package octez-libs
A package that contains multiple base libraries used by the Octez suite
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/octez-libs.tezos-sapling/storage.ml.html
Source file storage.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
(*****************************************************************************) (* *) (* Open Source License *) (* Copyright (c) 2019-2020 Nomadic Labs <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) module Make_Storage (C : Core_sig.Validator) = struct module Tree = struct module H = C.Hash let max_uint32 = 4294967295L (** Incremental Merkle Tree * * A tree of height h contains 2^h leaves and h+1 levels of nodes with * leaves at level 0 and root at level h. * * The leaves are commitments and the tree is treated as always filled * with a default value H.uncommitted. This allows to have proofs of * membership, or witnesses, of fixed size. * * All the nodes at the same level of an empty tree have the same hash, * which can be computed from the default value of the leaves. This is * stored in the [uncommitted] list. * * Any subtree filled with default values is represented by the Empty * constructor and given its height it's possible to compute its hash * using the [uncommitted] list. * * The leaves are indexed by their position [pos], ranging from 0 to * (2^h)-1. The encoding of [pos] limits the possible size of the tree. * In any case the only valid height for the Sapling library is 32, so even * if the library encodes positions as uint64, they never exceed uint32. * * The tree is incremental in the sense that leaves cannot be modified but * only added and exclusively in successive positions. * The type t contains the size of the tree which is also the next position * to fill. * * Given that elements are added and retrieved by position, it is possible * to use this information to efficiently navigate the tree. * Given a tree of height [h] and a position [pos], if pos < pow2 (h-1) only * the left subtree needs to be inspected recursively. Otherwise only the * right needs to be visited, decreasing [pos] by [pow2 (h-1)]. * * In order to avoid storing the height for each subtree (or worse * recomputing it), each function with suffix `_height` expects the height * of the tree as parameter. These functions are only for internal use and * are later aliased by functions using the default height of a Sapling * incremental Merkle tree. *) type tree = Empty | Leaf of C.Commitment.t | Node of (H.t * tree * tree) let tree_encoding = let open Data_encoding in mu "merkle_tree" (fun merkle_tree -> let empty_case = case ~title:"empty" (Tag 0) Data_encoding.empty (function Empty -> Some () | _ -> None) (fun () -> Empty) in let leaf_case = case ~title:"leaf" (Tag 1) C.Commitment.encoding (fun tree -> match tree with Leaf h -> Some h | _ -> None) (fun h -> Leaf h) in let node_case = let payload_encoding = tup3 H.encoding merkle_tree merkle_tree in case ~title:"node" (Tag 2) payload_encoding (fun tree -> match tree with Node (h, l, r) -> Some (h, l, r) | _ -> None) (fun (h, l, r) -> Node (h, l, r)) in union [empty_case; leaf_case; node_case]) let get_root_height tree height = assert (Compare.Int.(height >= 0 && height <= 32)) ; match tree with | Empty -> H.uncommitted ~height | Node (h, _, _) -> h | Leaf h -> H.of_commitment h let pow2 h = Int64.(shift_left 1L h) let rec split_at n l = assert (Compare.Int64.(n >= 0L)) ; if Compare.Int64.(n = 0L) then ([], l) else match l with | [] -> ([], l) | x :: xs -> let l1, l2 = split_at Int64.(pred n) xs in (x :: l1, l2) let hash ~height t1 t2 = H.merkle_hash ~height (get_root_height t1 height) (get_root_height t2 height) (* [insert tree height pos cms] inserts the list of commitments [cms] in the tree [tree] of height [height] at the next position [pos]. Pre: incremental tree /\ size tree + List.length cms <= pow2 height /\ pos = size tree /\ Post: incremental tree /\ to_list (insert tree height pos cms) = to_list t @ cms *) let rec insert tree height pos cms = assert (Compare.Int64.(pos >= 0L && pos <= pow2 height)) ; assert (Compare.Int.(height >= 0 && height <= 32)) ; match (tree, height, cms) with | _, _, [] -> tree | Empty, 0, [cm] -> Leaf cm | Leaf _, _, _ (* The second conjuntion of the precondition is violated by a Leaf (which is already full) and a non empty cms. *) | _, 0, _ -> (* Only leaves can be at height 0. *) assert false | Empty, height, _ -> insert_node Empty Empty (height - 1) pos cms | Node (_, t1, t2), height, _ -> insert_node t1 t2 (height - 1) pos cms and insert_node t1 t2 height pos cms = let t1, t2 = if Compare.Int64.(pos < pow2 height) then ( assert (t2 = Empty) ; let at = Int64.(sub (pow2 height) pos) in let cml, cmr = split_at at cms in let t1 = insert t1 height pos cml in let t2 = insert t2 height 0L cmr in (t1, t2)) else ( assert (t1 <> Empty) ; let pos = Int64.(sub pos (pow2 height)) in let t2 = insert t2 height pos cms in (t1, t2)) in let h = hash ~height t1 t2 in Node (h, t1, t2) let rec get_cm_height tree pos height = assert (Compare.Int64.(pos >= 0L && pos <= pow2 height)) ; assert (Compare.Int.(height >= 0 && height <= 32)) ; match tree with | Empty -> assert false | Node (_, l, r) -> let full = pow2 (height - 1) in if Compare.Int64.(pos < full) then get_cm_height l pos (height - 1) else let pos = Int64.(sub pos full) in get_cm_height r pos (height - 1) | Leaf h -> assert (Compare.Int.(height = 0)) ; h (** Create the witness in the format required by Sapling. - height of the merkle tree (32 for Sapling) - a list of size of hash (32 for Pedersen hash) and hash - the position as little-endian uint64 *) let get_witness_height tree height pos = assert (Compare.Int64.(pos >= 0L && pos <= pow2 height)) ; assert (Compare.Int.(height >= 0 && height <= 32)) ; (* get the neighbors hashes *) let rec aux height acc pos = function | Empty -> assert false | Leaf _ -> acc | Node (_, l, r) -> let full = pow2 (height - 1) in if Compare.Int64.(pos < full) then aux (height - 1) (get_root_height r (height - 1) :: acc) pos l else let pos = Int64.(sub pos full) in aux (height - 1) (get_root_height l (height - 1) :: acc) pos r in (* ordered by height *) let hashes = aux height [] pos tree in (* ordered by depth *) let d = Bytes.make 1 (char_of_int height) in let hs = List.rev_map (fun h -> Bytes.cat d @@ H.to_bytes h) hashes in let p = let b = Bytes.create 8 in Bytes.set_int64_le b 0 pos ; b in Bytes.concat Bytes.empty ([d] @ hs @ [p]) let rec fold_from_height ~pos ~f ~init tree height = assert (Compare.Int64.(pos >= 0L && pos <= pow2 height)) ; assert (Compare.Int.(height >= 0 && height <= 32)) ; match tree with | Empty -> init | Leaf c -> f init c | Node (_, t1, t2) -> let full = pow2 (height - 1) in if Compare.Int64.(pos < full) then let init = fold_from_height ~pos ~f ~init t1 (height - 1) in (* fold on the whole subtree t2 *) fold_from_height ~pos:0L ~f ~init t2 (height - 1) else let pos = Int64.(sub pos full) in fold_from_height ~pos ~f ~init t2 (height - 1) type t = int64 * tree let encoding = let open Data_encoding in obj2 (req "size" int64) (req "tree" tree_encoding) let empty = (0L, Empty) let size (n, _) = n let default_height = 32 let max_size = Int64.shift_left 1L default_height let get_root (_, tree) = get_root_height tree default_height let add (n, t) cms = let l = List.length cms in (* insert is not tail-recursive so we put a hard limit on the size of its argument *) assert (l <= 1000) ; let n' = Int64.(add n (of_int l)) in assert (Compare.Int64.(n' <= max_size)) ; let t = insert t default_height n cms in (n', t) let get_witness (n, t) pos = if Compare.Int64.(pos < n) then Some (get_witness_height t default_height pos) else None let get_cm (n, tree) pos = if Compare.Int64.(pos < n) then Some (get_cm_height tree pos default_height) else None let get_from (n, tree) pos = if Compare.Int64.(pos < n) then let l = fold_from_height ~pos ~f:(fun acc c -> c :: acc) ~init:[] tree default_height in Some (List.rev l) else None end module Roots = struct module Map = Map.Make (Int32) type t = Int32.t * C.Hash.t Map.t let size = 500l let empty : t = (0l, Map.empty) let add e ((pos, map) : t) : t = let map = Map.add pos e map in let pos = Int32.rem (Int32.succ pos) size in (pos, map) let mem e ((_, map) : t) = Map.exists (fun _ v -> Compare.Int.(C.Hash.compare e v = 0)) map let to_list ((_, m) : t) = List.map snd (Map.bindings m) let of_list = List.fold_left (fun m e -> add e m) empty let encoding = let open Data_encoding in conv to_list of_list (list ~max_length:(Int32.to_int size) C.Hash.encoding) end module Nullifiers = struct include Set.Make (C.Nullifier) let encoding = let open Data_encoding in conv (fun set -> elements set) (fun list -> of_list list) (list C.Nullifier.encoding) let get_from t pos = let es, _ = fold (fun e (acc, cnt) -> if Compare.Int64.(cnt >= pos) then (e :: acc, Int64.succ cnt) else (acc, Int64.succ cnt)) t ([], 0L) in List.rev es let size = cardinal end module Ciphertexts = struct module Map = Map.Make (Int64) type t = C.Ciphertext.t Map.t let empty = Map.empty let add e t = let size = Map.cardinal t in Map.add (Int64.of_int size) e t let size = Map.cardinal let find_opt = Map.find let mem = Map.mem let iter = Map.iter let encoding = let open Data_encoding in conv (fun ciphertext_map -> Map.fold (fun pos cipher list -> (pos, cipher) :: list) ciphertext_map []) (fun ciphertext_list -> List.fold_left (fun map (pos, cipher) -> Map.add pos cipher map) Map.empty ciphertext_list) (list (obj2 (req "ciphertext pos" int64) (req "ciphertext" C.Ciphertext.encoding))) let get_from t pos = let rec aux pos acc = match Map.find pos t with | None -> acc | Some e -> aux (Int64.succ pos) (e :: acc) in List.rev (aux pos []) end type state = { tree : Tree.t; nullifiers : Nullifiers.t; roots : Roots.t; ciphertexts : Ciphertexts.t; memo_size : int; } let create_empty_state ~memo_size = { tree = Tree.empty; nullifiers = Nullifiers.empty; roots = Roots.add (Tree.get_root Tree.empty) Roots.empty; ciphertexts = Ciphertexts.empty; memo_size; } let state_encoding = let open Data_encoding in let check_memo_size memo_size ciphertexts = Ciphertexts.iter (fun _pos ciphertext -> assert (C.Ciphertext.get_memo_size ciphertext = memo_size)) ciphertexts in conv (fun s -> check_memo_size s.memo_size s.ciphertexts ; (s.tree, s.nullifiers, s.roots, s.ciphertexts, s.memo_size)) (fun (tree, nullifiers, roots, ciphertexts, memo_size) -> check_memo_size memo_size ciphertexts ; {tree; nullifiers; roots; ciphertexts; memo_size}) (obj5 (req "tree" Tree.encoding) (req "nullifiers" Nullifiers.encoding) (req "roots" Roots.encoding) (req "ciphertexts" Ciphertexts.encoding) (req "memo_size" uint16)) let mem_nullifier state nullifier = Nullifiers.mem nullifier state.nullifiers let add_nullifier state nullifier = let new_nullifiers = Nullifiers.add nullifier state.nullifiers in { tree = state.tree; nullifiers = new_nullifiers; roots = state.roots; ciphertexts = state.ciphertexts; memo_size = state.memo_size; } let add state cm_cipher_list = let cm_list, cipher_list = List.split cm_cipher_list in assert ( List.for_all (fun cipher -> C.Ciphertext.get_memo_size cipher = state.memo_size) cipher_list) ; let new_tree = Tree.add state.tree cm_list in let new_roots = Roots.add (Tree.get_root new_tree) state.roots in let new_ciphertexts = List.fold_left (fun ciphertexts ciphertext -> Ciphertexts.add ciphertext ciphertexts) state.ciphertexts cipher_list in { tree = new_tree; nullifiers = state.nullifiers; roots = new_roots; ciphertexts = new_ciphertexts; memo_size = state.memo_size; } let mem_root state hash = Roots.mem hash state.roots let empty = create_empty_state let get_root state = Tree.get_root state.tree let size state = (Tree.size state.tree, Int64.of_int @@ Nullifiers.size state.nullifiers) let get_memo_size state = state.memo_size let get_witness state pos = match Tree.get_witness state.tree pos with | None -> failwith "Position greater or equal than size." | Some w -> w let get state pos = match Tree.get_cm state.tree pos with | None -> failwith "Position greater or equal than size." | Some cm -> ( match Ciphertexts.find_opt pos state.ciphertexts with | None -> assert false | Some ciphertext -> (cm, ciphertext)) let mem state pos = Ciphertexts.mem pos state.ciphertexts end module Client : Storage_sig.STORAGE = Make_Storage (Core.Validator) include Client
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>