package patdiff
File Diff using the Patience Diff algorithm
Install
Dune Dependency
Authors
Maintainers
Sources
patdiff-v0.16.0.tar.gz
sha256=60661ffca35e4726c40c42901774976f2634ac6a4f993a5a13f2fa458571cf16
doc/src/patdiff.kernel/patdiff_core.ml.html
Source file patdiff_core.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
open! Core open! Import include Patdiff_core_intf include struct open Configuration let default_context = default_context let default_line_big_enough = default_line_big_enough let default_word_big_enough = default_word_big_enough end (* Strip whitespace from a string by stripping and replacing with spaces *) let ws_rex = Re.compile Re.(rep1 space) let ws_rex_anchored = Re.compile Re.(seq [ bol; rep space; eol ]) let ws_sub = " " let remove_ws s = String.strip (Re.replace_string ws_rex s ~by:ws_sub) let is_ws = Re.execp ws_rex_anchored (* This regular expression describes the delimiters on which to split the string *) let words_rex = let open Re in let delim = set {|"{}[]#,.;()_|} in let punct = rep1 (set {|=`+-/!@$%^&*:|<>|}) in let space = rep1 space in (* We don't want to split up ANSI color sequences, so let's make sure they get through intact. *) let ansi_sgr_sequence = let esc = char '\027' in seq [ esc; char '['; rep (alt [ char ';'; digit ]); char 'm' ] in compile (alt [ delim; punct; space; ansi_sgr_sequence ]) ;; (* Split a string into a list of string options delimited by words_rex (delimiters included) *) let split s ~keep_ws = let s = if keep_ws then s else String.rstrip s in if String.is_empty s && keep_ws then [ "" ] else Re.split_full words_rex s |> List.filter_map ~f:(fun token -> let string = match token with | `Delim d -> Re.Group.get d 0 | `Text t -> t in if String.is_empty string then None else Some string) ;; (* This function ensures that the tokens passed to Patience diff do not include whitespace. Whitespace is appended to words, and then removed by [~transform] later on. The point is to make the semantic cleanup go well -- we don't want whitespace matches to "count" as part of the length of a match. *) let whitespace_ignorant_split s = if String.is_empty s then [] else ( let istext s = not (Re.execp ws_rex s) in split s ~keep_ws:false |> List.group ~break:(fun split_result1 _ -> istext split_result1) |> List.map ~f:String.concat) ;; include struct let%expect_test _ = print_s ([%sexp_of: string list] (split ~keep_ws:true "")); [%expect {| ("") |}] ;; end module Make (Output_impls : Output_impls) = struct module Output_ops = struct module Rule = struct let apply text ~rule ~output ~refined = let (module O) = Output_impls.implementation output in O.Rule.apply text ~rule ~refined ;; end module Rules = struct let to_string (rules : Format.Rules.t) output : string Patience_diff.Range.t -> string Patience_diff.Range.t = let apply text ~rule ~refined = Rule.apply text ~rule ~output ~refined in function | Same ar -> let formatted_ar = Array.map ar ~f:(fun (x, y) -> let app = apply ~rule:rules.line_same ~refined:false in app x, app y) in Same formatted_ar | Next ar -> Next (Array.map ar ~f:(apply ~refined:false ~rule:rules.line_next)) | Prev ar -> Prev (Array.map ar ~f:(apply ~refined:false ~rule:rules.line_prev)) | Unified ar -> Unified (Array.map ar ~f:(apply ~refined:true ~rule:rules.line_unified)) | Replace (ar1, ar2) -> let ar1 = Array.map ar1 ~f:(apply ~refined:true ~rule:rules.line_prev) in let ar2 = Array.map ar2 ~f:(apply ~refined:true ~rule:rules.line_next) in Replace (ar1, ar2) ;; let map_ranges (hunks : _ Patience_diff.Hunk.t list) ~f = List.map hunks ~f:(fun hunk -> { hunk with ranges = List.map hunk.ranges ~f }) ;; let apply hunks ~rules ~output = map_ranges hunks ~f:(to_string rules output) end let print ~print_global_header ~file_names ~rules ~output ~print ~location_style hunks = let formatted_hunks = Rules.apply ~rules ~output hunks in let (module O) = Output_impls.implementation output in O.print ~print_global_header ~file_names ~rules ~print ~location_style formatted_hunks ;; end let indentation line = let rec loop line len i n = if i >= len then n, i else ( match line.[i] with | ' ' -> loop line len (i + 1) (n + 1) (* tabs count for 4 spaces *) | '\t' -> loop line len (i + 1) (n + 4) | _ -> n, i) in loop line (String.length line) 0 0 ;; let score_line (side : [ `left | `right ]) line1 line2 : int = let i1, start_of_1 = indentation line1 in let i2, start_of_2 = indentation line2 in (* Order of priority is roughly: 1. low indentation for second line 2. lower indentation for second line than first 3. bonus points for certain patterns at the (non-whitespace) start of the line But it isn’t priority, we just add things. So a failure case may cause us to pick a boundary like this: {v (some subfield))) ------------- BOUNDARY ---------------- (other_field .)) ((new entry) ....) v} instead of between other_field and new entry. We try to counteract that for the case where the line below the boundary starts with e.g. ‘;;’ by removing the ‘decreasing indentation bonus’ in that case. Plausibly we could do something by taking into account the count of closing parens minus opening parens. A secondary issue is that [line1] or [line2] may be entirely whitespace which can be misleading (e.g. editors will typically remove indentation from pure-whitespace lines) and cause us to miss good information (e.g. for an added function we would like to have bonus points for the boundaries being just before ‘let ...’ and just after ‘;;’ but typically there is some whitespace added to be put before/after the function instead and that is what we score) *) let some_lines_are_blank = String.length line1 = 0 || String.length line2 = 0 in let base_score = let i2 = if some_lines_are_blank then max i1 i2 else i2 in max (-90) (90 - (i2 * 2)) in let decreasing_indentation_bonus = if some_lines_are_blank then 0 else (if i1 = i2 (* This funky thing hopefully us to prefer a diff like ‘end [ module ... end ]’ to one like ‘[ end module ... ] end’, where [] marks the boundary of the diff. *) then ( match side with | `left -> 1 | `right -> 0) else i1 - i2) |> Int.clamp_exn ~min:(-2) ~max:3 in let bonus_for_chars = (* [bonus n line sides str] returns [n] if a bonus score applies, or 0 otherwise. [line] can be [`above] or [`below]. [sides] can be [`left], [`right], or [`any]. The bonus score applies if [str] is found at the beginning of the line immediately [`above] or [`below] the boundary of the inserted/deleted region. If [sides] is [`left] or [`right], the bonus score only applies to that boundary of the diff region. So for example, [bonus 5 `above `any "</"] would add a bonus score of 5 if either boundary is immediately before a closing XML tag. *) let bonus n line sides str = let line, i = match line with | `above -> line1, start_of_1 | `below -> line2, start_of_2 in match sides, side with | `any, _ | `left, `left | `right, `right -> if String.is_substring_at line ~substring:str ~pos:i then n else 0 | _ -> 0 in bonus 1 `below `any "((" (* start of record bonus *) + bonus 3 `below `any "(" + bonus 1 `above `right "}" + bonus (-1) `below `any "}" + bonus 1 `below `any "{" (* XML. Big bonus here as we prefer to break between </ and < despite equal indentation. *) + bonus 5 `above `any "</" + bonus (-4) `below `left "</" (* discount for starting diff on a </...> *) + bonus 3 `below `any "<" + bonus 2 `below `any "*" (* heading *) + bonus 1 `below `any "-" (* bullet point *) + bonus 3 `above `right ";;" + bonus 1 `above `left ";;" + bonus 4 `below `left "let" + bonus (-1) `below `left "let%" + bonus 2 `below `left "let%test" + bonus 2 `below `left "let%expect" + bonus 2 `below `right "let" + bonus 1 `above `any "in" + bonus 4 `below `left "module" + bonus 3 `above `right "end" (* In these cases, we typically get decreasing indentation but we want the ending token (e.g. ;;) above the boundaries *) + bonus (min (-1) (-decreasing_indentation_bonus)) `below `any ";;" + bonus (min (-1) (-decreasing_indentation_bonus)) `below `any "end" (* starting on a blank line gives bonus *) + if start_of_2 >= String.length line2 then 2 else 0 in base_score + decreasing_indentation_bonus + bonus_for_chars ;; let diff ~context ~line_big_enough ~keep_ws ~prev ~next = let transform = if keep_ws then Fn.id else remove_ws in Patience_diff.String.get_hunks ~transform ~context ~big_enough:line_big_enough ~max_slide:100 ~score:score_line ~prev ~next () ;; type word_or_newline = [ `Newline of int * string option (* (number of newlines, subsequent_whitespace) *) | `Word of string ] [@@deriving sexp_of] (* Splits an array of lines into an array of pieces (`Newlines and R.Words) *) let explode ar ~keep_ws = let words = Array.to_list ar in let words = if keep_ws then List.map words ~f:(split ~keep_ws) else List.map words ~f:whitespace_ignorant_split in let to_words l = List.map l ~f:(fun s -> `Word s) in (* [`Newline of (int * string option)] can be thought of as: [`Newline of ([`How_many_consecutive_newlines of int] * [`Some_subsequent_whitespace of string |`Empty_string ])] This representation is used to try to collapse consecutive whitespace as tightly as possible, but it's not a great abstraction, so some consecutive whitespace does not get collapsed. *) let words = List.concat_map words ~f:(fun x -> match x with | hd :: tl -> if keep_ws && (not (String.is_empty hd)) && is_ws hd then `Newline (1, Some hd) :: to_words tl else `Newline (1, None) :: `Word hd :: to_words tl | [] -> [ `Newline (1, None) ]) in let words = List.fold_right words ~init:[] ~f:(fun x acc -> (* look back at what we've accumulated so far to see if there's any whitespace that can be collapsed. *) match acc with | `Word s :: tl -> x :: `Word s :: tl | `Newline (i, None) :: tl -> (match x with | `Word s -> `Word s :: `Newline (i, None) :: tl | `Newline (j, opt) -> (* collapse the whitespace from each [`Newline] by summing how_many_consecutive_newlines from each (i+j) *) `Newline (i + j, opt) :: tl) | `Newline (i, Some s1) :: tl -> (match x with | `Word s2 -> `Word s2 :: `Newline (i, Some s1) :: tl | `Newline (j, opt) -> (* collapse the whitespace from each [`Newline] by concatenating any subsequent_whitespace (opt ^ s1) and summing how_many_consecutive_newlines (i+j) from each. *) let s1 = Option.value opt ~default:"" ^ s1 in `Newline (i + j, Some s1) :: tl) | [] -> [ x ]) in (* Throw away the very first `Newline *) let words = match words with | `Newline (i, opt) :: tl -> `Newline (i - 1, opt) :: tl | `Word _ :: _ | [] -> raise_s [%message "Expected words to start with a `Newline." (words : word_or_newline list)] in (* Append a newline to the end, if this array has any words *) let words = match words with | [] -> [] | [ `Newline (0, None) ] -> [] | list -> List.append list [ `Newline (1, None) ] in Array.of_list words ;; (* Takes hunks of `Words and `Newlines and collapses them back into lines, * formatting appropriately. *) let collapse ranges ~rule_same ~rule_prev ~rule_next ~kind ~output = (* flag indicates what kind of range is currently being collapsed *) let flag = ref `Same in (* segment is the current series of words being processed. *) let segment = ref [] in (* line is the current series of formatted segments *) let line = ref [] in (* lines is the return array *) let lines = ref [] in let apply ~rule = function | "" -> "" | s -> Output_ops.Rule.apply s ~rule ~output ~refined:false in (* * Finish the current segment by applying the appropriate format * and popping it on to the end of the current line *) let finish_segment () = let rule = match !flag with | `Same -> rule_same | `Prev -> rule_prev | `Next -> rule_next in let formatted_segment = List.rev !segment |> String.concat |> apply ~rule in line := formatted_segment :: !line; segment := [] in (* * Finish the current segment, apply the reset rule to the line, * and pop the finished line onto the return array *) let newline i = for _ = 1 to i do finish_segment (); lines := String.concat (List.rev !line) :: !lines; line := [] done in let f range = (* Extract the array, set flag appropriately, *) let ar = match (range : _ Patience_diff.Range.t) with | Same ar -> flag := `Same; (* R.Same ar is an array of tuples. The first tuple is an * element from the old file, the second tuple, an element * from the new file. Depending on what kind of collapse * this is, we want only one or the other. *) let f = match kind with | `Prev_only -> fst | `Next_only -> snd | `Unified -> snd in Array.map ar ~f | Prev ar -> flag := `Prev; ar | Next ar -> flag := `Next; ar | Replace _ | Unified _ -> (* When calling collapse, we always call * Patience_diff.unified first, which removes all R.Replaces * and R.Unifieds. *) assert false in (* Iterate through the elements of the range, appending each `Word to * segment and calling newline on each `Newline *) Array.iter ar ~f:(function | `Newline (i, None) -> newline i | `Newline (i, Some s) -> newline i; segment := s :: !segment | `Word s -> segment := s :: !segment); finish_segment () in List.iter ranges ~f; (match !line with | [] | [ "" ] -> () | line -> let line = String.concat (List.rev line) in if is_ws line then (* This branch was unreachable in our regression tests, but I can't prove it's unreachable in all cases. Rather than raise in production, let's drop this whitespace. *) () else raise_s [%message "Invariant violated: [collapse] got a line not terminated with a newline" (line : string)]); Array.of_list (List.rev !lines) ;; (* Get the hunks from two arrays of pieces (`Words and `Newlines) *) let diff_pieces ~prev_pieces ~next_pieces ~keep_ws ~word_big_enough = let context = -1 in let transform = if keep_ws then function | `Word s -> s | `Newline (lines, trailing_whitespace) -> Option.fold trailing_whitespace ~init:(String.make lines '\n') ~f:String.( ^ ) else function | `Word s -> remove_ws s | `Newline (0, _) -> "" | `Newline (_, _) -> " " in Patience_diff.String.get_hunks ~transform ~context ~big_enough:word_big_enough ~max_slide:0 ~prev:prev_pieces ~next:next_pieces () ;; let ranges_are_just_whitespace (ranges : _ Patience_diff.Range.t list) = List.for_all ranges ~f:(function | Prev piece_array | Next piece_array -> Array.for_all piece_array ~f:(function | `Word s -> String.is_empty (remove_ws s) | `Newline _ -> true) | _ -> true) ;; (* Interleaves the display of minus lines and plus lines so that equal words are presented close together. There is some heuristic for when we think doing this improves the diff. *) let split_for_readability rangelist = let ans : _ Patience_diff.Range.t list list ref = ref [] in let pending_ranges : _ Patience_diff.Range.t list ref = ref [] in let append_range range = pending_ranges := range :: !pending_ranges in List.iter rangelist ~f:(fun range -> let split_was_executed = match (range : _ Patience_diff.Range.t) with | Next _ | Prev _ | Replace _ | Unified _ -> false | Same seq -> let first_newline = Array.find_mapi seq ~f:(fun i -> function | `Word _, _ | _, `Word _ | `Newline (0, _), _ | _, `Newline (0, _) -> None | `Newline first_nlA, `Newline first_nlB -> Some (i, first_nlA, first_nlB)) in (match first_newline with | None -> false | Some (i, first_nlA, first_nlB) -> if Array.length seq - i <= Configuration.too_short_to_split then false else ( append_range (Same (Array.sub seq ~pos:0 ~len:i)); (* A non-zero `Newline is required for [collapse] to work properly. *) append_range (Same [| `Newline (1, None), `Newline (1, None) |]); ans := List.rev !pending_ranges :: !ans; pending_ranges := []; let suf = Array.sub seq ~pos:i ~len:(Array.length seq - i) in let decr_first (x, y) = x - 1, y in suf.(0) <- `Newline (decr_first first_nlA), `Newline (decr_first first_nlB); append_range (Same suf); true)) in if not split_was_executed then append_range range); List.rev (match !pending_ranges with | [] -> !ans | _ :: _ as ranges -> List.rev ranges :: !ans) ;; (* Refines the diff, splitting the lines into smaller arrays and diffing them, then collapsing them back into their initial lines after applying a format. *) let refine ~(rules : Format.Rules.t) ~produce_unified_lines ~output ~keep_ws ~split_long_lines ~interleave ~word_big_enough (hunks : string Patience_diff.Hunk.t list) = let rule_prev = rules.word_prev in let rule_next = rules.word_next in let collapse = collapse ~rule_prev ~rule_next ~output in let () = match output with | Ansi | Html -> () | Ascii -> if produce_unified_lines then failwith "produce_unified_lines is not supported in Ascii mode" in let console_width = lazy (match Output_impls.console_width () with | Error _ -> 80 | Ok width -> width) in let refine_range : _ Patience_diff.Range.t -> _ Patience_diff.Range.t list = function | Next a when (not keep_ws) && Array.for_all a ~f:is_ws -> [ Same (Array.zip_exn a a) ] | Prev a when (not keep_ws) && Array.for_all a ~f:is_ws -> [] | (Next _ | Prev _ | Same _ | Unified _) as range -> [ range ] | Replace (prev_ar, next_ar) -> (* Explode the arrays *) let prev_pieces = explode prev_ar ~keep_ws in let next_pieces = explode next_ar ~keep_ws in (* Diff the pieces *) let sub_diff = diff_pieces ~prev_pieces ~next_pieces ~keep_ws ~word_big_enough in (* Smash the hunks' ranges all together *) let sub_diff = Patience_diff.Hunks.ranges sub_diff in (* Break it up where lines are too long *) let sub_diff_pieces = if not split_long_lines then [ sub_diff ] else ( let max_len = Int.max 20 (force console_width - 2) in (* Accumulates the total length of the line so far, summing lengths of word tokens but resetting when newlines are hit *) let get_new_len_so_far ~len_so_far tokens_arr = Array.fold ~init:len_so_far tokens_arr ~f:(fun len_so_far token -> match token with | `Newline _ -> 0 | `Word word -> len_so_far + String.length word) in (* Iteratively split long lines up. Produces a list of "range lists", where each range list should be displayed all together in one unbroken piece before being followed by the next range list, etc. *) let rec split_lines len_so_far sub_diff rangeaccum rangelistaccum = match sub_diff with | [] -> (match rangeaccum with | [] -> List.rev rangelistaccum | _ -> List.rev (List.rev rangeaccum :: rangelistaccum)) (* More tokens ranges left to process *) | range :: rest -> (match (range : _ Patience_diff.Range.t) with | Same tokenpairs_arr -> let range_of_tokens tokenpairs = Patience_diff.Range.Same (Array.of_list tokenpairs) in (* Keep taking tokens until we exceed max_len or hit a newline. Returns (new len_so_far, new range, remaining tokens)*) let rec take_until_max len_so_far tokenpairs accum = match tokenpairs with | [] -> len_so_far, range_of_tokens (List.rev accum), [] | ((token, _) as tokenpair) :: rest -> (match token with | `Newline _ -> 0, range_of_tokens (List.rev (tokenpair :: accum)), rest | `Word word -> let wordlen = String.length word in if wordlen + len_so_far > max_len && len_so_far > 0 then 0, range_of_tokens (List.rev accum), tokenpairs else take_until_max (wordlen + len_so_far) rest (tokenpair :: accum)) in let make_newline () = Patience_diff.Range.Same [| `Newline (1, None), `Newline (1, None) |] in (* Keep taking ranges until all tokens exhausted. Returns (new len_so_far, range list) *) let rec take_ranges_until_exhausted len_so_far tokenpairs accum = match tokenpairs with | [] -> len_so_far, List.rev accum | _ -> let new_len_so_far, new_range, new_tokenpairs = take_until_max len_so_far tokenpairs [] in let new_accum = `Range new_range :: accum in (* If there are token pairs left, that means we hit the max_len, so add a break at this point *) let new_accum = match new_tokenpairs with | _ :: _ -> `Break :: `Range (make_newline ()) :: new_accum | [] -> new_accum in take_ranges_until_exhausted new_len_so_far new_tokenpairs new_accum in let new_len_so_far, new_ranges = take_ranges_until_exhausted len_so_far (Array.to_list tokenpairs_arr) [] in (* Update rangeaccum and rangelistaccum according to the `Ranges and `Breaks. `Ranges accumulate on to the existing range list to be displayed contiguously, `Breaks start a new range list. *) let rangeaccum, rangelistaccum = List.fold new_ranges ~init:(rangeaccum, rangelistaccum) ~f:(fun (rangeaccum, rangelistaccum) r -> match r with | `Break -> [], List.rev rangeaccum :: rangelistaccum | `Range r -> r :: rangeaccum, rangelistaccum) in split_lines new_len_so_far rest rangeaccum rangelistaccum | Next tokens_arr | Prev tokens_arr -> let new_len_so_far = get_new_len_so_far ~len_so_far tokens_arr in split_lines new_len_so_far rest (range :: rangeaccum) rangelistaccum | Replace (prev_arr, next_arr) -> let new_len_so_far = Int.max (get_new_len_so_far ~len_so_far prev_arr) (get_new_len_so_far ~len_so_far next_arr) in split_lines new_len_so_far rest (range :: rangeaccum) rangelistaccum | Unified _ -> assert false) in split_lines 0 sub_diff [] []) in let sub_diff_pieces = if interleave then List.concat_map sub_diff_pieces ~f:split_for_readability else sub_diff_pieces in List.concat_map sub_diff_pieces ~f:(fun sub_diff -> let sub_prev = Patience_diff.Range.prev_only sub_diff in let sub_next = Patience_diff.Range.next_only sub_diff in let all_same ranges = List.for_all ranges ~f:(fun range -> match (range : _ Patience_diff.Range.t) with | Same _ -> true | Prev a | Next a -> if keep_ws then false else Array.for_all a ~f:(function | `Newline _ -> true | `Word _ -> false) | _ -> false) in let prev_all_same = all_same sub_prev in let next_all_same = all_same sub_next in let produce_unified_lines = produce_unified_lines && (((not (ranges_are_just_whitespace sub_prev)) && next_all_same) || ((not (ranges_are_just_whitespace sub_next)) && prev_all_same)) in (* Collapse the pieces back into lines *) let prev_next_pairs = match prev_all_same, next_all_same with | true, true -> let kind = `Next_only in let rule_same = rules.word_same_unified in let next_ar = collapse sub_next ~rule_same ~kind in [ next_ar, next_ar ] | false, true -> let kind = `Prev_only in let rule_same = if produce_unified_lines then rules.word_same_unified else rules.word_same_prev in let prev_ar = collapse sub_prev ~rule_same ~kind in let kind = `Next_only in let rule_same = rules.word_same_next in let next_ar = collapse sub_next ~rule_same ~kind in [ prev_ar, next_ar ] | true, false -> let kind = `Next_only in let rule_same = if produce_unified_lines then rules.word_same_unified else rules.word_same_next in let next_ar = collapse sub_next ~rule_same ~kind in let kind = `Prev_only in let rule_same = rules.word_same_prev in let prev_ar = collapse sub_prev ~rule_same ~kind in [ prev_ar, next_ar ] | false, false -> let kind = `Prev_only in let rule_same = rules.word_same_prev in let prev_ar = collapse sub_prev ~rule_same ~kind in let kind = `Next_only in let rule_same = rules.word_same_next in let next_ar = collapse sub_next ~rule_same ~kind in [ prev_ar, next_ar ] in List.map prev_next_pairs ~f:(fun (prev_ar, next_ar) -> let range : _ Patience_diff.Range.t = match prev_all_same, next_all_same with | true, true -> Same (Array.map next_ar ~f:(fun x -> x, x)) | _ -> (match prev_ar, next_ar with (* Ugly hack that takes care of empty files *) | [| "" |], next_ar -> Replace ([||], next_ar) | prev_ar, [| "" |] -> Replace (prev_ar, [||]) | prev_ar, next_ar -> (match produce_unified_lines, prev_all_same, next_all_same with | true, true, false -> Unified next_ar | true, false, true -> Unified prev_ar | false, _, _ | _, false, false -> Replace (prev_ar, next_ar) | _ -> assert false)) in range)) in hunks |> List.map ~f:(fun hunk -> { hunk with ranges = List.concat_map hunk.ranges ~f:refine_range }) |> List.filter ~f:(not << Patience_diff.Hunk.all_same) ;; let print ~file_names ~rules ~output ~location_style hunks = Output_ops.print hunks ~rules ~output ~file_names ~print:(Printf.printf "%s\n") ~location_style ~print_global_header:true ;; let output_to_string ?(print_global_header = false) ~file_names ~rules ~output ~location_style hunks = let buf = Queue.create () in Output_ops.print hunks ~file_names ~location_style ~output ~print_global_header ~print:(Queue.enqueue buf) ~rules; String.concat (Queue.to_list buf) ~sep:"\n" ;; let iter_ansi ~rules ~f_hunk_break ~f_line hunks = let hunks = Output_ops.Rules.apply hunks ~rules ~output:Ansi in Hunks.iter ~f_hunk_break ~f_line hunks ;; let patdiff ?(context = Configuration.default_context) ?(keep_ws = false) ?(rules = Format.Rules.default) ?(output = Output.Ansi) ?(produce_unified_lines = true) ?(split_long_lines = true) ?print_global_header ?(location_style = Format.Location_style.Diff) ?(interleave = true) ?(line_big_enough = Configuration.default_line_big_enough) ?(word_big_enough = Configuration.default_word_big_enough) ~(prev : Diff_input.t) ~(next : Diff_input.t) () = let keep_ws = keep_ws || Should_keep_whitespace.for_diff ~prev ~next in let hunks = diff ~context ~keep_ws ~line_big_enough ~prev:(List.to_array (String.split_lines prev.text)) ~next:(List.to_array (String.split_lines next.text)) |> refine ~rules ~produce_unified_lines ~output ~keep_ws ~split_long_lines ~interleave ~word_big_enough in output_to_string ?print_global_header ~file_names:(Fake prev.name, Fake next.name) ~rules ~output ~location_style hunks ;; end module Without_unix = Make (struct let console_width () = Ok 80 let implementation : Output.t -> (module Output.S) = function | Ansi -> (module Ansi_output) | Ascii -> (module Ascii_output) | Html -> (module Html_output.Without_mtime) ;; end) module Private = struct module Make = Make end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>