package octez-protocol-018-Proxford-libs
Octez protocol 018-Proxford libraries
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/octez-protocol-018-Proxford-libs.test-helpers/dummy_zk_rollup.ml.html
Source file dummy_zk_rollup.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
(*****************************************************************************) (* *) (* Open Source License *) (* Copyright (c) 2022 Nomadic Labs <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) (** Dummy ZK Rollup for testing the ZKRU integration in the protocol. The library Plompiler is used to build the circuits (in a module V as verifier) and the corresponding functions to produce the inputs for the circuits (in a module P as prover). The state of this rollup is a boolean value, which will be represented with a scalar value of [zero] for [false] and [one] for [true]. This RU has only one operation, with [op_code] 0. In addition to the common header (see {!Zk_rollup_operation_repr}), this operation has as payload one scalar representing a boolean value. The transition function [f] for this rollup is: {[ f : operation -> state -> state f (Op b) s = if b = s then not s else s ]} That is, the state bool is flipped only if the operation's payload is equal to the current state. The operation can be used publicly or in a private batch. The circuits that describe the RU are: - ["op"]: for a single public operation. - ["batch-"[N]]: for a batch of [N] private operations. [N] is determined by the [batch_size] parameter to the [Operator] functor. - ["fee"]: the trivial fees circuit, since this RU has no concept of fees. NB: the "op" circuit does not add any constraints over the operation's [exit_validity] other than it being in [{0, 1}]. This means that the dummy rollup can be used to test deposits/withdrawals, but the rollup will not perform any monetary bookkeeping. *) open Plompiler (** Helper types and modules *) (** Empty types to represent bounds *) type balance type amount type fee type op_code (** Bounds required for the dummy rollup. *) module Bound : sig type 'a t = private Z.t val bound_balance : balance t val bound_amount : amount t val bound_fee : fee t val bound_op_code : op_code t val v : 'a t -> Z.t end = struct type 'a t = Z.t (** These bounds are exclusive. *) (** Upper bound for ticket balance, as found in the price field of an operation's header *) let bound_balance = Z.(shift_left one 20) (** Upper bound for ticket amount, used for fee circuit *) let bound_amount = Z.(shift_left one 20) (** Upper bound for fee amount of one public operation *) let bound_fee = Z.(shift_left one 10) (** Upper bound for op code *) let bound_op_code = Z.one let v x = x end (** Modules to manipulate bounded integers, both as OCaml values and in circuit representation. *) module Bounded = Bounded.Make (Bound) (** Types used for the Dummy Rollup circuits. This module is split into: - P: concrete OCaml version of the types, - V: Plompiler's circuit representation for P's types, and - Encodings: conversion between P and V. *) module Types = struct module P = struct type state = bool module Bounded = Bounded.P type 'a ticket = {id : S.t; amount : 'a Bounded.t} type tezos_pkh = Environment.Signature.Public_key_hash.t type header = { op_code : op_code Bounded.t; price : balance ticket; l1_dst : tezos_pkh; rollup_id : tezos_pkh; } type op = {header : header; payload : bool} (** Dummy values for these types. Useful to get the circuit without having the actual inputs. *) module Dummy = struct let op_code = Bounded.make ~bound:Bound.bound_op_code Z.zero let balance = Bounded.make ~bound:Bound.bound_balance Z.zero let tezos_pkh = Environment.Signature.Public_key_hash.zero let ticket_balance = {id = S.zero; amount = balance} let header = { op_code; price = ticket_balance; l1_dst = tezos_pkh; rollup_id = tezos_pkh; } end end module V (L : LIB) = struct open L module Bounded_u = Bounded.V (L) type 'a ticket_u = {id : scalar repr; amount : 'a Bounded_u.t} type tezos_pkh_u = scalar repr type header_u = { op_code : op_code Bounded_u.t; price : balance ticket_u; l1_dst : tezos_pkh_u; rollup_id : tezos_pkh_u; } type op_u = {header : header_u; payload : bool repr} end module Encodings (L : LIB) = struct module Bounded_e = Bounded.Encoding (L) open P open V (L) open L.Encodings let op_code_encoding ~safety = Bounded_e.encoding ~safety Bound.bound_op_code let encoding_to_scalar e x = let bs = Data_encoding.Binary.to_bytes_exn e x in let z = Z.of_bits @@ Bytes.to_string bs in Bls12_381.Fr.of_z z let encoding_of_scalar e x = let z = Bls12_381.Fr.to_z x in let bs = Bytes.of_string @@ Z.to_bits z in Data_encoding.Binary.of_bytes_exn e bs let tezos_pkh_encoding : (tezos_pkh, tezos_pkh_u, _) encoding = conv (fun pkhu -> pkhu) (fun w -> w) (encoding_to_scalar Signature.Public_key_hash.encoding) (encoding_of_scalar Signature.Public_key_hash.encoding) scalar_encoding let amount_encoding ~safety = Bounded_e.encoding ~safety Bound.bound_amount let fee_encoding ~safety = Bounded_e.encoding ~safety Bound.bound_fee let ticket_encoding ~safety (bound : 'a Bound.t) : ('a ticket, 'a ticket_u, _) encoding = conv (fun {id; amount} -> (id, amount)) (fun (id, amount) -> {id; amount}) (fun ({id; amount} : 'a ticket) -> (id, amount)) (fun (id, amount) -> {id; amount}) (obj2_encoding scalar_encoding (Bounded_e.encoding ~safety bound)) let ticket_balance_encoding ~safety = ticket_encoding ~safety Bound.bound_balance let header_encoding ~safety : (header, header_u, _) encoding = conv (fun {op_code; price; l1_dst; rollup_id} -> (op_code, (price, (l1_dst, rollup_id)))) (fun (op_code, (price, (l1_dst, rollup_id))) -> {op_code; price; l1_dst; rollup_id}) (fun ({op_code; price; l1_dst; rollup_id} : header) -> (op_code, (price, (l1_dst, rollup_id)))) (fun (op_code, (price, (l1_dst, rollup_id))) -> {op_code; price; l1_dst; rollup_id}) (obj4_encoding (op_code_encoding ~safety) (* We use an Unsafe Bounded scalar encoding here to be able to detect that an out-of-range value has been passed. This encoding is unsafe in the sense that such value will cause a failure in proving, instead of a circuit that can prove that the argument is out-of-range. This is enough for Protocol testing purposes, while keeping the dummy circuit small. *) (ticket_balance_encoding ~safety:Unsafe) tezos_pkh_encoding tezos_pkh_encoding) let op_encoding : (op, op_u, _) encoding = conv (fun {header; payload} -> (header, payload)) (fun (header, payload) -> {header; payload}) (fun ({header; payload} : op) -> (header, payload)) (fun (header, payload) -> {header; payload}) (obj2_encoding (header_encoding ~safety:NoCheck) bool_encoding) end end (** Plompiler circuits for the dummy rollup *) module V (L : LIB) = struct open L module E = Types.Encodings (L) module Encodings = L.Encodings open Encodings open Types.V (L) let coerce (type a) (x : a Bounded_u.t) = fst (x : a Bounded_u.t :> scalar repr * Z.t) (** Common logic for the state transition function *) let logic_op ~old_state ~rollup_id op = ignore rollup_id ; let* valid = equal old_state op.payload in let* new_state = Bool.bnot old_state in let* expected_new_state = Bool.ifthenelse valid new_state old_state in Num.assert_eq_const (coerce op.header.op_code) S.zero (* >* assert_equal rollup_id op.header.rollup_id *) >* ret expected_new_state (** Circuit definition for one public operation *) let predicate_op ?(kind = `Public) ~old_state ~new_state ~fee ~exit_validity ~rollup_id op = let* old_state = input ~kind:`Public @@ Input.bool old_state in let* new_state = input ~kind:`Public @@ Input.bool new_state in let* (_fee : scalar repr) = input ~kind:`Public @@ E.((fee_encoding ~safety:Bounded_e.Unsafe).input) fee in let* (_exit_validity : bool repr) = input ~kind:`Public @@ Input.bool exit_validity in let* rollup_id = input ~kind:`Public @@ E.(tezos_pkh_encoding.input) rollup_id in let* op = input ~kind @@ E.op_encoding.input op in let op = E.op_encoding.decode op in let* expected_new_state = logic_op ~old_state ~rollup_id op in assert_equal expected_new_state new_state (** Circuit definition for a batch of private operations *) let predicate_batch ~old_state ~new_state ~fees ~rollup_id ops = let* old_state = input ~kind:`Public @@ Input.bool old_state in let* new_state = input ~kind:`Public @@ Input.bool new_state in let* (_fees : scalar repr) = input ~kind:`Public @@ E.((amount_encoding ~safety:Bounded_e.Unsafe).input) fees in let* rollup_id = input ~kind:`Public @@ E.(tezos_pkh_encoding.input) rollup_id in let* ops = input @@ (Encodings.list_encoding E.op_encoding).input ops in let ops = (Encodings.list_encoding E.op_encoding).decode ops in let* computed_final_state = foldM (fun old_state op -> logic_op ~old_state ~rollup_id op) old_state ops in assert_equal computed_final_state new_state (** Fee circuit *) let predicate_fees ~old_state ~new_state ~fees = let* old_state = input ~kind:`Public @@ Input.bool old_state in let* new_state = input ~kind:`Public @@ Input.bool new_state in let* (_fees : scalar repr) = input ~kind:`Public @@ E.((amount_encoding ~safety:Bounded_e.Unsafe).input) fees in assert_equal old_state new_state end (** Basic rollup operator for generating Updates. *) module Operator (Params : sig val batch_size : int end) : sig open Protocol.Alpha_context (** Initial state of the rollup *) val init_state : Zk_rollup.State.t (** Map associating every circuit identifier to its kind *) val circuits : [`Public | `Private | `Fee] Kzg.SMap.t (** Commitment to the circuits *) val lazy_pp : (Plonk.Main_protocol.prover_public_parameters * Plonk.Main_protocol.verifier_public_parameters) lazy_t (** [craft_update state ~zk_rollup ?private_ops ?exit_validities public_ops] will apply first the [public_ops], then the [private_ops]. While doing so, the public inputs for every circuit will be collected. A Plonk proof of correctness of the application these operations is created. *) val craft_update : Zk_rollup.State.t -> zk_rollup:Zk_rollup.t -> ?private_ops:Zk_rollup.Operation.t list list -> ?exit_validities:bool list -> Zk_rollup.Operation.t list -> Zk_rollup.State.t * Zk_rollup.Update.t module Internal_for_tests : sig val true_op : Zk_rollup.Operation.t val false_op : Zk_rollup.Operation.t val pending : Zk_rollup.Operation.t list val private_ops : Zk_rollup.Operation.t list list val lazy_update_data : Zk_rollup.Update.t lazy_t end end = struct open Protocol.Alpha_context module SMap = Kzg.SMap module Dummy = Types.P.Dummy module T = Types.P module VC = V (LibCircuit) let lazy_srs = lazy (let open Octez_bls12_381_polynomial in (Srs.generate_insecure 9 1, Srs.generate_insecure 1 1)) let dummy_l1_dst = Hex.to_bytes_exn (`Hex "0002298c03ed7d454a101eb7022bc95f7e5f41ac78") let dummy_rollup_id = let address = Zk_rollup.Address.of_b58check_exn "epx18RJJqrYuJQqhB636BWvukU3XBNQGbtm8C" in Data_encoding.Binary.to_bytes_exn Zk_rollup.Address.encoding address let dummy_ticket_hash = Bytes.make 32 '0' let of_proto_state : Zk_rollup.State.t -> Types.P.state = fun s -> Bls12_381.Fr.is_one s.(0) let to_proto_state : Types.P.state -> Zk_rollup.State.t = fun s -> if s then [|Bls12_381.Fr.one|] else [|Bls12_381.Fr.zero|] let dummy_op = T.{header = Dummy.header; payload = false} let batch_name = "batch-" ^ string_of_int Params.batch_size (* Circuits that define the rollup, alongside their public input size and solver *) let circuit_map = let get_circuit _name c = let r = LibCircuit.get_cs ~optimize:true c in (Plonk.Circuit.to_plonk r, r.public_input_size, r.solver) in SMap.of_list @@ List.map (fun (n, c) -> (n, get_circuit n c)) [ ( "op", VC.predicate_op ~old_state:false ~new_state:true ~fee:(T.Bounded.make ~bound:Bound.bound_fee Z.zero) ~exit_validity:false ~rollup_id:Dummy.tezos_pkh dummy_op ); ( batch_name, VC.predicate_batch ~old_state:false ~new_state:true ~fees:(T.Bounded.make ~bound:Bound.bound_amount Z.zero) ~rollup_id:Dummy.tezos_pkh (Stdlib.List.init Params.batch_size (Fun.const dummy_op)) ); ( "fee", VC.predicate_fees ~old_state:false ~new_state:false ~fees:(T.Bounded.make ~bound:Bound.bound_amount Z.zero) ); ] let circuits = SMap.(add "op" `Public @@ add batch_name `Private @@ add "fee" `Fee empty) let lazy_pp = lazy (let srs = Lazy.force lazy_srs in Plonk.Main_protocol.setup ~zero_knowledge:false (SMap.map (fun (a, b, _) -> (a, b)) circuit_map) ~srs) let insert s x m = match SMap.find_opt s m with | None -> SMap.add s [x] m | Some l -> SMap.add s (x :: l) m let craft_update : Zk_rollup.State.t -> zk_rollup:Zk_rollup.t -> ?private_ops:Zk_rollup.Operation.t list list -> ?exit_validities:bool list -> Zk_rollup.Operation.t list -> Zk_rollup.State.t * Zk_rollup.Update.t = fun s ~zk_rollup ?(private_ops = []) ?exit_validities pending -> let prover_pp, public_parameters = Lazy.force lazy_pp in let s = of_proto_state s in let rev_inputs = SMap.empty in let exit_validities = match exit_validities with | None -> List.map (Fun.const true) pending | Some l -> assert (List.length l = List.length pending) ; l in let _circ, _pi_size, op_solver = SMap.find "op" circuit_map in (* Process the public operations *) let s, rev_inputs, rev_pending_pis = Stdlib.List.fold_left2 (fun (s, rev_inputs, rev_pending_pis) op exit_validity -> let new_state = if s = of_proto_state Zk_rollup.Operation.(op.payload) then not s else s in let fee = Bls12_381.Fr.zero in let pi_to_send = Zk_rollup.Update. {new_state = to_proto_state new_state; fee; exit_validity} in let exit_validity_s = if exit_validity then Bls12_381.Fr.one else Bls12_381.Fr.zero in let public_inputs = Array.concat [ to_proto_state s; to_proto_state new_state; [|fee; exit_validity_s; Zk_rollup.to_scalar zk_rollup|]; Zk_rollup.Operation.to_scalar_array op; ] in let private_inputs = Solver.solve op_solver public_inputs in ( new_state, insert "op" Plonk.Main_protocol. {witness = private_inputs; input_commitments = []} rev_inputs, ("op", pi_to_send) :: rev_pending_pis )) (s, rev_inputs, []) pending exit_validities in let pending_pis = List.rev rev_pending_pis in let _circ, _pi_size, batch_solver = SMap.find batch_name circuit_map in (* Process the private operation batches *) let s, rev_inputs, rev_private_pis = if private_ops = [] then (s, rev_inputs, []) else List.fold_left (fun (s, rev_inputs, rev_private_pis) batch -> let new_state = List.fold_left (fun s op -> if s = of_proto_state Zk_rollup.Operation.(op.payload) then not s else s) s batch in let fees = Bls12_381.Fr.zero in let pi_to_send : Zk_rollup.Update.private_inner_pi = Zk_rollup.Update.{new_state = to_proto_state new_state; fees} in let public_inputs = Array.concat [ to_proto_state s; to_proto_state new_state; [|fees; Zk_rollup.to_scalar zk_rollup|]; ] in let initial = Array.concat ([public_inputs] @ List.map Zk_rollup.Operation.to_scalar_array batch) in let private_inputs = Solver.solve batch_solver initial in ( new_state, insert batch_name Plonk.Main_protocol. {witness = private_inputs; input_commitments = []} rev_inputs, (batch_name, pi_to_send) :: rev_private_pis )) (s, rev_inputs, []) private_ops in let private_pis = List.rev rev_private_pis in (* Dummy fee circuit *) let _circ, _pi_size, fee_solver = SMap.find "fee" circuit_map in let rev_inputs, fee_pi = let fee_pi = Zk_rollup.Update.{new_state = to_proto_state s} in let fees = Bls12_381.Fr.zero in let public_inputs = Array.concat [to_proto_state s; to_proto_state s; [|fees|]] in let private_inputs = Solver.solve fee_solver public_inputs in ( insert "fee" Plonk.Main_protocol.{witness = private_inputs; input_commitments = []} rev_inputs, fee_pi ) in let inputs = SMap.map List.rev rev_inputs in let proof = Plonk.Main_protocol.prove prover_pp ~inputs in let verifier_inputs = Plonk.Main_protocol.to_verifier_inputs prover_pp inputs in assert ( Plonk.Main_protocol.verify public_parameters ~inputs:verifier_inputs proof) ; ( to_proto_state s, Zk_rollup.Update.{pending_pis; private_pis; fee_pi; proof} ) let init_state = to_proto_state false module Internal_for_tests = struct let true_op = Zk_rollup.Operation. { op_code = 0; price = (let id = Data_encoding.Binary.of_bytes_exn Ticket_hash.encoding dummy_ticket_hash in {id; amount = Z.zero}); l1_dst = Data_encoding.Binary.of_bytes_exn Signature.Public_key_hash.encoding dummy_l1_dst; rollup_id = Data_encoding.Binary.of_bytes_exn Zk_rollup.Address.encoding dummy_rollup_id; payload = [|Bls12_381.Fr.one|]; } let false_op = {true_op with payload = [|Bls12_381.Fr.zero|]} let pending = [false_op; true_op; true_op] let n_batches = 2 let private_ops = Stdlib.List.init n_batches @@ Fun.const @@ Stdlib.List.init Params.batch_size (fun i -> if i mod 2 = 0 then false_op else true_op) let lazy_update_data = lazy (snd @@ craft_update init_state ~zk_rollup: (Data_encoding.Binary.of_bytes_exn Zk_rollup.Address.encoding dummy_rollup_id) ~private_ops pending) end end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>