Source file hash_gates.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
open Bls
open Identities
module L = Plompiler.LibCircuit
open Gates_common
module AnemoiDouble : Base_sig = struct
module AnemoiPerm = Bls12_381_hash.Permutation.Anemoi
let q_label = "q_anemoi"
let identity = (q_label, 4)
let index_com = None
let nb_advs = 4
let nb_buffers = 3
let gx_composition = true
let g = AnemoiPerm.Parameters.g
let beta = AnemoiPerm.Parameters.beta
let gamma = AnemoiPerm.Parameters.gamma
let delta = AnemoiPerm.Parameters.delta
let kx1_label = qadv_label ^ "0"
let ky1_label = qadv_label ^ "1"
let kx2_label = qadv_label ^ "2"
let ky2_label = qadv_label ^ "3"
let ( -@ ) a b = Scalar.sub a b
let g2_p_1 = Scalar.((g * g) + one)
let round_identities ~kx ~ky (x, y) (x', y') =
let mv = Scalar.((g * x') + ky -@ y') in
let w = Scalar.(mv + y) in
let c = Scalar.((g * y') + delta + kx + x -@ ((g2_p_1 * x') + gamma)) in
let beta_y2 = Scalar.(beta * y * y) in
let id1 = Scalar.((beta * mv * mv) -@ beta_y2 + c) in
let id2 = Scalar.(pow w (Z.of_int 5) + beta_y2 + gamma -@ x) in
[id1; id2]
let cs_round_identities ~kx ~ky (x, y) (x', y') =
let open L in
let open Num in
let mg2_p_1 = Scalar.negate g2_p_1 in
let* mv = add_list ~coeffs:[g; one; mone] (to_list [x'; ky; y']) in
let* w = add mv y in
let* c =
add_list
~qc:(delta -@ gamma)
~coeffs:[g; one; one; mg2_p_1]
(to_list [y'; kx; x; x'])
in
let* beta_y2 = mul ~qm:beta y y in
let* beta_mv2_c = custom ~qx2b:beta ~ql:one c mv in
let* id1 = add ~qr:mone beta_mv2_c beta_y2 in
let* w5_x = custom ~qx5a:one ~qr:mone w x in
let* id2 = add ~qc:gamma w5_x beta_y2 in
ret [id1; id2]
let evals_round_identities ~domain_size ~buffers ~selector ~id1_buffer
~id2_buffer ~kx ~ky ?(compose' = 0) (x, y) (x', y') =
let gx'_y'_ky =
Evaluations.linear_c
~res:buffers.(0)
~evaluations:[x'; y'; ky]
~linear_coeffs:[g; mone; one]
~composition_gx:([compose'; compose'; 0], domain_size)
()
in
let id1_partial =
Evaluations.mul_c ~res:id1_buffer ~evaluations:[gx'_y'_ky] ~powers:[2] ()
in
let w =
Evaluations.linear_c ~res:buffers.(1) ~evaluations:[gx'_y'_ky; y] ()
in
let id2_partial =
Evaluations.mul_c ~res:id2_buffer ~evaluations:[w] ~powers:[5] ()
in
let y2 =
Evaluations.mul_c ~res:buffers.(2) ~evaluations:[y] ~powers:[2] ()
in
let id1 =
Evaluations.linear_c
~res:buffers.(0)
~evaluations:[id1_partial; y2; x'; y'; x; kx]
~linear_coeffs:Scalar.[beta; negate beta; negate g2_p_1; g; one; one]
~composition_gx:([0; 0; compose'; compose'; 0; 0], domain_size)
~add_constant:(delta -@ gamma)
()
in
let id2 =
Evaluations.linear_c
~res:buffers.(1)
~evaluations:[id2_partial; y2; x]
~linear_coeffs:[Scalar.one; beta; mone]
~add_constant:gamma
()
in
let qid1 =
Evaluations.mul_c ~res:id1_buffer ~evaluations:[selector; id1] ()
in
let qid2 =
Evaluations.mul_c ~res:id2_buffer ~evaluations:[selector; id2] ()
in
(qid1, qid2)
let equations ~q ~wires ~wires_g ?(precomputed_advice = SMap.empty) () =
let x1 = wires.(1) in
let y1 = wires.(2) in
let x0 = wires.(3) in
let y0 = wires.(4) in
let x2 = wires_g.(3) in
let y2 = wires_g.(4) in
if Scalar.is_zero q then Scalar.[zero; zero; zero; zero]
else
let kx1 = SMap.find kx1_label precomputed_advice in
let ky1 = SMap.find ky1_label precomputed_advice in
let kx2 = SMap.find kx2_label precomputed_advice in
let ky2 = SMap.find ky2_label precomputed_advice in
let ids12 = round_identities ~kx:kx1 ~ky:ky1 (x0, y0) (x1, y1) in
let ids34 = round_identities ~kx:kx2 ~ky:ky2 (x1, y1) (x2, y2) in
ids12 @ ids34
let blinds =
SMap.of_list
[
(wire_name 0, [|0; 0|]);
(wire_name 1, [|1; 0|]);
(wire_name 2, [|1; 0|]);
(wire_name 3, [|1; 1|]);
(wire_name 4, [|1; 1|]);
]
let prover_identities ~prefix_common ~prefix ~public:_ ~domain :
prover_identities =
fun evaluations ->
let domain_size = Domain.length domain in
let buffers, ids = get_buffers ~nb_buffers ~nb_ids:(snd identity) in
let ({q; wires} : witness) =
get_evaluations ~q_label ~blinds ~prefix ~prefix_common evaluations
in
let selector = q in
let x1, y1 = (wires.(1), wires.(2)) in
let x0, y0 = (wires.(3), wires.(4)) in
let x2, y2 = (x0, y0) in
let kx1, ky1, kx2, ky2 =
( Evaluations.find_evaluation evaluations (prefix_common kx1_label),
Evaluations.find_evaluation evaluations (prefix_common ky1_label),
Evaluations.find_evaluation evaluations (prefix_common kx2_label),
Evaluations.find_evaluation evaluations (prefix_common ky2_label) )
in
let id1, id2 =
evals_round_identities
~domain_size
~buffers
~selector
~id1_buffer:ids.(0)
~id2_buffer:ids.(1)
~kx:kx1
~ky:ky1
(x0, y0)
(x1, y1)
in
let id3, id4 =
evals_round_identities
~domain_size
~buffers
~selector
~id1_buffer:ids.(2)
~id2_buffer:ids.(3)
~kx:kx2
~ky:ky2
~compose':1
(x1, y1)
(x2, y2)
in
SMap.of_list
[
(prefix @@ q_label ^ ".0", id1);
(prefix @@ q_label ^ ".1", id2);
(prefix @@ q_label ^ ".2", id3);
(prefix @@ q_label ^ ".3", id4);
]
let verifier_identities ~prefix_common ~prefix ~public:_ ~generator:_
~size_domain:_ : verifier_identities =
fun _ answers ->
let {q; wires; wires_g} =
get_answers ~q_label ~blinds ~prefix ~prefix_common answers
in
let x0 = wires.(3) in
let y0 = wires.(4) in
let x1 = wires.(1) in
let y1 = wires.(2) in
let x2 = wires_g.(3) in
let y2 = wires_g.(4) in
let kx1 = get_answer answers X @@ prefix_common kx1_label in
let ky1 = get_answer answers X @@ prefix_common ky1_label in
let kx2 = get_answer answers X @@ prefix_common kx2_label in
let ky2 = get_answer answers X @@ prefix_common ky2_label in
let precomputed_advice =
SMap.of_list
[(kx1_label, kx1); (ky1_label, ky1); (kx2_label, kx2); (ky2_label, ky2)]
in
let identities =
equations
~q
~wires:Scalar.[|zero; x1; y1; x0; y0|]
~wires_g:Scalar.[|zero; zero; zero; x2; y2|]
~precomputed_advice
()
|> List.map (Scalar.mul q)
in
SMap.of_list
@@ List.mapi
(fun i id -> (prefix @@ q_label ^ "." ^ string_of_int i, id))
identities
let polynomials_degree =
SMap.of_list
[
(wire_name 1, 6);
(wire_name 2, 6);
(wire_name 3, 6);
(wire_name 4, 6);
(q_label, 6);
]
let cs ~q ~wires ~wires_g ?(precomputed_advice = SMap.empty) () =
let x1 = wires.(1) in
let y1 = wires.(2) in
let x0 = wires.(3) in
let y0 = wires.(4) in
let x2 = wires_g.(3) in
let y2 = wires_g.(4) in
let open L in
let kx1 = SMap.find kx1_label precomputed_advice in
let ky1 = SMap.find ky1_label precomputed_advice in
let kx2 = SMap.find kx2_label precomputed_advice in
let ky2 = SMap.find ky2_label precomputed_advice in
let* ids12 = cs_round_identities ~kx:kx1 ~ky:ky1 (x0, y0) (x1, y1) in
let* ids34 = cs_round_identities ~kx:kx2 ~ky:ky2 (x1, y1) (x2, y2) in
mapM (fun id -> Num.mul q id) (ids12 @ ids34)
end