package octez-libs
A package that contains multiple base libraries used by the Octez suite
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/octez-libs.stdlib/bloomer.ml.html
Source file bloomer.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
(*****************************************************************************) (* Open Source License *) (* Copyright (c) 2020-2021 Nomadic Labs, <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) type 'a t = { hash : 'a -> bytes; (** Cryptographically secure hash function. We must have [Bytes.length (hash x) >= index_bits * hashes]. *) hashes : int; (** The value returned by [hash] is split and converted in [hashes] indices, each [index_bits] wide. *) index_bits : int; (** [index_bits] is the width in bits of the indices into the [filter]. *) countdown_bits : int; (** [countdown_bits] is the width in bits of the counter cells stored in the [filter]. *) filter : bytes; (** [filter] stores [2^index_bits] counter cells, each [countdown_bits] wide. *) count : int array; (** [count] stores approximate statistics on the number of counter cells with a given value. [count.(i)] is the approximate number of cells equal to [2^countdown_bits - 1 - i]. Note that this field is not required for Bloom filter operation. *) } let sf = Printf.sprintf let check_peek_poke_args fname bytes ofs bits = if bits <= 0 then invalid_arg (sf "Bloomer.%s: non positive bits value" fname) ; if ofs < 0 then invalid_arg (sf "Bloomer.%s: negative offset" fname) ; if bits > Sys.int_size - 7 then invalid_arg (sf "Bloomer.%s: indexes out of bounds" fname) ; if bits + ofs > Bytes.length bytes * 8 then invalid_arg (sf "Bloomer.%s: indexes out of bounds" fname) (* Read [bits] bits of [bytes] at offset [ofs] as an OCaml int in big endian order. The function proceeds by iteratively blitting the bytes overlapping the sought bit interval into [v]. The superfluous bits at the beginning and at the end are then removed from [v], yielding the returned value. *) let peek_unsafe bytes ofs bits = let first = ofs / 8 in let last = first + (((ofs mod 8) + bits + 7) / 8) in let v = ref 0 in for i = last - 1 downto first do v := (!v lsl 8) lor Char.code (Bytes.get bytes i) done ; v := !v lsr (ofs mod 8) ; v := !v land ((1 lsl bits) - 1) ; !v let peek bytes ofs bits = check_peek_poke_args "peek" bytes ofs bits ; peek_unsafe bytes ofs bits (* blits [bits] bits of [bytes] at offset [ofs] from an OCaml int in big endian order *) let poke_unsafe bytes ofs bits v = let first = ofs / 8 in let last = first + (((ofs mod 8) + bits + 7) / 8) in let cur = ref 0 in for i = last - 1 downto first do cur := (!cur lsl 8) lor Char.code (Bytes.get bytes i) done ; let mask = lnot (((1 lsl bits) - 1) lsl (ofs mod 8)) in let v = !cur land mask lor (v lsl (ofs mod 8)) in for i = first to last - 1 do Bytes.set bytes i (Char.chr ((v lsr ((i - first) * 8)) land 0xFF)) done let poke bytes ofs bits v = if v lsr bits <> 0 then invalid_arg "Bloomer.poke: value too large" ; check_peek_poke_args "poke" bytes ofs bits ; poke_unsafe bytes ofs bits v let%expect_test "random_read_writes" = let bytes_length = 45 in let bit_length = bytes_length * 8 in (* max_data_bit_width = 29 to to stay within Random.int bounds. int_size - 7 to stay within [check_peek_poke_args] domain. *) let max_data_bit_width = min 29 (Sys.int_size - 7) in let bytes = Bytes.make 45 '\000' in let poke_et_peek ofs len v = poke bytes ofs len v ; assert (peek bytes ofs len = v) in for _ = 0 to 100_000 do let ofs = Random.int (bit_length - max_data_bit_width) in let len = Random.int max_data_bit_width + 1 in let v = Random.int (1 lsl len) in poke_et_peek ofs len v done ; poke_et_peek 350 10 0x3FF ; poke_et_peek 355 5 0x1F ; poke_et_peek 350 10 0 ; poke_et_peek 355 5 0 ; try poke_et_peek 355 6 0 ; assert false with _ -> () let%expect_test "peek and poke work with bits = [1 .. Sys.int_size - 7]" = let fail_or_success f = try f () ; true with _ -> false in let bytes = Bytes.make 45 '\000' in (* we ignore len = 0, the implementation would accepts it but check_peek_poke_args is more strict. *) for len = 1 to Sys.int_size do let ints = List.init 400 (fun _ -> Int64.(to_int (Random.int64 (sub (shift_left one len) one)))) in let unsafe_result = fail_or_success (fun () -> (* we want to test the property regardless of the offset, we test all possible offset (mod 8) *) for ofs = 8 to 16 do List.iter (fun v -> poke_unsafe bytes ofs len v ; assert (peek_unsafe bytes ofs len = v)) ints done) in let check_result = fail_or_success (fun () -> (* we want to test the property regardless of the offset, we test all possible offset (mod 8) *) for ofs = 8 to 16 do List.iter (fun v -> if v lsr len <> 0 then invalid_arg "Bloomer.poke: value too large" ; check_peek_poke_args "unti-test" bytes ofs len) ints done) in assert (unsafe_result = check_result) done let%expect_test "sequential_read_writes" = let bytes = Bytes.make 45 '\000' in let bits = Bytes.length bytes * 8 in (* max_data_bit_width = 29 to stay within Random.int bounds. int_size - 7 to stay within [check_peek_poke_args] domain. *) let max_data_bit_width = min 29 (Sys.int_size - 7) in for _ = 0 to 10_000 do let rec init ofs acc = if ofs >= bits then List.rev acc else let len = min (Random.int max_data_bit_width + 1) (bits - ofs) in let v = Random.int (1 lsl len) in poke bytes ofs len v ; assert (peek bytes ofs len = v) ; init (ofs + len) ((ofs, len, v) :: acc) in List.iter (fun (ofs, len, v) -> assert (peek bytes ofs len = v)) (init 0 []) done let%expect_test "read_over_write" = (* Check that non-overlapping writes really do not overlap. *) let bytes = Bytes.make 45 '\000' in let bits = Bytes.length bytes * 8 in let random_disjoint_writes () = let width = 1 lsl Random.int 3 in let indices = bits / width in let i1 = Random.int indices in let i2 = (i1 + 1 + Random.int (indices - 1)) mod indices in let i1 = i1 * width in let i2 = i2 * width in assert (i1 <> i2) ; let v1 = Random.int (1 lsl width) in let v2 = Random.int (1 lsl width) in poke bytes i1 width v1 ; poke bytes i2 width v2 ; assert (peek bytes i1 width = v1) in for _ = 0 to 10_000 do random_disjoint_writes () done let create ~hash ~hashes ~index_bits ~countdown_bits = (* We constrain [index_bits] and [countdown_bits] to a maximum of 24. This is because [peek] and [poke] operate on ints with size [1 .. int_size - 7] and we want to stay compatible with 32bit arch (e.g. JavaScript). 31 (int_size on 32bit) - 7 = 24 *) if index_bits <= 0 || index_bits > 24 then invalid_arg "Bloomer.create: invalid value for index_bits" ; if countdown_bits <= 0 || countdown_bits > 24 then invalid_arg "Bloomer.create: invalid value for countdown_bits" ; let filter = Bytes.make ((((1 lsl index_bits) * countdown_bits) + 7) / 8) '\000' in let count = Array.make ((1 lsl countdown_bits) - 1) 0 in {hash; hashes; index_bits; countdown_bits; filter; count} let mem {hash; hashes; index_bits; countdown_bits; filter; _} x = let h = hash x in try for i = 0 to hashes - 1 do let j = peek h (index_bits * i) index_bits in if peek filter (j * countdown_bits) countdown_bits = 0 then raise Exit done ; true with Exit -> false let add {hash; hashes; index_bits; countdown_bits; filter; count} x = count.(0) <- count.(0) + 1 ; let h = hash x in for i = 0 to hashes - 1 do let j = peek h (index_bits * i) index_bits in poke filter (j * countdown_bits) countdown_bits ((1 lsl countdown_bits) - 1) done let rem {hash; hashes; index_bits; countdown_bits; filter; _} x = let h = hash x in for i = 0 to hashes - 1 do let j = peek h (index_bits * i) index_bits in poke filter (j * countdown_bits) countdown_bits 0 done let countdown {hash = _; hashes = _; index_bits; countdown_bits; filter; count} = for i = Array.length count - 1 downto 1 do count.(i) <- count.(i - 1) done ; count.(0) <- 0 ; for j = 0 to (1 lsl index_bits) - 1 do let cur = peek filter (j * countdown_bits) countdown_bits in if cur > 0 then poke filter (j * countdown_bits) countdown_bits (cur - 1) done let clear {hash = _; hashes = _; index_bits = _; countdown_bits = _; filter; count} = Array.fill count 0 (Array.length count) 0 ; Bytes.fill filter 0 (Bytes.length filter) '\000' let fill_percentage {hash = _; hashes = _; index_bits; countdown_bits; filter; _} = let total = float (1 lsl index_bits) in let nonzero = ref 0 in for j = 0 to (1 lsl index_bits) - 1 do let cur = peek filter (j * countdown_bits) countdown_bits in if cur > 0 then incr nonzero done ; float !nonzero /. total let life_expectancy_histogram {hash = _; hashes = _; index_bits; countdown_bits; filter; _} = let hist_table = Array.make (1 lsl countdown_bits) 0 in for j = 0 to (1 lsl index_bits) - 1 do let cur = peek filter (j * countdown_bits) countdown_bits in hist_table.(cur) <- hist_table.(cur) + 1 done ; hist_table let approx_count {count; _} = Array.fold_left ( + ) 0 count let%expect_test "consistent_add_mem_countdown" = for _ = 0 to 100 do let index_bits = Random.int 16 + 1 in let hashes = Random.int 7 + 1 in let countdown_bits = Random.int 5 + 1 in let hash v = Bytes.init (((hashes * index_bits) + 7) / 8) (fun i -> Char.chr (Hashtbl.hash (v, i) mod 256)) in let bloomer = create ~hash ~index_bits ~hashes ~countdown_bits in let rec init n acc = if n = 0 then acc else let x = Random.int (1 lsl 29) in add bloomer x ; assert (mem bloomer x) ; init (n - 1) (x :: acc) in let all = init 1000 [] in for _ = 0 to (1 lsl countdown_bits) - 2 do List.iter (fun x -> assert (mem bloomer x)) all ; countdown bloomer done ; List.iter (fun x -> assert (not (mem bloomer x))) all done let%expect_test "consistent_add_countdown_count" = let module Set = Hashtbl.Make (struct include Int let hash = Hashtbl.hash end) in for _ = 0 to 100 do let index_bits = 16 in let hashes = Random.int 7 + 1 in let countdown_bits = Random.int 5 + 1 in let set = Set.create 100 in let hash v = Bytes.init (((hashes * index_bits) + 7) / 8) (fun i -> Char.chr (Hashtbl.hash (v, i) mod 256)) in let bloomer = create ~hash ~index_bits ~hashes ~countdown_bits in let next_ref = ref 0 in let next () = incr next_ref ; !next_ref in let actual_set () = List.filter (mem bloomer) (List.of_seq @@ Set.to_seq_keys set) in let rec init_step n acc = if n = 0 then acc else let x = next () in add bloomer x ; assert (mem bloomer x) ; Set.add set x () ; init_step (n - 1) (1 + acc) in let rec init n stop counts = if n = stop then counts else let approx_counted = approx_count bloomer in let accurate_count = List.length @@ actual_set () in let count = Random.int 10 in let added = init_step count 0 in assert (added = count) ; countdown bloomer ; init (n + 1) stop ((approx_counted, accurate_count) :: counts) in let all = init 0 ((1 lsl countdown_bits) + 30) [] in List.iter (fun (approx, accurate) -> assert (approx = accurate)) all ; clear bloomer ; assert (approx_count bloomer = 0) done let%test_module "false_positive_rate" = (module struct (* We acknowledge the results published in "On the false-positive rate of Bloom filters" (Information Processing Letters, volume 108, issue 4, 2008, pages 210-213) stating that the model formula below is wrong. However, we still use the original approximation made by Bloom to check the behaviour of this implementation, as it is close enough for security yet much simpler to compute. *) let runs = [| (18, 4); (18, 6); (18, 8); (18, 10); (20, 2); (20, 4); (20, 6); (20, 8); (20, 9); (20, 10); (20, 11); (20, 12); (20, 13); (20, 14); (21, 2); (21, 3); (21, 4); (21, 5); (22, 2); (22, 3); (22, 4); (22, 5); (22, 6); (22, 8); |] let steps = 995 let init_samples = 5_000 let samples_per_step = 1_000 let compute_data () = Array.map (fun (index_bits, hashes) -> let countdown_bits = 1 in let hash v = Bytes.init (((hashes * index_bits) + 7) / 8) (fun i -> Char.chr (Hashtbl.hash (v, i) mod 256)) in let bloomer = create ~hash ~index_bits ~hashes ~countdown_bits in let add, cur = let cur = ref 0 in ( (fun n -> for _ = 1 to n do add bloomer !cur ; incr cur done), fun () -> !cur ) in add init_samples ; ( float (Bytes.length bloomer.filter) /. 1024., index_bits, hashes, Array.init steps @@ fun i -> add samples_per_step ; let n = init_samples + ((i + 1) * samples_per_step) in let expected_fp_proba = let e = 2.718281828459045 in (1. -. (e ** (-.float hashes *. float n /. float (1 lsl index_bits))) ) ** float hashes in let actual_proba = let falses = ref 0 in for j = 1 to 500 do if mem bloomer (cur () + j) then incr falses done ; float !falses /. 500. in if abs_float (expected_fp_proba -. actual_proba) >= 0.1 then Printf.printf "wrong false positive rate for n=%d, m=%d,k=%d, expected %g, \ got %g\n" n (1 lsl index_bits) hashes expected_fp_proba actual_proba ; (expected_fp_proba, actual_proba) )) runs let%expect_test _ = ignore (compute_data () : (float * int * int * (float * float) array) array) ; [%expect {||}] let%test_unit _ = match Sys.getenv_opt "BLOOMER_TEST_GNUPLOT_PATH" with | Some path -> let data = compute_data () in for run = 0 to Array.length runs - 1 do let kb, index_bits, hashes, values = data.(run) in (let fp = open_out (Format.asprintf "%s/run_%02d.plot" path run) in Printf.fprintf fp "set title 'false positive rate (bits=%d (%g KiB), hashes=%d)'\n\ %!" (1 lsl index_bits) kb hashes ; Printf.fprintf fp "set xlabel 'insertions'\n" ; Printf.fprintf fp "set ylabel 'rate'\n" ; Printf.fprintf fp "set yrange [0:1]\n" ; Printf.fprintf fp "set terminal 'png' size 800,600\n" ; Printf.fprintf fp "set output 'run_%02d.png'\n" run ; Printf.fprintf fp "plot 'run_%02d.dat' using 1:2 title 'expected', 'run_%02d.dat' \ using 1:3 title 'obtained'\n\ %!" run run ; close_out fp) ; let fp = open_out (Format.asprintf "%s/run_%02d.dat" path run) in for step = 0 to steps - 1 do Printf.fprintf fp "%d %f %f\n" (init_samples + (step * samples_per_step)) (fst values.(step)) (snd values.(step)) done ; flush fp ; close_out fp done | None -> Format.eprintf "Set the BLOOMER_TEST_GNUPLOT_PATH to a directory to get some \ human readable test results." end)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>