package owl

  1. Overview
  2. Docs
OCaml Scientific and Engineering Computing

Install

Dune Dependency

Authors

Maintainers

Sources

owl-1.0.0.tbz
sha256=d91ba09488edd602dad845f68db1f980a601bdbb55d9516e3b59681eca20debe
sha512=9b31c3474a94c3b11d1dedba00639e770737e61f2e724a1288066ed976e4d0f8afe891a430e17ecf525fbca92e433d71d1b66d3ba17d4e299a4f8fdc3b902461

doc/owl/Owl_regression_generic/Make/argument-1-Optimise/index.html

Parameter Make.Optimise

module Utils : sig ... end

Utils module

module Learning_Rate : sig ... end

Strategies for learning rate update

module Batch : sig ... end

Batch module

module Loss : sig ... end

Loss module

module Gradient : sig ... end

Gradient module

module Momentum : sig ... end

Momentum module

module Regularisation : sig ... end

Regularisation module

module Clipping : sig ... end

Clipping module

module Stopping : sig ... end

Stopping module

module Checkpoint : sig ... end

Checkpoint module

module Params : sig ... end

Params module

Core functions

This function minimises the weight ``w`` of passed-in function ``f``.

* ``f`` is a function ``f : w -> x -> y``. * ``w`` is a row vector but ``y`` can have any shape.

val minimise_network : ?state:Checkpoint.state -> Params.typ -> (Algodiff.t -> Algodiff.t * Algodiff.t array array) -> (Algodiff.t -> Algodiff.t array array * Algodiff.t array array) -> (Algodiff.t array array -> unit) -> (string -> unit) -> Algodiff.t -> Algodiff.t -> Checkpoint.state

This function is specifically designed for minimising the weights in a neural network of graph structure. In Owl's earlier versions, the functions in the regression module were actually implemented using this function.

This function minimises ``f : x -> y`` w.r.t ``x``.

``x`` is an ndarray; and ``y`` is an scalar value.

val minimise_compiled_network : ?state:Checkpoint.state -> Params.typ -> (Algodiff.t -> Algodiff.t -> Algodiff.t) -> (unit -> unit) -> (string -> unit) -> Algodiff.t -> Algodiff.t -> Checkpoint.state

TODO

OCaml

Innovation. Community. Security.