package octez-libs
A package that contains multiple base libraries used by the Octez suite
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/octez-libs.micheline/micheline.ml.html
Source file micheline.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
(*****************************************************************************) (* *) (* Open Source License *) (* Copyright (c) 2018 Dynamic Ledger Solutions, Inc. <contact@tezos.com> *) (* Copyright (c) 2021 Nomadic Labs <contact@nomadic-labs.com> *) (* Copyright (c) 2021 Marigold <contact@marigold.dev> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) type annot = string list type ('l, 'p) node = | Int of 'l * Z.t | String of 'l * string | Bytes of 'l * Bytes.t | Prim of 'l * 'p * ('l, 'p) node list * annot | Seq of 'l * ('l, 'p) node list type canonical_location = int let dummy_location = -1 type 'p canonical = Canonical of (canonical_location, 'p) node [@@unboxed] let location = function | Int (loc, _) -> loc | String (loc, _) -> loc | Bytes (loc, _) -> loc | Seq (loc, _) -> loc | Prim (loc, _, _, _) -> loc let annotations = function | Int (_, _) -> [] | String (_, _) -> [] | Bytes (_, _) -> [] | Seq (_, _) -> [] | Prim (_, _, _, annots) -> annots let root (Canonical expr) = expr (* We use a defunctionalized CPS implementation. The type below corresponds to that of continuations. *) type ('l, 'p, 'la, 'pa) cont = | Seq_cont of 'la * ('l, 'p, 'la, 'pa) list_cont | Prim_cont of 'la * 'pa * annot * ('l, 'p, 'la, 'pa) list_cont and ('l, 'p, 'la, 'pa) list_cont = | List_cont of ('l, 'p) node list * ('la, 'pa) node list * ('l, 'p, 'la, 'pa) cont | Return let strip_locations (type a b) (root : (a, b) node) : b canonical = let id = let id = ref (-1) in fun () -> incr id ; !id in let rec strip_locations l k = let id = id () in match l with | Int (_, v) -> (apply [@tailcall]) k (Int (id, v)) | String (_, v) -> (apply [@tailcall]) k (String (id, v)) | Bytes (_, v) -> (apply [@tailcall]) k (Bytes (id, v)) | Seq (_, seq) -> (strip_locations_list [@tailcall]) seq [] (Seq_cont (id, k)) | Prim (_, name, seq, annots) -> (strip_locations_list [@tailcall]) seq [] (Prim_cont (id, name, annots, k)) and strip_locations_list ls acc k = match ls with | [] -> (apply_list [@tailcall]) k (List.rev acc) | x :: tl -> (strip_locations [@tailcall]) x (List_cont (tl, acc, k)) and apply k node = match k with | List_cont (tl, acc, k) -> (strip_locations_list [@tailcall]) tl (node :: acc) k | Return -> node and apply_list k node_list = match k with | Seq_cont (id, k) -> (apply [@tailcall]) k (Seq (id, node_list)) | Prim_cont (id, name, annots, k) -> (apply [@tailcall]) k (Prim (id, name, node_list, annots)) in Canonical (strip_locations root Return) let extract_locations : type l p. (l, p) node -> p canonical * (canonical_location * l) list = fun root -> let id = let id = ref (-1) in fun () -> incr id ; !id in let loc_table = ref [] in let rec strip_locations l k = let id = id () in match l with | Int (loc, v) -> loc_table := (id, loc) :: !loc_table ; (apply [@tailcall]) k (Int (id, v)) | String (loc, v) -> loc_table := (id, loc) :: !loc_table ; (apply [@tailcall]) k (String (id, v)) | Bytes (loc, v) -> loc_table := (id, loc) :: !loc_table ; (apply [@tailcall]) k (Bytes (id, v)) | Seq (loc, seq) -> loc_table := (id, loc) :: !loc_table ; (strip_locations_list [@tailcall]) seq [] (Seq_cont (id, k)) | Prim (loc, name, seq, annots) -> loc_table := (id, loc) :: !loc_table ; (strip_locations_list [@tailcall]) seq [] (Prim_cont (id, name, annots, k)) and strip_locations_list ls acc k = match ls with | [] -> (apply_list [@tailcall]) k (List.rev acc) | x :: tl -> (strip_locations [@tailcall]) x (List_cont (tl, acc, k)) and apply k node = match k with | List_cont (tl, acc, k) -> (strip_locations_list [@tailcall]) tl (node :: acc) k | Return -> node and apply_list k node_list = match k with | Seq_cont (id, k) -> (apply [@tailcall]) k (Seq (id, node_list)) | Prim_cont (id, name, annots, k) -> (apply [@tailcall]) k (Prim (id, name, node_list, annots)) in let stripped = strip_locations root Return in (Canonical stripped, List.rev !loc_table) let inject_locations : type l p. (canonical_location -> l) -> p canonical -> (l, p) node = fun lookup (Canonical root) -> let rec inject_locations l k = match l with | Int (loc, v) -> (apply [@tailcall]) k (Int (lookup loc, v)) | String (loc, v) -> (apply [@tailcall]) k (String (lookup loc, v)) | Bytes (loc, v) -> (apply [@tailcall]) k (Bytes (lookup loc, v)) | Seq (loc, seq) -> (inject_locations_list [@tailcall]) seq [] (Seq_cont (lookup loc, k)) | Prim (loc, name, seq, annots) -> (inject_locations_list [@tailcall]) seq [] (Prim_cont (lookup loc, name, annots, k)) and inject_locations_list ls acc k = match ls with | [] -> (apply_list [@tailcall]) k (List.rev acc) | x :: tl -> (inject_locations [@tailcall]) x (List_cont (tl, acc, k)) and apply k node = match k with | List_cont (tl, acc, k) -> (inject_locations_list [@tailcall]) tl (node :: acc) k | Return -> node and apply_list k node_list = match k with | Seq_cont (id, k) -> (apply [@tailcall]) k (Seq (id, node_list)) | Prim_cont (id, name, annots, k) -> (apply [@tailcall]) k (Prim (id, name, node_list, annots)) in inject_locations root Return let map : type a b. (a -> b) -> a canonical -> b canonical = fun f (Canonical expr) -> let rec map_node l k = match l with | (Int _ | String _ | Bytes _) as node -> (apply [@tailcall]) k node | Seq (loc, seq) -> (map_list [@tailcall]) seq [] (Seq_cont (loc, k)) | Prim (loc, name, seq, annots) -> (map_list [@tailcall]) seq [] (Prim_cont (loc, f name, annots, k)) and map_list ls acc k = match ls with | [] -> (apply_list [@tailcall]) k (List.rev acc) | x :: tl -> (map_node [@tailcall]) x (List_cont (tl, acc, k)) and apply k node = match k with | List_cont (tl, acc, k) -> (map_list [@tailcall]) tl (node :: acc) k | Return -> node and apply_list k node_list = match k with | Seq_cont (id, k) -> (apply [@tailcall]) k (Seq (id, node_list)) | Prim_cont (id, name, annots, k) -> (apply [@tailcall]) k (Prim (id, name, node_list, annots)) in Canonical (map_node expr Return) let map_node : type la lb pa pb. (la -> lb) -> (pa -> pb) -> (la, pa) node -> (lb, pb) node = fun fl fp node -> let rec map_node fl fp node k = match node with | Int (loc, v) -> (apply [@tailcall]) fl fp k (Int (fl loc, v)) | String (loc, v) -> (apply [@tailcall]) fl fp k (String (fl loc, v)) | Bytes (loc, v) -> (apply [@tailcall]) fl fp k (Bytes (fl loc, v)) | Seq (loc, seq) -> (map_node_list [@tailcall]) fl fp seq [] (Seq_cont (fl loc, k)) | Prim (loc, name, seq, annots) -> (map_node_list [@tailcall]) fl fp seq [] (Prim_cont (fl loc, fp name, annots, k)) and map_node_list fl fp ls acc k = match ls with | [] -> (apply_list [@tailcall]) fl fp k (List.rev acc) | x :: tl -> (map_node [@tailcall]) fl fp x (List_cont (tl, acc, k)) and apply fl fp k node = match k with | List_cont (tl, acc, k) -> (map_node_list [@tailcall]) fl fp tl (node :: acc) k | Return -> node and apply_list fl fp k node_list = match k with | Seq_cont (id, k) -> (apply [@tailcall]) fl fp k (Seq (id, node_list)) | Prim_cont (id, name, annots, k) -> (apply [@tailcall]) fl fp k (Prim (id, name, node_list, annots)) in (map_node [@tailcall]) fl fp node Return (** Testing ------- Component: Micheline Invocation: dune build @src/lib_micheline/runtest Subject: Test preservation of semantics wrt original implementation *) let%test_module "semantics_preservation" = (module struct module Original = struct let strip_locations root = let id = let id = ref (-1) in fun () -> incr id ; !id in let rec strip_locations l = let id = id () in match l with | Int (_, v) -> Int (id, v) | String (_, v) -> String (id, v) | Bytes (_, v) -> Bytes (id, v) | Seq (_, seq) -> Seq (id, List.map strip_locations seq) | Prim (_, name, seq, annots) -> Prim (id, name, List.map strip_locations seq, annots) in Canonical (strip_locations root) let extract_locations root = let id = let id = ref (-1) in fun () -> incr id ; !id in let loc_table = ref [] in let rec strip_locations l = let id = id () in match l with | Int (loc, v) -> loc_table := (id, loc) :: !loc_table ; Int (id, v) | String (loc, v) -> loc_table := (id, loc) :: !loc_table ; String (id, v) | Bytes (loc, v) -> loc_table := (id, loc) :: !loc_table ; Bytes (id, v) | Seq (loc, seq) -> loc_table := (id, loc) :: !loc_table ; Seq (id, List.map strip_locations seq) | Prim (loc, name, seq, annots) -> loc_table := (id, loc) :: !loc_table ; Prim (id, name, List.map strip_locations seq, annots) in let stripped = strip_locations root in (Canonical stripped, List.rev !loc_table) let inject_locations lookup (Canonical root) = let rec inject_locations l = match l with | Int (loc, v) -> Int (lookup loc, v) | String (loc, v) -> String (lookup loc, v) | Bytes (loc, v) -> Bytes (lookup loc, v) | Seq (loc, seq) -> Seq (lookup loc, List.map inject_locations seq) | Prim (loc, name, seq, annots) -> Prim (lookup loc, name, List.map inject_locations seq, annots) in inject_locations root let map f (Canonical expr) = let rec map_node f = function | (Int _ | String _ | Bytes _) as node -> node | Seq (loc, seq) -> Seq (loc, List.map (map_node f) seq) | Prim (loc, name, seq, annots) -> Prim (loc, f name, List.map (map_node f) seq, annots) in Canonical (map_node f expr) let rec map_node fl fp = function | Int (loc, v) -> Int (fl loc, v) | String (loc, v) -> String (fl loc, v) | Bytes (loc, v) -> Bytes (fl loc, v) | Seq (loc, seq) -> Seq (fl loc, List.map (map_node fl fp) seq) | Prim (loc, name, seq, annots) -> Prim (fl loc, fp name, List.map (map_node fl fp) seq, annots) end module Sampler = struct (* Sampler copied from [micheline_benchmarks.ml] - lib-micheline cannot depend on lib-shell-benchmarks. *) type 'a sampler = Random.State.t -> 'a type width_function = depth:int -> int sampler type node_kind = | Int_node | String_node | Bytes_node | Seq_node | Prim_node (* We skew the distribution towards non-leaf nodes by repeating the relevant kinds ;) *) let all_kinds = [|Int_node; String_node; Bytes_node; Seq_node; Prim_node|] let sample_kind : node_kind sampler = fun rng_state -> let i = Random.State.int rng_state (Array.length all_kinds) in all_kinds.(i) let sample_string _ = "" let sample_bytes _ = Bytes.empty let sample_z _ = Z.zero let sample (w : width_function) rng_state = let rec sample depth rng_state k = match sample_kind rng_state with | Int_node -> k (Int (0, sample_z rng_state)) | String_node -> k (String (0, sample_string rng_state)) | Bytes_node -> k (Bytes (0, sample_bytes rng_state)) | Seq_node -> let width = w ~depth rng_state in sample_list depth width [] (fun terms -> k (Seq (0, terms))) rng_state | Prim_node -> let width = w ~depth rng_state in sample_list depth width [] (fun terms -> k (Prim (0, (), terms, []))) rng_state and sample_list depth width acc k rng_state = if width < 0 then invalid_arg "sample_list: negative width" else if width = 0 then k (List.rev acc) else sample (depth + 1) rng_state (fun x -> sample_list depth (width - 1) (x :: acc) k rng_state) in sample 0 rng_state (fun x -> x) let sample_in_interval min max state = if max - min >= 0 then min + Random.State.int state (max - min + 1) else invalid_arg "sample_in_interval" let reasonable_width_function ~depth rng_state = match Sys.backend_type with | Other _ -> (* e.g. js_of_ocaml *) (* chosen experimentally to avoid stack_overflow *) sample_in_interval 0 (19 / (Bits.numbits depth + 1)) rng_state | Native | Bytecode -> (* Entirely ad-hoc *) sample_in_interval 0 (20 / (Bits.numbits depth + 1)) rng_state let sample = sample reasonable_width_function end let rng_state = Random.State.make [|0x1337; 0x533D|] let rec sample_and_check_n_times' ~map_term n f g = if n <= 0 then () else let term = Sampler.sample rng_state in let term = map_term term in (* Is this a legit use of polymorphic equality? *) (* It would be better to print the two terms instead of the assert as it would give more information in case of failure *) assert (f term = g term) ; sample_and_check_n_times' ~map_term (n - 1) f g let sample_and_check_n_times_canon n = sample_and_check_n_times' ~map_term:strip_locations n let sample_and_check_n_times n = sample_and_check_n_times' ~map_term:(fun x -> x) n let%expect_test "strip_locations" = sample_and_check_n_times 1_000 Original.strip_locations strip_locations ; [%expect {||}] let%expect_test "extract_locations" = sample_and_check_n_times 1_000 Original.extract_locations extract_locations ; [%expect {||}] let%expect_test "inject_locations" = sample_and_check_n_times_canon 1_000 (Original.inject_locations (fun i -> i)) (inject_locations (fun i -> i)) ; [%expect {||}] let%expect_test "map" = sample_and_check_n_times_canon 1_000 (Original.map (fun _i -> ())) (map (fun _i -> ())) ; [%expect {||}] let%expect_test "map_node" = sample_and_check_n_times 1_000 (Original.map_node (fun _i -> ()) (fun _i -> ())) (map_node (fun _i -> ()) (fun _i -> ())) ; [%expect {||}] end)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>