package octez-shell-libs
Octez shell libraries
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/octez-shell-libs.shell/synchronisation_heuristic.ml.html
Source file synchronisation_heuristic.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
(*****************************************************************************) (* *) (* Open Source License *) (* Copyright (c) 2020 Nomadic Labs. <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) type status = Chain_validator_worker_state.synchronisation_status = | Synchronised of {is_chain_stuck : bool} | Not_synchronised type candidate = Time.Protocol.t * P2p_peer.Id.t (* An order is used on candidates. This order is given by the predicate (and implemented in the [earlier] function) : forall v, None < Some v \/ forall t t' p p', Time.Protocol.(t < t') -> Some (t,p) < Some (t',p') = true. The reflexive closure (according to the timestamp) of this order is implemented in [earlier_or_coincident]. Variants provide specifalised option/non-option versions *) let earlier_o l r = match (l, r) with | None, None -> false | None, Some _ -> true | Some (i, _), Some (j, _) -> Time.Protocol.(i < j) | Some _, None -> false let earlier_ro (i, _) r = match r with Some (j, _) -> Time.Protocol.(i < j) | None -> false let earlier l (j, _) = match l with None -> true | Some (i, _) -> Time.Protocol.(i < j) let coincident_o l r = match (l, r) with | None, None -> true | Some (i, _), Some (j, _) -> Time.Protocol.(i = j) | _ -> false let earlier_or_coincident_o l r = earlier_o l r || coincident_o l r module Core = struct type t = { (* Number of peers which are taken into account to be considered as synchronized *) threshold : int; (* The least recent block validated from the [threshold] peers should be dated no more than [latency] seconds. *) latency : int; (* Store the [threshold] best validated block timestamps with their peer. *) candidates : candidate option Array.t; (* Index of one of the candidates in [candidates] with the oldest timestamp. *) mutable index_of_oldest_candidate : int; (* Index of one of the candidates in [candidates] with the most recent timestamp. *) mutable index_of_youngest_candidate : int; (* Current status of the heuristic. *) mutable current_status : status; } (* Invariants: - forall state, state.threshold >= 0 -> Array.length state.candidates = state.threshold - forall state, state.threshold > 0 -> state.least_index is a valid index of state.candidates - forall state, state.threshold > 0 -> state.best_index is a valid index of state.candidates - forall state i, state.threshold > 0 -> 0 <= i < state.threshold -> state.candidates.(state.index_of_oldest_candidate) <= state.candidates.(i) - forall state i, state.threshold > 0 -> 0 <= i < state.threshold -> state.candidates.(state.index_of_youngest_candidate) >= state.candidates.(i) - forall state i j, 0 <= i,j < state.threshold -> snd(state.candidates(i)) = snd (state.candidates(j)) -> i = j This is denoted as "valid(state)". *) (* Update only if the timestamp is greater at the given index (see [earlier]). *) let may_update_binding state index candidate = if earlier state.candidates.(index) candidate then state.candidates.(index) <- Some candidate (* Return [true] if the candidate's peer is [peer_id] *) let same_peer (_, peer_id) = function | None -> false | Some (_, peer) -> P2p_peer.Id.equal peer peer_id (* Invariant: - forall threshold, latency, valid(create ~threshold ~latency). *) let create ~threshold ~latency : t = let current_status = if threshold = 0 then Synchronised {is_chain_stuck = false} else Not_synchronised in { latency; threshold; candidates = (if threshold <= 0 then [||] else Array.make threshold None); index_of_youngest_candidate = 0; index_of_oldest_candidate = 0; current_status; } let compute_status state = if state.threshold < 0 then Not_synchronised else if state.threshold = 0 then Synchronised {is_chain_stuck = false} else let now = Time.System.to_protocol @@ Time.System.now () in match ( state.candidates.(state.index_of_youngest_candidate), state.candidates.(state.index_of_oldest_candidate) ) with | None, _ | _, None -> (* The threshold is not reached *) Not_synchronised | Some (best, _), Some (least, _) -> let least_timestamp_drifted = Time.Protocol.add least (Int64.of_int state.latency) in if Time.Protocol.(least_timestamp_drifted >= now) then Synchronised {is_chain_stuck = false} else if Time.Protocol.(best = least) && state.threshold <> 1 then (* The reason why the heuristic does not allow to be stuck when threshold is one is related to the behavior of the node. A node should not be bootstrapped while bootstrapping. When the threshold is one, if the node validates a block in the past, then it will be declared as [Synchronised {is_stuck=true}]. Once the threshold is 2, this cannot happen for new validated blocks since a new validated block comes only from one peer. *) Synchronised {is_chain_stuck = true} else Not_synchronised (* Invariant: - forall state candidate, valid(state) -> valid(update state candidate; state). *) let update state candidate = if state.threshold <= 0 then () else if state.threshold = 1 then may_update_binding state 0 candidate else if earlier_ro candidate state.candidates.(state.index_of_oldest_candidate) then () else (* If we find a candidate for the same peer as candidate's, we'll set this, but otherwise we should update the oldest candidate *) let index_to_update = ref state.index_of_oldest_candidate in (* We search for the second-worst entry by starting with the best and just recording whatever is worse than currently known except for the known-worst *) let index_of_second_oldest_candidate = ref state.index_of_youngest_candidate in Array.iteri (fun i known_candidate -> (* check that we have found the same peer as the candidate *) if same_peer candidate known_candidate then index_to_update := i ; (* check if we have found the (an) index for the second oldest candidate *) if (* we are looking for the second-oldest, not the oldest (remember threshold >= 2 so they are distinct) *) i <> state.index_of_oldest_candidate && (* has to be at least as old as the previously known second oldest *) earlier_or_coincident_o known_candidate state.candidates.(!index_of_second_oldest_candidate) then index_of_second_oldest_candidate := i) state.candidates ; (* Properties at this time: - forall v, index_of_second_oldest_candidate <> state.index_of_oldest_candidate && (either v = least or v >= state.candidates.(index_of_second_oldest_candidate)) *) (* patch the candidate that needs patching *) may_update_binding state !index_to_update candidate ; (* patch the pointer to the oldest candidate in case it was rewritten *) if !index_to_update = state.index_of_oldest_candidate && earlier state.candidates.(!index_of_second_oldest_candidate) candidate then state.index_of_oldest_candidate <- !index_of_second_oldest_candidate ; (* patch the pointer to the youngest candidate in case we wrote something younger *) if earlier state.candidates.(state.index_of_youngest_candidate) candidate then state.index_of_youngest_candidate <- !index_to_update (* We shadow update to ensure the current_status is updated. *) let update state candidate = update state candidate ; state.current_status <- compute_status state let get_status state = state.current_status end module Bootstrapping = struct type t = { heuristic : Core.t; mutable bootstrapped : bool; when_status_changes : status -> unit Lwt.t; when_bootstrapped_changes : bool -> unit Lwt.t; on_bootstrapped : unit Lwt_condition.t; } (* [initalisation] is a particular case when the heuristic is created to ensure that we call the [when_bootstrapped_changes] callback. *) let set_bootstrapped ?(initialisation = false) state bootstrapped = let old_value = state.bootstrapped in state.bootstrapped <- bootstrapped ; if old_value = false && bootstrapped then Lwt_condition.signal state.on_bootstrapped () ; if old_value <> bootstrapped || initialisation then state.when_bootstrapped_changes bootstrapped else Lwt.return_unit let create ?(when_bootstrapped_changes = fun _ -> Lwt.return_unit) ?(when_status_changes = fun _ -> Lwt.return_unit) ~threshold ~latency () : t = let heuristic = Core.create ~threshold ~latency in { heuristic; when_status_changes; when_bootstrapped_changes; on_bootstrapped = Lwt_condition.create (); bootstrapped = false; } let activate state = let open Lwt_syntax in let is_synchronised = match state.heuristic.current_status with | Synchronised _ -> true | _ -> false in let* () = set_bootstrapped ~initialisation:true state is_synchronised in state.when_status_changes (Core.get_status state.heuristic) let update state candidate = let open Lwt_syntax in let old_status = Core.get_status state.heuristic in Core.update state.heuristic candidate ; let new_status = Core.get_status state.heuristic in let* () = if old_status <> new_status then state.when_status_changes new_status else Lwt.return_unit in match new_status with | Synchronised _ when state.bootstrapped = false -> set_bootstrapped state true | _ -> Lwt.return_unit let get_status state = Core.get_status state.heuristic let is_bootstrapped state = state.bootstrapped let force_bootstrapped state b = set_bootstrapped state b let bootstrapped state = if state.bootstrapped then Lwt.return_unit else Lwt_condition.wait state.on_bootstrapped end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>