package octez-libs
A package that contains multiple base libraries used by the Octez suite
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/octez-libs.plompiler/gadget_schnorr.ml.html
Source file gadget_schnorr.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
(*****************************************************************************) (* *) (* MIT License *) (* Copyright (c) 2022 Nomadic Labs <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) module Make (Curve : Mec.CurveSig.AffineEdwardsT) (H : sig module P : Hash_sig.P_HASH module V : Hash_sig.HASH end) = struct module Curve = Curve open Lang_core (* vanilla implementation of Schnorr signature using ec-jubjub * general idea based on * https://github.com/dusk-network/schnorr/blob/main/src/key_variants/single_key.rs *) module P : sig type pk = Curve.t type signature = { sig_u_bytes : bool list; sig_r : Curve.t; c_bytes : bool list; } type sk = Curve.Scalar.t val neuterize : sk -> pk val sign : ?compressed:bool -> sk -> S.t -> Curve.Scalar.t -> signature val verify : ?compressed:bool -> msg:S.t -> pk:pk -> signature:signature -> unit -> bool end = struct module H = H.P (* S.t and Curve.t are the same but Curve.t is abstract *) let of_bls_scalar s = S.of_z (Curve.Base.to_z s) type sk = Curve.Scalar.t type pk = Curve.t type signature = { sig_u_bytes : bool list; sig_r : Curve.t; c_bytes : bool list; } let neuterize sk = Curve.mul Curve.one sk let bls_scalar_to_curve_scalar s = Curve.Scalar.of_z (S.to_z s) let hash_full a = let ctx = H.init () in let ctx = H.digest ctx a in H.get ctx let sign ?(compressed = false) sk msg rand = let r = Curve.mul Curve.one rand in let r_u = Curve.get_u_coordinate r |> of_bls_scalar in let r_v = Curve.get_v_coordinate r |> of_bls_scalar in let c = if compressed then H.direct ~input_length:2 [|r_u; msg|] else hash_full [|r_u; r_v; msg|] in let u = Curve.Scalar.sub rand (Curve.Scalar.mul (bls_scalar_to_curve_scalar c) sk) in let nb_bits_base = Z.numbits S.order in let sig_u_bytes = Utils.bool_list_of_z ~nb_bits:nb_bits_base (Curve.Scalar.to_z u) in let c_bytes = Utils.bool_list_of_z ~nb_bits:nb_bits_base (S.to_z c) in {sig_u_bytes; sig_r = r; c_bytes} let verify ?(compressed = false) ~msg ~pk ~signature () = let sig_u = Curve.Scalar.of_z @@ Utils.bool_list_to_z signature.sig_u_bytes in let sig_c = Utils.bool_list_to_scalar signature.c_bytes in let sig_r_u = Curve.get_u_coordinate signature.sig_r |> of_bls_scalar in let sig_r_v = Curve.get_v_coordinate signature.sig_r |> of_bls_scalar in let c = if compressed then H.direct ~input_length:2 [|sig_r_u; msg|] else hash_full [|sig_r_u; sig_r_v; msg|] in let c_check = S.eq c sig_c in let challenge_r = Curve.add (Curve.mul Curve.one sig_u) (Curve.mul pk (Curve.Scalar.of_z @@ Utils.bool_list_to_z signature.c_bytes)) in c_check && signature.sig_r = challenge_r end open Lang_stdlib open Gadget_edwards module V : functor (L : LIB) -> sig module Affine : Affine_curve_intf.S_Edwards with module L = L open L open Affine open Encodings (* TODO make abstract once compression is done with encodings *) type pk = point val pk_encoding : (P.pk, pk repr, pk) encoding type signature = { sig_u_bytes : bool list repr; sig_r : point repr; c_bytes : bool list repr; } val signature_encoding : (P.signature, signature, bool list * (pk * bool list)) encoding val verify : ?compressed:bool -> g:point repr -> msg:scalar repr -> pk:pk repr -> signature:signature -> unit -> bool repr t end = functor (L : LIB) -> struct module Affine = MakeAffine (Curve) (L) open Affine open L open Encodings open H.V (L) type pk = point let point_encoding : (Curve.t, pk repr, pk) encoding = let curve_base_to_s c = Lang_core.S.of_z @@ Curve.Base.to_z c in let curve_base_of_s c = Curve.Base.of_z @@ Lang_core.S.to_z c in with_implicit_bool_check is_on_curve @@ conv (fun r -> of_pair r) (fun (u, v) -> pair u v) (fun c -> ( curve_base_to_s @@ Curve.get_u_coordinate c, curve_base_to_s @@ Curve.get_v_coordinate c )) (fun (u, v) -> Curve.from_coordinates_exn ~u:(curve_base_of_s u) ~v:(curve_base_of_s v)) (obj2_encoding scalar_encoding scalar_encoding) let pk_encoding = point_encoding type signature = { sig_u_bytes : bool list repr; sig_r : point repr; c_bytes : bool list repr; } let signature_encoding = conv (fun {sig_u_bytes; sig_r; c_bytes} -> (sig_u_bytes, (sig_r, c_bytes))) (fun (sig_u_bytes, (sig_r, c_bytes)) -> {sig_u_bytes; sig_r; c_bytes}) (fun ({sig_u_bytes; sig_r; c_bytes} : P.signature) -> (sig_u_bytes, (sig_r, c_bytes))) (fun (sig_u_bytes, (sig_r, c_bytes)) -> {sig_u_bytes; sig_r; c_bytes}) (obj3_encoding (atomic_list_encoding bool_encoding) point_encoding (atomic_list_encoding bool_encoding)) (* In the compressed variant, we drop sig_r_v of the challenge input as it can be represented with a single bit: its parity (because of Edwards curves are symmetric). We do so as we want to use a hash function with a fixed input length of 2 to minimize the number of constraints. We can still prove the security of this scheme using the Forking lemma and forking thrice. If we really want to include sig_r_v in the challenge input, we could use its parity bit instead of the whole scalar and compress it with the message if it is either small or the output of a hash. This however is expensive as we have to check the decomposition of sig_r_v with the parity bit. Netherless, if the msg input actually is the output of the hash, (msg = H(msg')) of a single scalar, we could fit sig_r_v in this inner hash while keeping the full security: c = H( g**r; msg) = H(g**r; H(msg')) = H( r_u, r_v, H(msg')) ~ H( r_u, H(msg', r_v)) (equivalent in term of security) Doing this would not lead to an additional compression round in the hash, and as such the resulting overhead would be minimal (one constraint for Poseidon128). Assuming that max_account = max_counter = 2**32 (< 10**10) in the Transfer circuit (privacy-team/plompiler/test/benchmark.ml), and max_amount = max_fee = 2**64 (< 10**20), the signature message can be compressed in one scalar: msg = H(msg') = H(src || dst || fee || amount || counter) len(msg') = 192 < BLS12-381.Fr order ~ 2**255 As such, we could use the above scheme to compute the challenge: c = H(r_u, H(src || dst || fee || amount || counter, r_v)) *) let hash ~compressed sig_r msg = with_label ~label:"Schnorr.hash" @@ let sig_r_x = get_x_coordinate sig_r in if compressed then digest ~input_length:2 @@ to_list [sig_r_x; msg] else let sig_r_y = get_y_coordinate sig_r in digest @@ to_list [sig_r_x; sig_r_y; msg] (* Requires : [c_bytes] is computed correctly by the prover. Otherwise an assert is triggered. *) (* TODO: now msg is just one scalar, it will probably be a list of scalars *) let verify ?(compressed = false) ~g ~msg ~pk ~signature () = with_label ~label:"Schnorr.verify" @@ (* assert bytes' length *) let {sig_u_bytes; sig_r; c_bytes} = signature in assert ( List.compare_length_with (of_list sig_u_bytes) (Z.numbits base_order) = 0) ; assert ( List.compare_length_with (of_list c_bytes) (Z.numbits base_order) = 0) ; (* generating challenge *) let* c = hash ~compressed sig_r msg in (* check challenge binary decomposition : of_bytes c_bytes = c *) let* c' = Num.scalar_of_bytes c_bytes in let* e = equal c' c in (* re-computing randomness challenge_r = u * G_E + c * pk *) let* challenge_r = let scalars = to_list [sig_u_bytes; c_bytes] in let points = to_list [g; pk] in multi_scalar_mul scalars points in (* check signature randomness sig_r equals challenge_r *) let* b = equal sig_r challenge_r in Bool.band e b end end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>