf.(0) <- `Newline (decr_first first_nlA), `Newline (decr_first first_nlB);
               append_range (Same suf);
               true))
      in
      if not split_was_executed then append_range range);
    List.rev
      (match !pending_ranges with
       | [] -> !ans
       | _ :: _ as ranges -> List.rev ranges :: !ans)
  ;;

  (* Refines the diff, splitting the lines into smaller arrays and diffing them, then
     collapsing them back into their initial lines after applying a format. *)
  let refine
    ~(rules : Format.Rules.t)
    ~produce_unified_lines
    ~output
    ~keep_ws
    ~split_long_lines
    ~interleave
    ~word_big_enough
    (hunks : string Patience_diff.Hunk.t list)
    =
    let rule_prev = rules.word_prev in
    let rule_next = rules.word_next in
    let collapse = collapse ~rule_prev ~rule_next ~output in
    let () =
      match output with
      | Ansi | Html -> ()
      | Ascii ->
        if produce_unified_lines
        then failwith "produce_unified_lines is not supported in Ascii mode"
    in
    let console_width =
      lazy
        (match Output_impls.console_width () with
         | Error _ -> 80
         | Ok width -> width)
    in
    let refine_range : _ Patience_diff.Range.t -> _ Patience_diff.Range.t list = function
      | Next (a, _) when (not keep_ws) && Array.for_all a ~f:is_ws ->
        [ Same (Array.zip_exn a a) ]
      | Prev (a, _) when (not keep_ws) && Array.for_all a ~f:is_ws -> []
      | (Next _ | Prev _ | Same _ | Unified _) as range -> [ range ]
      | Replace (prev_ar, next_ar, move_kind) ->
        (* Explode the arrays *)
        let prev_pieces = explode prev_ar ~keep_ws in
        let next_pieces = explode next_ar ~keep_ws in
        (* Diff the pieces *)
        let sub_diff = diff_pieces ~prev_pieces ~next_pieces ~keep_ws ~word_big_enough in
        (* Smash the hunks' ranges all together *)
        let sub_diff = Patience_diff.Hunks.ranges sub_diff in
        (* Break it up where lines are too long *)
        let sub_diff_pieces =
          if not split_long_lines
          then [ sub_diff ]
          else (
            let max_len = Int.max 20 (force console_width - 2) in
            (* Accumulates the total length of the line so far, summing lengths
               of word tokens but resetting when newlines are hit *)
            let get_new_len_so_far ~len_so_far tokens_arr =
              Array.fold ~init:len_so_far tokens_arr ~f:(fun len_so_far token ->
                match token with
                | `Newline _ -> 0
                | `Word word -> len_so_far + String.length word)
            in
            (* Iteratively split long lines up.
               Produces a list of "range lists", where each range list should be displayed
               all together in one unbroken piece before being followed by the next range
               list, etc. *)
            let rec split_lines len_so_far sub_diff rangeaccum rangelistaccum =
              match sub_diff with
              | [] ->
                (match rangeaccum with
                 | [] -> List.rev rangelistaccum
                 | _ -> List.rev (List.rev rangeaccum :: rangelistaccum))
              (* More tokens ranges left to process *)
              | range :: rest ->
                (match (range : _ Patience_diff.Range.t) with
                 | Same tokenpairs_arr ->
                   let range_of_tokens tokenpairs =
                     Patience_diff.Range.Same (Array.of_list tokenpairs)
                   in
                   (* Keep taking tokens until we exceed max_len or hit a newline.
                      Returns (new len_so_far, new range, remaining tokens, hit newline)
                   *)
                   let rec take_until_max len_so_far tokenpairs accum =
                     match tokenpairs with
                     | [] -> len_so_far, range_of_tokens (List.rev accum), [], false
                     | ((token, _) as tokenpair) :: rest ->
                       (match token with
                        | `Newline _ ->
                          0, range_of_tokens (List.rev (tokenpair :: accum)), rest, true
                        | `Word word ->
                          let wordlen = String.length word in
                          if wordlen + len_so_far > max_len && len_so_far > 0
                          then 0, range_of_tokens (List.rev accum), tokenpairs, false
                          else
                            take_until_max (wordlen + len_so_far) rest (tokenpair :: accum))
                   in
                   let make_newline () =
                     Patience_diff.Range.Same [| `Newline (1, None), `Newline (1, None) |]
                   in
                   (* Keep taking ranges until all tokens exhausted.
                      Returns (new len_so_far, range list) *)
                   let rec take_ranges_until_exhausted len_so_far tokenpairs accum =
                     match tokenpairs with
                     | [] -> len_so_far, List.rev accum
                     | _ ->
                       let new_len_so_far, new_range, new_tokenpairs, hit_newline =
                         take_until_max len_so_far tokenpairs []
                       in
                       let new_accum = `Range new_range :: accum in
                       (* If there are token pairs left, that means we hit the max_len,
                          so add a break at this point *)
                       let new_accum =
                         match new_tokenpairs with
                         | _ :: _ when not hit_newline ->
                           `Break :: `Range (make_newline ()) :: new_accum
                         | _ -> new_accum
                       in
                       take_ranges_until_exhausted new_len_so_far new_tokenpairs new_accum
                   in
                   let new_len_so_far, new_ranges =
                     take_ranges_until_exhausted
                       len_so_far
                       (Array.to_list tokenpairs_arr)
                       []
                   in
                   (* Update rangeaccum and rangelistaccum according to the `Ranges and
                      `Breaks. `Ranges accumulate on to the existing range list to be
                      displayed contiguously, `Breaks start a new range list. *)
                   let rangeaccum, rangelistaccum =
                     List.fold
                       new_ranges
                       ~init:(rangeaccum, rangelistaccum)
                       ~f:(fun (rangeaccum, rangelistaccum) r ->
                       match r with
                       | `Break -> [], List.rev rangeaccum :: rangelistaccum
                       | `Range r -> r :: rangeaccum, rangelistaccum)
                   in
                   split_lines new_len_so_far rest rangeaccum rangelistaccum
                 | Next (tokens_arr, _) | Prev (tokens_arr, _) ->
                   let new_len_so_far = get_new_len_so_far ~len_so_far tokens_arr in
                   split_lines new_len_so_far rest (range :: rangeaccum) rangelistaccum
                 | Replace (prev_arr, next_arr, _move_kind) ->
                   let new_len_so_far =
                     Int.max
                       (get_new_len_so_far ~len_so_far prev_arr)
                       (get_new_len_so_far ~len_so_far next_arr)
                   in
                   split_lines new_len_so_far rest (range :: rangeaccum) rangelistaccum
                 | Unified _ -> assert false)
            in
            split_lines 0 sub_diff [] [])
        in
        let sub_diff_pieces =
          if interleave
          then List.concat_map sub_diff_pieces ~f:split_for_readability
          else sub_diff_pieces
        in
        List.concat_map sub_diff_pieces ~f:(fun sub_diff ->
          let sub_prev = Patience_diff.Range.prev_only sub_diff in
          let sub_next = Patience_diff.Range.next_only sub_diff in
          let all_same ranges =
            List.for_all ranges ~f:(fun range ->
              match (range : _ Patience_diff.Range.t) with
              | Same _ -> true
              | Prev (a, _) | Next (a, _) ->
                if keep_ws
                then false
                else
                  Array.for_all a ~f:(function
                    | `Newline _ -> true
                    | `Word _ -> false)
              | _ -> false)
          in
          let prev_all_same = all_same sub_prev in
          let next_all_same = all_same sub_next in
          let produce_unified_lines =
            produce_unified_lines
            && (((not (ranges_are_just_whitespace sub_prev)) && next_all_same)
                || ((not (ranges_are_just_whitespace sub_next)) && prev_all_same))
          in
          (* Collapse the pieces back into lines *)
          let prev_next_pairs =
            match prev_all_same, next_all_same with
            | true, true ->
              let kind = `Next_only in
              let rule_same =
                match move_kind with
                | None -> rules.word_same_unified
                | Some _ -> rules.word_same_unified_in_move
              in
              let next_ar = collapse sub_next ~rule_same ~kind in
              [ next_ar, next_ar ]
            | false, true ->
              let kind = `Prev_only in
              let rule_same =
                if produce_unified_lines
                then (
                  match move_kind with
                  | None -> rules.word_same_unified
                  | Some _ -> rules.word_same_unified_in_move)
                else rules.word_same_prev
              in
              let prev_ar = collapse sub_prev ~rule_same ~kind in
              let kind = `Next_only in
              let rule_same = rules.word_same_next in
              let next_ar = collapse sub_next ~rule_same ~kind in
              [ prev_ar, next_ar ]
            | true, false ->
              let kind = `Next_only in
              let rule_same =
                if produce_unified_lines
                then (
                  match move_kind with
                  | None -> rules.word_same_unified
                  | Some _ -> rules.word_same_unified_in_move)
                else rules.word_same_next
              in
              let next_ar = collapse sub_next ~rule_same ~kind in
              let kind = `Prev_only in
              let rule_same = rules.word_same_prev in
              let prev_ar = collapse sub_prev ~rule_same ~kind in
              [ prev_ar, next_ar ]
            | false, false ->
              let kind = `Prev_only in
              let rule_same = rules.word_same_prev in
              let prev_ar = collapse sub_prev ~rule_same ~kind in
              let kind = `Next_only in
              let rule_same = rules.word_same_next in
              let next_ar = collapse sub_next ~rule_same ~kind in
              [ prev_ar, next_ar ]
          in
          List.map prev_next_pairs ~f:(fun (prev_ar, next_ar) ->
            let range : _ Patience_diff.Range.t =
              match prev_all_same, next_all_same with
              | true, true -> Same (Array.map next_ar ~f:(fun x -> x, x))
              | _ ->
                (match prev_ar, next_ar with
                 (* Ugly hack that takes care of empty files *)
                 | [| "" |], next_ar -> Replace ([||], next_ar, move_kind)
                 | prev_ar, [| "" |] -> Replace (prev_ar, [||], move_kind)
                 | prev_ar, next_ar ->
                   (match produce_unified_lines, prev_all_same, next_all_same with
                    | true, true, false -> Unified (next_ar, move_kind)
                    | true, false, true -> Unified (prev_ar, move_kind)
                    | false, _, _ | _, false, false ->
                      Replace (prev_ar, next_ar, move_kind)
                    | _ -> assert false))
            in
            range))
    in
    hunks
    |> List.map ~f:(fun hunk ->
         { hunk with ranges = List.concat_map hunk.ranges ~f:refine_range })
    |> List.filter ~f:(not << Patience_diff.Hunk.all_same)
  ;;

  let print ~file_names ~rules ~output ~location_style hunks =
    Output_ops.print
      hunks
      ~rules
      ~output
      ~file_names
      ~print:(Printf.printf "%s\n")
      ~location_style
      ~print_global_header:true
  ;;

  let output_to_string
    ?(print_global_header = false)
    ~file_names
    ~rules
    ~output
    ~location_style
    hunks
    =
    let buf = Queue.create () in
    Output_ops.print
      hunks
      ~file_names
      ~location_style
      ~output
      ~print_global_header
      ~print:(Queue.enqueue buf)
      ~rules;
    String.concat (Queue.to_list buf) ~sep:"\n"
  ;;

  let iter_ansi ~rules ~f_hunk_break ~f_line hunks =
    let hunks = Output_ops.Rules.apply hunks ~rules ~output:Ansi in
    Hunks.iter ~f_hunk_break ~f_line hunks
  ;;

  let patdiff
    ?(context = Configuration.default_context)
    ?(keep_ws = false)
    ?(find_moves = false)
    ?(rules = Format.Rules.default)
    ?(output = Output.Ansi)
    ?(produce_unified_lines = true)
    ?(split_long_lines = true)
    ?print_global_header
    ?(location_style = Format.Location_style.Diff)
    ?(interleave = true)
    ?float_tolerance
    ?(line_big_enough = Configuration.default_line_big_enough)
    ?(word_big_enough = Configuration.default_word_big_enough)
    ~(prev : Diff_input.t)
    ~(next : Diff_input.t)
    ()
    =
    let keep_ws = keep_ws || Should_keep_whitespace.for_diff ~prev ~next in
    let hunks =
      diff
        ~context
        ~keep_ws
        ~find_moves
        ~line_big_enough
        ~prev:(List.to_array (String.split_lines prev.text))
        ~next:(List.to_array (String.split_lines next.text))
      |> refine
           ~rules
           ~produce_unified_lines
           ~output
           ~keep_ws
           ~split_long_lines
           ~interleave
           ~word_big_enough
    in
    let hunks =
      match float_tolerance with
      | None -> hunks
      | Some tolerance -> Float_tolerance.apply hunks tolerance ~context
    in
    output_to_string
      ?print_global_header
      ~file_names:(Fake prev.name, Fake next.name)
      ~rules
      ~output
      ~location_style
      hunks
  ;;
end

module Without_unix = Make (struct
  let console_width () = Ok 80

  let implementation : Output.t -> (module Output.S) = function
    | Ansi -> (module Ansi_output)
    | Ascii -> (module Ascii_output)
    | Html -> (module Html_output.Without_mtime)
  ;;
end)

module Private = struct
  module Make = Make
end
OCaml

Innovation. Community. Security.