package octez-libs
A package that contains multiple base libraries used by the Octez suite
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/octez-libs.plompiler/gadget_merkle.ml.html
Source file gadget_merkle.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
(*****************************************************************************) (* *) (* MIT License *) (* Copyright (c) 2022 Nomadic Labs <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) module Make (H : sig module P : Hash_sig.P_HASH module V : Hash_sig.HASH end) = struct open Lang_stdlib open Lang_core let left = true let right = false module P = struct type tree = Leaf of S.t | Node of S.t * tree * tree let root = function Leaf h -> h | Node (h, _, _) -> h let generate_tree ?(leaves = [||]) depth = let size = Z.(to_int (pow (of_int 2) depth)) in if not (leaves = [||]) then assert (Array.length leaves = size) ; let leaves = if leaves = [||] then Array.init size (fun _ -> S.random ()) else leaves in let rec build_tree depth index = if depth = 0 then Leaf leaves.(index) else let index = 2 * index in let tree1 = build_tree (depth - 1) index in let tree2 = build_tree (depth - 1) (index + 1) in let root = H.P.direct ~input_length:2 [|root tree1; root tree2|] in Node (root, tree1, tree2) in build_tree depth 0 let get_depth tree = let rec aux acc tree = match tree with Leaf _ -> acc | Node (_, t, _) -> aux (acc + 1) t in aux 0 tree let get_leaves tree = let depth = get_depth tree in let size = Z.(to_int (pow (of_int 2) depth)) in let leaves = Array.init size (fun _i -> S.zero) in let rec aux tree index = match tree with | Node (_, t1, t2) -> let index = 2 * index in aux t1 index ; aux t2 (index + 1) | Leaf leaf -> Array.set leaves index leaf in aux tree 0 ; leaves let print_tree tree = let rec aux tree layer index = match tree with | Leaf h -> Printf.printf "\n leaf layer %d - index %d: %s" layer index (S.to_string h) | Node (h, t1, t2) -> Printf.printf "\n node layer %d - index %d: %s" layer index (S.to_string h) ; aux t1 (layer + 1) (2 * index) ; aux t2 (layer + 1) ((2 * index) + 1) in aux tree 0 0 type leaf = H.P.scalar type path = (H.P.scalar * bool) list (* pos is an integer which represents leaves increasingly from right to left *) let proof_path pos tree : leaf * path = let rec to_bin acc x index = if index = 0 then acc else match x mod 2 with | 0 -> to_bin (0 :: acc) (x / 2) (index - 1) | 1 -> to_bin (1 :: acc) ((x - 1) / 2) (index - 1) | _ -> assert false in let size = get_depth tree in let binary = to_bin [] pos size in let rec aux path bin = function | Leaf leaf -> (leaf, path) | Node (_, t1, t2) -> if List.hd bin = 0 then aux ((root t2, left) :: path) (List.tl bin) t1 else aux ((root t1, right) :: path) (List.tl bin) t2 in aux [] binary tree let update_tree ?input_length tree pos leaf = let depth = get_depth tree in let size = Z.(to_int (pow (of_int 2) depth)) in assert (pos < size) ; let _, path = proof_path pos tree in let _, updated_path = List.fold_left (fun (index, acc_list) (x, b) -> if index = -1 then (1, [leaf]) else let acc = List.hd acc_list in let left, right = if b then (acc, x) else (x, acc) in let node = H.P.direct ?input_length [|left; right|] in (index + 1, node :: acc_list)) (-1, []) ((leaf, false) :: path) in let rec update_tree_with_path tree path updated_path = match tree with | Leaf _h -> Leaf leaf | Node (_h, t1, t2) -> let node = List.hd path in let updated_node = List.hd updated_path in let t, t_bar = if snd node = left then (t1, t2) else (t2, t1) in let updated_branch = update_tree_with_path t (List.tl path) (List.tl updated_path) in let t1, t2 = if snd node = left then (updated_branch, t_bar) else (t_bar, updated_branch) in Node (updated_node, t1, t2) in update_tree_with_path tree (List.rev path) updated_path end module type MERKLE = functor (L : LIB) -> sig open L open Encodings type path type leaf = scalar type root = scalar val path_encoding : (P.path, path, (scalar * bool) list) encoding val merkle_proof : path -> leaf repr -> root repr -> bool repr t end module V : MERKLE = functor (L : LIB) -> struct open L module Hash = H.V (L) type path = (scalar * bool) list repr type leaf = scalar type root = scalar let path_encoding = let open Encodings in atomic_list_encoding (atomic_obj2_encoding scalar_encoding bool_encoding) let merkle_proof : path -> leaf repr -> root repr -> bool repr t = fun path leaf expected_root -> with_label ~label:"Merkle.merkle_proof" @@ let* root = foldM (fun computed_h step -> let w, direction = of_pair step in let* leftright = Bool.swap direction w computed_h in let l, r = of_pair leftright in Hash.digest ~input_length:2 (to_list [l; r])) leaf (of_list path) in equal root expected_root end end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>