package octez-libs
A package that contains multiple base libraries used by the Octez suite
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/octez-libs.mec/ec.ml.html
Source file ec.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
(* For each curve form and each coordinates, an external link MUST be given pointing to the addition and doubling formulas. The addition MUST support doubling. It is verified by the ECProperties functor. When adding a new curve form/coordinates, it is REQUIRED to add - the number of additions (A), - the number of additions with a constant (AC), - the number of multiplications (M), - the number of multiplications with a constant (MC), - the number of negations (N), - the number of substractions (SU), - the number of divisions (DI), - the number of doublings (DO), - the number of squarings (SQ). If there is a requirement for the parameters, it MUST be verified at the module top level. It is RECOMMENDED, but not required, to use a specific exception and raise it with a meaningful message. When implementing a new form or new coordinates, it MUST be accompanied by the instantiation of a standard/popular curve and test vectors in addition to the generic PBT on EC properties. The origin of the test vectors MUST be documented. If any constant are defined at the top level, it MUST be accompanied by an explanation on where it is used, and why. In the case of an optimisation not listed in the associated paper/link describing the formulas, the author MUST add an explanation. If it reduces the number of field operations, the "original" and the "optimised" versions MUST be compared in comments. IMPROVEME: - For the moment, there is no ec.mli. When adding a new form or new coordinates, the functor signature MUST be added in the interface. If you read these lines and there is a file ec.mli, please open an issue. - For the moment, it is only RECOMMENDED to use a particular exception when verifying the parameters. It must be changed to a REQUIREMENT. - For the moment, there is no distinction between `not being on the curve` and `not being in the prime subgroup`. This MUST change. *) open Bls12_381 module MakeJacobianWeierstrass (Fq : Ff_sig.PRIME) (Fp : Ff_sig.PRIME) (Params : sig val a : Fq.t val b : Fq.t val cofactor : Z.t val bytes_generator : Bytes.t end) : Ec_sig.JacobianWeierstrassT with type Scalar.t = Fp.t and type Base.t = Fq.t = struct let () = assert (not (Fq.is_zero Params.b)) exception Not_on_curve of Bytes.t module Base = Fq module Scalar = Fp let a = Params.a let b = Params.b (* checking the curve is non-singular *) let () = if Base.is_zero Base.((a * square a) + (of_string "27" * square b)) then failwith "a^3 + 27 * b^2 must be different than zero" let cofactor = Params.cofactor type t = {x : Fq.t; y : Fq.t; z : Fq.t} let size_in_bytes = Fq.size_in_bytes * 3 let zero = {x = Fq.zero; y = Fq.one; z = Fq.zero} let is_zero t = Fq.(t.x = zero) && Fq.(t.z = zero) let eq t1 t2 = if Fq.(is_zero t1.z) && Fq.(is_zero t2.z) then true else if Fq.is_zero t1.z || Fq.is_zero t2.z then false else let t1z2 = Fq.(square t1.z) in let t1z3 = Fq.(t1z2 * t1.z) in let t2z2 = Fq.(square t2.z) in let t2z3 = Fq.(t2z2 * t2.z) in let x1 = Fq.(t1.x / t1z2) in let x2 = Fq.(t2.x / t2z2) in let y1 = Fq.(t1.y / t1z3) in let y2 = Fq.(t2.y / t2z3) in Fq.(x1 = x2 && y1 = y2) (* https://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-2007-bl *) let double t = if is_zero t then zero else let {x; y; z} = t in let xx = Fq.(square x) in let yy = Fq.(square y) in let yyyy = Fq.(square yy) in let zz = Fq.(square z) in let s = Fq.(double (square (x + yy) + negate xx + negate yyyy)) in let m = Fq.(xx + xx + xx + (a * square zz)) in let t = Fq.(square m + negate (double s)) in let x3 = t in let y3 = Fq.((m * (s + negate t)) + negate (double (double (double yyyy)))) in let z3 = Fq.(square (y + z) + negate yy + negate zz) in {x = x3; y = y3; z = z3} (* https://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-add-2007-bl *) let add t1 t2 = if is_zero t1 then t2 else if is_zero t2 then t1 else if eq t1 t2 then double t1 else let {x = x1; y = y1; z = z1} = t1 in let {x = x2; y = y2; z = z2} = t2 in let z1z1 = Fq.(z1 * z1) in let z2z2 = Fq.(z2 * z2) in let u1 = Fq.(x1 * z2z2) in let u2 = Fq.(x2 * z1z1) in let s1 = Fq.(y1 * z2 * z2z2) in let s2 = Fq.(y2 * z1 * z1z1) in let h = Fq.(u2 + negate u1) in let i = Fq.(square (double h)) in let j = Fq.(h * i) in let r = Fq.(double (s2 + negate s1)) in let v = Fq.(u1 * i) in let x3 = Fq.(square r + negate j + negate (double v)) in let y3 = Fq.((r * (v + negate x3)) + negate (double (s1 * j))) in let z3 = Fq.((square (z1 + z2) + negate z1z1 + negate z2z2) * h) in {x = x3; y = y3; z = z3} let negate {x; y; z} = {x; y = Fq.negate y; z} let mul x n = let rec aux x n = let two_z = Z.succ Z.one in if Z.equal n Z.zero then zero else if Z.equal n Z.one then x else let a, r = Z.ediv_rem n two_z in if Z.equal r Z.zero then aux (double x) a else add x (aux x (Z.pred n)) in aux x (Scalar.to_z n) let is_on_curve ~x ~y ~z = if Fq.is_zero x && Fq.is_zero z then true else if Fq.is_zero z then false else let z2 = Fq.(square z) in let z3 = Fq.(z * z2) in let x' = Fq.(x / z2) in let y' = Fq.(y / z3) in Fq.((x' * x' * x') + (a * x') + b = y' * y') let is_in_prime_subgroup ~x ~y ~z = let p = {x; y; z} in if is_zero p then true else not (is_zero (mul p (Scalar.of_z cofactor))) let of_bytes_opt bytes = (* no need to copy the bytes [p] because [Bytes.sub] is used and [Bytes.sub] creates a new buffer *) if Bytes.length bytes <> size_in_bytes then None else let x_bytes = Bytes.sub bytes 0 Fq.size_in_bytes in let y_bytes = Bytes.sub bytes Fq.size_in_bytes Fq.size_in_bytes in let z_bytes = Bytes.sub bytes (2 * Fq.size_in_bytes) Fq.size_in_bytes in let x = Fq.of_bytes_opt x_bytes in let y = Fq.of_bytes_opt y_bytes in let z = Fq.of_bytes_opt z_bytes in match (x, y, z) with | None, _, _ | _, None, _ | _, _, None -> None (* Verify it is on the curve *) | Some x, Some y, Some z -> if Fq.is_zero x && Fq.is_zero z then Some zero else if Fq.is_zero z then None else if is_on_curve ~x ~y ~z && is_in_prime_subgroup ~x ~y ~z then Some {x; y; z} else None let check_bytes bytes = match of_bytes_opt bytes with Some _ -> true | None -> false let of_bytes_exn b = (* no need to copy the bytes [p] because [Bytes.sub] is used and [Bytes.sub] creates a new buffer *) match of_bytes_opt b with Some g -> g | None -> raise (Not_on_curve b) let to_bytes g = let buffer = Bytes.make size_in_bytes '\000' in Bytes.blit (Fq.to_bytes g.x) 0 buffer 0 Fq.size_in_bytes ; Bytes.blit (Fq.to_bytes g.y) 0 buffer Fq.size_in_bytes Fq.size_in_bytes ; Bytes.blit (Fq.to_bytes g.z) 0 buffer (2 * Fq.size_in_bytes) Fq.size_in_bytes ; buffer let one = of_bytes_exn Params.bytes_generator let random ?state () = (match state with None -> () | Some s -> Random.set_state s) ; let rec aux () = let x = Fq.random () in let y_square = Fq.((x * x * x) + (a * x) + b) in let y_opt = Fq.sqrt_opt y_square in match y_opt with | None -> aux () | Some y -> mul {x; y; z = Fq.one} (Scalar.of_z cofactor) in aux () let get_x_coordinate t = t.x let get_y_coordinate t = t.y let get_z_coordinate t = t.z let from_coordinates_exn ~x ~y ~z = if is_on_curve ~x ~y ~z then {x; y; z} else raise (Not_on_curve (Bytes.concat Bytes.empty [Fq.to_bytes x; Fq.to_bytes y; Fq.to_bytes z])) let from_coordinates_opt ~x ~y ~z = if is_on_curve ~x ~y ~z then Some {x; y; z} else None let get_affine_x_coordinate t = if is_zero t then failwith "Zero" else let z2 = Fq.(square t.z) in Fq.(t.x / z2) let get_affine_y_coordinate t = if is_zero t then failwith "Zero" else let z3 = Fq.(square t.z * t.z) in Fq.(t.y / z3) let from_affine_coordinates_exn ~x ~y = from_coordinates_exn ~x ~y ~z:Fq.one let from_affine_coordinates_opt ~x ~y = from_coordinates_exn ~x ~y ~z:Fq.one end module MakeAffineWeierstrass (Fq : Ff_sig.PRIME) (Fp : Ff_sig.PRIME) (Params : sig val a : Fq.t val b : Fq.t val cofactor : Z.t val bytes_generator : Bytes.t end) : Ec_sig.AffineWeierstrassT with type Scalar.t = Fp.t and type Base.t = Fq.t = struct let () = assert (not (Fq.is_zero Params.b)) exception Not_on_curve of Bytes.t module Base = Fq module Scalar = Fp let a = Params.a let b = Params.b (* checking the curve is non-singular *) let () = if Base.is_zero Base.((a * square a) + (of_string "27" * square b)) then failwith "a^3 + 27 * b^2 must be different than zero" let cofactor = Params.cofactor type t = Infinity | P of (Fq.t * Fq.t) let size_in_bytes = Fq.size_in_bytes * 2 let zero = Infinity let buffer_zero = Bytes.make size_in_bytes '\000' let is_zero t = match t with Infinity -> true | _ -> false let is_on_curve ~x ~y = Fq.((x * x * x) + (a * x) + b = y * y) let to_bytes g = let buffer = Bytes.make size_in_bytes '\000' in match g with | Infinity -> buffer | P (x, y) -> Bytes.blit (Fq.to_bytes x) 0 buffer 0 Fq.size_in_bytes ; Bytes.blit (Fq.to_bytes y) 0 buffer Fq.size_in_bytes Fq.size_in_bytes ; buffer let eq t1 t2 = match (t1, t2) with | Infinity, Infinity -> true | Infinity, _ | _, Infinity -> false | P (x1, y1), P (x2, y2) -> Fq.(x1 = x2 && y1 = y2) let double t = match t with | Infinity -> Infinity | P (x, y) -> let xx = Fq.(square x) in let xx_3_plus_a = Fq.(double xx + xx + a) in let double_x = Fq.(double x) in let double_y = Fq.(double y) in let square_double_y = Fq.(square double_y) in let x3 = Fq.((square xx_3_plus_a / square_double_y) + negate double_x) in let triple_x = Fq.(x + double_x) in let y3 = Fq.( (triple_x * xx_3_plus_a / double_y) + (negate (square xx_3_plus_a * xx_3_plus_a) / (square_double_y * double_y) + negate y)) in P (x3, y3) (* https://hyperelliptic.org/EFD/g1p/auto-shortw.html *) let add t1 t2 = match (t1, t2) with | Infinity, t2 -> t2 | t1, Infinity -> t1 | t1, t2 when eq t1 t2 -> double t1 | P (x1, y1), P (x2, y2) -> if Fq.(x1 = x2 && y1 = negate y2) then Infinity else let y2_min_y1 = Fq.(y2 + negate y1) in let x2_min_x1 = Fq.(x2 + negate x1) in let slope = Fq.(y2_min_y1 / x2_min_x1) in let square_slope = Fq.(square slope) in let x3 = Fq.(square_slope + negate x1 + negate x2) in let double_x1 = Fq.(double x1) in let double_x1_plus_x2 = Fq.(double_x1 + x2) in let y3 = Fq.( (double_x1_plus_x2 * slope) + negate (square_slope * slope) + negate y1) in P (x3, y3) let negate p = match p with Infinity -> Infinity | P (x, y) -> P (x, Fq.negate y) let mul x n = let rec aux x n = let two_z = Z.succ Z.one in if Z.equal n Z.zero then zero else if Z.equal n Z.one then x else let a, r = Z.ediv_rem n two_z in if Z.equal r Z.zero then aux (double x) a else add x (aux x (Z.pred n)) in aux x (Scalar.to_z n) let is_in_prime_subgroup ~x ~y = let p = P (x, y) in if is_zero p then true else not (is_zero (mul p (Scalar.of_z cofactor))) let of_bytes_opt bytes = (* no need to copy the bytes [p] because [Bytes.sub] is used and [Bytes.sub] creates a new buffer *) if Bytes.length bytes <> size_in_bytes then None else let x_bytes = Bytes.sub bytes 0 Fq.size_in_bytes in let y_bytes = Bytes.sub bytes Fq.size_in_bytes Fq.size_in_bytes in if Bytes.equal buffer_zero bytes then Some Infinity else let x = Fq.of_bytes_opt x_bytes in let y = Fq.of_bytes_opt y_bytes in match (x, y) with | None, _ | _, None -> None (* Verify it is on the curve *) | Some x, Some y -> if is_on_curve ~x ~y && is_in_prime_subgroup ~x ~y then Some (P (x, y)) else None let check_bytes bytes = match of_bytes_opt bytes with Some _ -> true | None -> false let of_bytes_exn b = (* no need to copy the bytes [p] because [Bytes.sub] is used and [Bytes.sub] creates a new buffer *) match of_bytes_opt b with Some g -> g | None -> raise (Not_on_curve b) let one = of_bytes_exn Params.bytes_generator let random ?state () = (match state with None -> () | Some s -> Random.set_state s) ; let rec aux () = let x = Fq.random () in let y_square = Fq.((x * x * x) + (a * x) + b) in let y_opt = Fq.sqrt_opt y_square in match y_opt with | None -> aux () | Some y -> mul (P (x, y)) (Scalar.of_z Params.cofactor) in aux () let get_x_coordinate t = match t with Infinity -> raise (Invalid_argument "Zero") | P (x, _y) -> x let get_y_coordinate t = match t with Infinity -> raise (Invalid_argument "Zero") | P (_x, y) -> y (* FIXME: To have functions to Montgomery, we need to be able to compute alpha which is a root of the equation: z^3 + a*z + b = 0 which requires the cubic root operation in F_q. There is an open issue in ocaml-ff: https://gitlab.com/dannywillems/ocaml-ff/-/issues/21 let alpha = let two = Fq.of_string "2" in let four = Fq.of_string "4" in let twenty_seven = Fq.of_string "27" in let a_cube = Fq.(mul a (square a)) in let b_square = Fq.square b in let delta = Fq.( b_square + negate ( (4 * a_cube ) / twenty_seven) ) in let sqrt_delta = Fq.sqrt_opt delta in if Option.is_none sqr_delta then assert (1=0); let sqrt_delta = Option.get sqr_delta in let u = Fq.(negate ((sqrt_delta + b) / two) ) in let v = Fq.( (sqrt_delta + negate b) / two) in let u_cbrt = Fq.cbrt_opt u in let v_cbrt = Fq.cbrt_opt v in if Option.(is_none u_cbrt || is_none v_cbrt) then assert (1=0); Fq.(u_cbrt + v_cbrt) let s = let three = Fq.of_string "3" in let aux = Fq.(three * (square alpha) + a) let sqrt_aux = Fq.sqrt_opt aux in if Option.is_none sqrt_aux then assert (1=0); Fq.( 1 / (Option.get sqrt_aux) ) (* https://en.wikipedia.org/wiki/Montgomery_curve *) let to_montgomery t = match t with | Infinity -> raise (Invalid_argument "Zero") | P (x, y) -> Some (Fq.(s * (x - alpha)), Fq.(s*y)) let to_montgomery_curve_parameters () = let three = Fr.of_string "3" in let cond = Fq.(three * (square alpha) * a) in if not (Fq.is_quadratic_residue cond) then None else let gen = Option.get (to_montgomery one) in let a = Fq.( three * alpha * s) in let b = s in Some (a, b, Params.cofactor, gen) *) let from_coordinates_exn ~x ~y = if is_on_curve ~x ~y then P (x, y) else raise (Not_on_curve (Bytes.concat Bytes.empty [Fq.to_bytes x; Fq.to_bytes y])) let from_coordinates_opt ~x ~y = if is_on_curve ~x ~y then Some (P (x, y)) else None let of_compressed_bytes_opt bs = (* required to avoid side effect! *) let bs = Bytes.copy bs in let length = Bytes.length bs in if length <> Base.size_in_bytes then None else if bs = Bytes.make Base.size_in_bytes '\000' then Some Infinity else (* We get the last bit of the input, representing the bit of u. We also remove the last bit from the bytes we received *) let last_byte = int_of_char @@ Bytes.get bs (length - 1) in let sign = last_byte lsr 7 in let last_byte_without_sign = last_byte land 0b01111111 in Bytes.set bs (length - 1) (char_of_int last_byte_without_sign) ; (* We compute u *) let x = Base.of_bytes_opt bs in match x with | None -> None | Some x -> ( let yy = Base.((x * x * x) + (a * x) + b) in let y_opt = Base.sqrt_opt yy in let y = match y_opt with | None -> None | Some y -> (* computed before for constant time *) let negated_y = Base.negate y in let y_first_byte = Bytes.get (Base.to_bytes y) 0 in let is_sign_flipped = int_of_char y_first_byte lxor sign land 1 in Some (if is_sign_flipped = 0 then y else negated_y) in match y with | Some y -> if is_in_prime_subgroup ~x ~y then Some (P (x, y)) else None | None -> None) let of_compressed_bytes_exn b = match of_compressed_bytes_opt b with | None -> raise (Not_on_curve b) | Some p -> p let to_compressed_bytes p = match p with | Infinity -> Bytes.make Base.size_in_bytes '\000' | P (x, y) -> let x_bytes = Base.to_bytes x in let y_bytes = Base.to_bytes y in let y_first_byte = int_of_char (Bytes.get y_bytes 0) in let x_last_byte = int_of_char (Bytes.get x_bytes (Base.size_in_bytes - 1)) in (* Get the first bit of y, i.e. the sign of y *) let sign_of_y = y_first_byte land 0b00000001 in (* Set the last bit of the last byte of x to the sign of y *) let x_last_byte_with_y = x_last_byte lor (sign_of_y lsl 7) in Bytes.set x_bytes (Base.size_in_bytes - 1) (char_of_int x_last_byte_with_y) ; x_bytes end module MakeProjectiveWeierstrass (Fq : Ff_sig.PRIME) (Fp : Ff_sig.PRIME) (Params : sig val a : Fq.t val b : Fq.t val cofactor : Z.t val bytes_generator : Bytes.t end) : Ec_sig.ProjectiveWeierstrassT with type Scalar.t = Fp.t and type Base.t = Fq.t = struct let () = assert (not (Fq.is_zero Params.b)) exception Not_on_curve of Bytes.t module Base = Fq module Scalar = Fp let a = Params.a let b = Params.b (* checking the curve is non-singular *) let () = if Base.is_zero Base.((a * square a) + (of_string "27" * square b)) then failwith "a^3 + 27 * b^2 must be different than zero" let cofactor = Params.cofactor type t = {x : Fq.t; y : Fq.t; z : Fq.t} let size_in_bytes = Fq.size_in_bytes * 3 let zero = {x = Fq.zero; y = Fq.one; z = Fq.zero} let is_zero t = Fq.(t.x = zero) && Fq.(t.z = zero) let is_on_curve ~x ~y ~z = if Fq.is_zero x && Fq.is_zero z then true else if Fq.is_zero z then false else let x' = Fq.(x / z) in let y' = Fq.(y / z) in Fq.((x' * x' * x') + (a * x') + b = y' * y') let add t1 t2 = (* See https://github.com/o1-labs/snarky/blob/master/snarkette/elliptic_curve.ml *) if is_zero t1 then t2 else if is_zero t2 then t1 else let open Fq in let x1z2 = t1.x * t2.z in let x2z1 = t1.z * t2.x in let y1z2 = t1.y * t2.z in let y2z1 = t1.z * t2.y in if x1z2 = x2z1 && y1z2 = y2z1 then (* Double case *) let xx = square t1.x in let zz = square t1.z in let w = (a * zz) + (xx + xx + xx) in let y1z1 = t1.y * t1.z in let s = y1z1 + y1z1 in let ss = square s in let sss = s * ss in let r = t1.y * s in let rr = square r in let b = square (t1.x + r) + negate xx + negate rr in let h = square w + negate (b + b) in let x3 = h * s in let y3 = (w * (b + negate h)) + negate (rr + rr) in let z3 = sss in {x = x3; y = y3; z = z3} else (* Generic case *) let z1z2 = t1.z * t2.z in let u = y2z1 + negate y1z2 in let uu = square u in let v = x2z1 + negate x1z2 in let vv = square v in let vvv = v * vv in let r = vv * x1z2 in let a = (uu * z1z2) + negate (vvv + r + r) in let x3 = v * a in let y3 = (u * (r + negate a)) + negate (vvv * y1z2) in let z3 = vvv * z1z2 in {x = x3; y = y3; z = z3} let double t = add t t let negate {x; y; z} = {x; y = Fq.negate y; z} let eq t1 t2 = if Fq.(is_zero t1.z) && Fq.(is_zero t2.z) then true else if Fq.is_zero t1.z || Fq.is_zero t2.z then false else let x1 = Fq.(t1.x / t1.z) in let x2 = Fq.(t2.x / t2.z) in let y1 = Fq.(t1.y / t1.z) in let y2 = Fq.(t2.y / t2.z) in Fq.(x1 = x2 && y1 = y2) let mul x n = let rec aux x n = let two_z = Z.succ Z.one in if Z.equal n Z.zero then zero else if Z.equal n Z.one then x else let a, r = Z.ediv_rem n two_z in if Z.equal r Z.zero then aux (double x) a else add x (aux x (Z.pred n)) in aux x (Scalar.to_z n) let is_in_prime_subgroup ~x ~y ~z = let p = {x; y; z} in if is_zero p then true else not (is_zero (mul p (Scalar.of_z cofactor))) let of_bytes_opt bytes = (* no need to copy the bytes [p] because [Bytes.sub] is used and [Bytes.sub] creates a new buffer *) if Bytes.length bytes <> size_in_bytes then None else let x_bytes = Bytes.sub bytes 0 Fq.size_in_bytes in let y_bytes = Bytes.sub bytes Fq.size_in_bytes Fq.size_in_bytes in let z_bytes = Bytes.sub bytes (2 * Fq.size_in_bytes) Fq.size_in_bytes in let x = Fq.of_bytes_opt x_bytes in let y = Fq.of_bytes_opt y_bytes in let z = Fq.of_bytes_opt z_bytes in match (x, y, z) with | None, _, _ | _, None, _ | _, _, None -> None (* Verify it is on the curve *) | Some x, Some y, Some z -> if Fq.is_zero x && Fq.is_zero z then Some zero else if Fq.is_zero z then None else if is_on_curve ~x ~y ~z && is_in_prime_subgroup ~x ~y ~z then Some {x; y; z} else None let check_bytes bytes = match of_bytes_opt bytes with Some _ -> true | None -> false let of_bytes_exn b = (* no need to copy the bytes [p] because [Bytes.sub] is used and [Bytes.sub] creates a new buffer *) match of_bytes_opt b with Some g -> g | None -> raise (Not_on_curve b) let to_bytes g = let buffer = Bytes.make size_in_bytes '\000' in Bytes.blit (Fq.to_bytes g.x) 0 buffer 0 Fq.size_in_bytes ; Bytes.blit (Fq.to_bytes g.y) 0 buffer Fq.size_in_bytes Fq.size_in_bytes ; Bytes.blit (Fq.to_bytes g.z) 0 buffer (2 * Fq.size_in_bytes) Fq.size_in_bytes ; buffer let one = of_bytes_exn Params.bytes_generator let random ?state () = (match state with None -> () | Some s -> Random.set_state s) ; let rec aux () = let x = Fq.random () in let y_square = Fq.((x * x * x) + (a * x) + b) in let y_opt = Fq.sqrt_opt y_square in match y_opt with | None -> aux () | Some y -> mul {x; y; z = Fq.one} (Scalar.of_z cofactor) in aux () let get_x_coordinate t = t.x let get_y_coordinate t = t.y let get_z_coordinate t = t.z let from_coordinates_exn ~x ~y ~z = if is_on_curve ~x ~y ~z && is_in_prime_subgroup ~x ~y ~z then {x; y; z} else raise (Not_on_curve (Bytes.concat Bytes.empty [Fq.to_bytes x; Fq.to_bytes y; Fq.to_bytes z])) let from_coordinates_opt ~x ~y ~z = if is_on_curve ~x ~y ~z && is_in_prime_subgroup ~x ~y ~z then Some {x; y; z} else None let get_affine_x_coordinate t = if is_zero t then failwith "Zero" else Fq.(t.x / t.z) let get_affine_y_coordinate t = if is_zero t then failwith "Zero" else Fq.(t.y / t.z) let from_affine_coordinates_exn ~x ~y = from_coordinates_exn ~x ~y ~z:Fq.one let from_affine_coordinates_opt ~x ~y = from_coordinates_exn ~x ~y ~z:Fq.one end module MakeAffineMontgomery (Fq : Ff_sig.PRIME) (Fp : Ff_sig.PRIME) (Params : sig val a : Fq.t val b : Fq.t val cofactor : Z.t val bytes_generator : Bytes.t end) : Ec_sig.AffineMontgomeryT with type Scalar.t = Fp.t and type Base.t = Fq.t = struct (* Costello, Craig, and Benjamin Smith. "Montgomery curves and their arithmetic." Journal of Cryptographic Engineering 8.3 (2018): 227-240. (https://arxiv.org/pdf/1703.01863.pdf) *) (* Summary for the complexity: Addition: 6A + 1AC + 1M + 1MC + 4N + 1DI Doubling: 4A + 2AC + 1M + 4MC + 3N + 1DI + 1DO + 2SQ *) (* Checking non-singularity: - if b=0 then the Curve is a union of 3 lines; if a^2=4 then the curve is a nodal cubic. *) let () = assert (not Fq.(eq (square Params.a) (Fq.of_string "4"))) let () = assert (not (Fq.is_zero Params.b)) exception Not_on_curve of Bytes.t module Base = Fq module Scalar = Fp (* used later in addition and doubling formulas *) let two = Fq.(one + one) let three = Fq.(one + two) let a = Params.a let two_a = Fq.mul two a let b = Params.b let two_b = Fq.mul two b let three_b = Fq.mul three b let cofactor = Params.cofactor type t = Infinity | P of (Fq.t * Fq.t) let size_in_bytes = Fq.size_in_bytes * 2 let zero = Infinity let buffer_zero = Bytes.make size_in_bytes '\000' let is_zero t = match t with Infinity -> true | _ -> false let eq t1 t2 = match (t1, t2) with | Infinity, Infinity -> true | Infinity, _ | _, Infinity -> false | P (x1, y1), P (x2, y2) -> Fq.(x1 = x2 && y1 = y2) (* The operation for adding two points are the same whether we add the same or distinct points except for the calculus of the slope. (https://arxiv.org/pdf/1703.01863.pdf) Let P(x_p, y_p) + P(x_q, y_q) = P(x_r, y_r), then x_r = Params.b * slope^2 - (x_p + x_q) - Params.a y_r = (2 * x_p + x_ q + Params.a) * slope - Params.b * slope^3 - y_p = slope * (x_p - x_q) - y_p *) (* Complexity (update above summary if any change): 1SQ + 1MC + 1MC + 1A + 1AC + 1MC + 1DI -> 3MC + 1A + 1AC + 1DI (SLOPE COMPUTATION) + 1SQ + 1DO + 1MC + 1AC + 1N + 1A (X COMPUTATION) + 1N + 1N + 1A + 1M + 1A -> 2N + 2A + 1M (Y COMPUTATION USING X) Total: 4A + 2AC + 1M + 4MC + 3N + 1DI + 1DO + 2SQ *) let double t = match t with | Infinity -> Infinity | P (x, y) -> (* Slope computation *) let xx = Fq.(square x) in (* slope = (3 * x^2 + 2 * Params.a * x + 1) / (2 * Params.b * y) *) let three_xx = Fq.(three * xx) in let two_a_x = Fq.(two_a * x) in let l_num = Fq.(three_xx + two_a_x) in let l_num = Fq.(l_num + Fq.one) in let l_div = Fq.(two_b * y) in let l = Fq.(l_num / l_div) in (* x computation *) let ll = Fq.square l in let two_x = Fq.double x in let b_ll = Fq.(b * ll) in let a_two_x = Fq.(a + two_x) in let neg_a_two_x = Fq.(negate a_two_x) in let x3 = Fq.(b_ll + neg_a_two_x) in (* computing y3 by using x3, see 2.2. There is a typo when giving a shorter formula for y. It must be x_plus instead of x_q *) let neg_x3 = Fq.negate x3 in let neg_y = Fq.negate y in let x_plus_neg_x3 = Fq.(x + neg_x3) in let l_x_plus_neg_x3 = Fq.(l * x_plus_neg_x3) in let y3 = Fq.(l_x_plus_neg_x3 + neg_y) in P (x3, y3) (* Complexity (update above summary if any change): (SLOPE COMPUTATION) 1N + 1N + 1A + 1A + 1DI -> 2A + 2N + 1DI (X COMPUTATION) + 1SQ + 1A + 1MC + 1AC + 1N + 1A -> 2A + 1AC + 1MC + 1N + 1SQ (Y COMPUTATION) + 1N + 1A + 1M + 1A -> 2A + 1M + 1N Total: 6A + 1AC + 1M + 1MC + 4N + 1DI *) let add t1 t2 = match (t1, t2) with | Infinity, t2 -> t2 | t1, Infinity -> t1 | t1, t2 when eq t1 t2 -> double t1 | P (x1, y1), P (x2, y2) -> if Fq.(x1 = x2 && y1 = negate y2) then Infinity else (* slope = (y2 - y1) / (x2 - x1) *) let neg_y1 = Fq.(negate y1) in let neg_x1 = Fq.(negate x1) in let y2_min_y1 = Fq.(y2 + neg_y1) in let x2_min_x1 = Fq.(x2 + neg_x1) in let l = Fq.(y2_min_y1 / x2_min_x1) in (* x computation *) let ll = Fq.(square l) in let x2_plus_x1 = Fq.(x1 + x2) in let b_ll = Fq.(b * ll) in let a_plus_x2_plus_x1 = Fq.(a + x2_plus_x1) in let neg_a_plus_x2_plus_x1 = Fq.(negate a_plus_x2_plus_x1) in let x3 = Fq.(b_ll + neg_a_plus_x2_plus_x1) in (* y computation Cost improvement by using x3 directly: 3A + 1AC + 2M + 1MC -> 2A + 1M + 1N Saving 1A, 1AC, 1M, 1MC and costs 1 extra N *) let neg_x3 = Fq.(negate x3) in let x1_min_x3 = Fq.(x1 + neg_x3) in let l_x1_min_x3 = Fq.(l * x1_min_x3) in let y3 = Fq.(l_x1_min_x3 + neg_y1) in P (x3, y3) let negate p = match p with Infinity -> Infinity | P (x, y) -> P (x, Fq.negate y) let mul x n = let rec aux x n = let two_z = Z.succ Z.one in if Z.equal n Z.zero then zero else if Z.equal n Z.one then x else let a, r = Z.ediv_rem n two_z in if Z.equal r Z.zero then aux (double x) a else add x (aux x (Z.pred n)) in aux x (Scalar.to_z n) let is_on_curve ~x ~y = let xx = Fq.square x in let yy = Fq.square y in Fq.((x * xx) + (a * xx) + x = b * yy) let is_in_prime_subgroup ~x ~y = let p = P (x, y) in if is_zero p then true else not (is_zero (mul p (Scalar.of_z cofactor))) let of_bytes_opt bytes = (* no need to copy the bytes [p] because [Bytes.sub] is used and [Bytes.sub] creates a new buffer *) if Bytes.length bytes <> size_in_bytes then None else let x_bytes = Bytes.sub bytes 0 Fq.size_in_bytes in let y_bytes = Bytes.sub bytes Fq.size_in_bytes Fq.size_in_bytes in if Bytes.equal buffer_zero bytes then Some Infinity else let x = Fq.of_bytes_opt x_bytes in let y = Fq.of_bytes_opt y_bytes in match (x, y) with | None, _ | _, None -> None (* Verify it is on the curve *) | Some x, Some y -> if is_on_curve ~x ~y && is_in_prime_subgroup ~x ~y then Some (P (x, y)) else None let check_bytes bytes = match of_bytes_opt bytes with Some _ -> true | None -> false let of_bytes_exn b = (* no need to copy the bytes [p] because [Bytes.sub] is used and [Bytes.sub] creates a new buffer *) match of_bytes_opt b with Some g -> g | None -> raise (Not_on_curve b) let to_bytes g = let buffer = Bytes.make size_in_bytes '\000' in match g with | Infinity -> buffer | P (x, y) -> Bytes.blit (Fq.to_bytes x) 0 buffer 0 Fq.size_in_bytes ; Bytes.blit (Fq.to_bytes y) 0 buffer Fq.size_in_bytes Fq.size_in_bytes ; buffer let one = of_bytes_exn Params.bytes_generator let is_in_prime_subgroup ~x ~y = let p = P (x, y) in if is_zero p then true else not (is_zero (mul p (Scalar.of_z cofactor))) let random ?state () = (match state with None -> () | Some s -> Random.set_state s) ; let rec aux () = let x = Fq.random () in let xx = Fq.mul x x in let y_square = Fq.(((x * xx) + (a * xx) + x) / b) in let y_opt = Fq.sqrt_opt y_square in match y_opt with | None -> aux () | Some y -> mul (P (x, y)) (Scalar.of_z Params.cofactor) in aux () let get_x_coordinate t = match t with Infinity -> raise (Invalid_argument "Zero") | P (x, _y) -> x let get_y_coordinate t = match t with Infinity -> raise (Invalid_argument "Zero") | P (_x, y) -> y (* https://en.wikipedia.org/wiki/Montgomery_curve *) let to_twisted t = match t with | Infinity -> raise (Invalid_argument "Zero") | P (x, y) -> if Fq.is_zero y || Fq.(is_zero (one + x)) then None else Some Fq.(x / y, (x + negate one) / (x + one)) let to_twisted_curve_parameters () = let gen = to_twisted one in if Option.is_none gen then None else let a = Fq.((Params.a + two) / Params.b) in let d = Fq.((Params.a + negate two) / Params.b) in Some (a, d, Params.cofactor, Option.get gen) (* https://en.wikipedia.org/wiki/Montgomery_curve *) let to_weierstrass t = match t with | Infinity -> raise (Invalid_argument "Zero") | P (x, y) -> let x = Fq.((x / b) + (a / three_b)) in let y = Fq.(y / b) in Some (x, y) let to_weierstrass_curve_parameters () = let gen = to_weierstrass one in if Option.is_none gen then None else let nine = Fq.of_string "9" in let twenty_seven = Fq.of_string "27" in let a_square = Fq.square Params.a in let a_cube = Fq.mul a a_square in let b_square = Fq.square Params.b in let b_cube = Fq.mul b b_square in let d = Fq.(((two * a_cube) + (negate nine * a)) / (twenty_seven * b_cube)) in let a = Fq.((three + negate a_square) / (three * b_square)) in Some (a, d, Params.cofactor, Option.get gen) let from_coordinates_exn ~x ~y = if is_on_curve ~x ~y && is_in_prime_subgroup ~x ~y then P (x, y) else raise (Not_on_curve (Bytes.concat Bytes.empty [Fq.to_bytes x; Fq.to_bytes y])) let from_coordinates_opt ~x ~y = if is_on_curve ~x ~y && is_in_prime_subgroup ~x ~y then Some (P (x, y)) else None let of_compressed_bytes_opt bs = (* required to avoid side effect! *) let bs = Bytes.copy bs in let length = Bytes.length bs in if length <> Base.size_in_bytes then None else if bs = Bytes.make Base.size_in_bytes '\000' then Some Infinity else (* We get the last bit of the input, representing the bit of u. We also remove the last bit from the bytes we received *) let last_byte = int_of_char @@ Bytes.get bs (length - 1) in let sign = last_byte lsr 7 in let last_byte_without_sign = last_byte land 0b01111111 in Bytes.set bs (length - 1) (char_of_int last_byte_without_sign) ; (* We compute u *) let x = Base.of_bytes_opt bs in match x with | None -> None | Some x -> ( let xx = Base.mul x x in let yy = Base.(((x * xx) + (a * xx) + x) / b) in let y_opt = Base.sqrt_opt yy in let y = match y_opt with | None -> None | Some y -> (* computed before for constant time *) let negated_y = Base.negate y in let y_first_byte = Bytes.get (Base.to_bytes y) 0 in let is_sign_flipped = int_of_char y_first_byte lxor sign land 1 in Some (if is_sign_flipped = 0 then y else negated_y) in match y with | Some y -> let p = P (x, y) in if is_in_prime_subgroup ~x ~y then Some p else None | None -> None) let of_compressed_bytes_exn b = match of_compressed_bytes_opt b with | None -> raise (Not_on_curve b) | Some p -> p let to_compressed_bytes p = match p with | Infinity -> Bytes.make Base.size_in_bytes '\000' | P (x, y) -> let x_bytes = Base.to_bytes x in let y_bytes = Base.to_bytes y in let y_first_byte = int_of_char (Bytes.get y_bytes 0) in let x_last_byte = int_of_char (Bytes.get x_bytes (Base.size_in_bytes - 1)) in (* Get the first bit of y, i.e. the sign of y *) let sign_of_y = y_first_byte land 0b00000001 in (* Set the last bit of the last byte of x to the sign of y *) let x_last_byte_with_y = x_last_byte lor (sign_of_y lsl 7) in Bytes.set x_bytes (Base.size_in_bytes - 1) (char_of_int x_last_byte_with_y) ; x_bytes end module MakeAffineEdwards (Base : Ff_sig.PRIME) (Scalar : Ff_sig.PRIME) (Params : sig val a : Base.t val d : Base.t val cofactor : Z.t val bytes_generator : Bytes.t end) : Ec_sig.AffineEdwardsT with type Base.t = Base.t and type Scalar.t = Scalar.t = struct (* https://www.hyperelliptic.org/EFD/g1p/auto-twisted.html *) (* https://en.wikipedia.org/wiki/Twisted_Edwards_curve *) (* Summary for the complexity: Addition: 2A + 2AC + 5M + 2MC + 2N + 2DI Doubling: 3A + 1AC + 1M + 1MC + 2N + 2DI + 1DO + 2SQ *) exception Not_on_curve of Bytes.t module Scalar = Scalar module Base = Base include Params let () = (* Addition formula is complete if d is a not a square *) assert (Option.is_none (Base.sqrt_opt d)) let size_in_bytes = Base.size_in_bytes * 2 type t = {u : Base.t; v : Base.t} let zero = {u = Base.zero; v = Base.one} let is_zero {u; v} = Base.(u = zero) && Base.(v = one) let to_bytes {u; v} = Bytes.concat Bytes.empty [Base.to_bytes u; Base.to_bytes v] (* Complexity (update above summary if any change): 2A + 2AC + 5M + 2MC + 2N + 2DI *) let add {u = u1; v = v1} {u = u2; v = v2} = let u1v2 = Base.(u1 * v2) in let v1u2 = Base.(v1 * u2) in let u1u2v1v2 = Base.(u1v2 * v1u2) in let v1v2 = Base.(v1 * v2) in let u1u2 = Base.(u1 * u2) in let du1u2v1v2 = Base.(d * u1u2v1v2) in let u = Base.((u1v2 + v1u2) / (Base.one + du1u2v1v2)) in let v = Base.( (v1v2 + Base.negate (a * u1u2)) / (Base.one + Base.negate du1u2v1v2)) in {u; v} (* used in doubling *) let two = Base.(one + one) (* Complexity (update above summary if any change) 3A + 1AC + 1M + 1MC + 2N + 2DI + 1DO + 2SQ *) let double {u; v} = let uv = Base.(u * v) in let uu = Base.square u in let vv = Base.square v in let neg_uu = Base.negate uu in let neg_vv = Base.negate vv in let a_uu = Base.(a * uu) in let a_neguu = Base.(a * neg_uu) in (* a u^2 v^2 = 1 + d u^2 v^2 --> we can skip one multiplication *) let u' = Base.(double uv / (a_uu + vv)) in let v' = Base.((vv + a_neguu) / (two + a_neguu + neg_vv)) in {u = u'; v = v'} let negate {u; v} = {u = Base.negate u; v} let eq {u = u1; v = v1} {u = u2; v = v2} = Base.(u1 = u2 && v1 = v2) let mul x n = let rec aux x n = let two_z = Z.succ Z.one in if Z.equal n Z.zero then zero else if Z.equal n Z.one then x else let q, r = Z.ediv_rem n two_z in let x_plus_x = double x in if Z.equal r Z.zero then aux x_plus_x q else add x (aux x_plus_x q) in aux x (Scalar.to_z n) let is_on_curve ~u ~v = (* a * u^2 + v^2 = 1 + d u^2 v^2 *) let uu = Base.square u in let vv = Base.square v in let uuvv = Base.(uu * vv) in Base.((a * uu) + vv = one + (d * uuvv)) let is_in_prime_subgroup ~u ~v = let p = {u; v} in if is_zero p then true else not (is_zero (mul p (Scalar.of_z cofactor))) let of_bytes_opt b = (* no need to copy the bytes [p] because [Bytes.sub] is used and [Bytes.sub] creates a new buffer *) if Bytes.length b <> size_in_bytes then None else let u_opt = Base.of_bytes_opt (Bytes.sub b 0 Base.size_in_bytes) in let v_opt = Base.of_bytes_opt (Bytes.sub b Base.size_in_bytes Base.size_in_bytes) in match (u_opt, v_opt) with | Some u, Some v -> if is_on_curve ~u ~v && is_in_prime_subgroup ~u ~v then Some {u; v} else None | _ -> None let of_bytes_exn b = (* no need to copy the bytes [p] because [Bytes.sub] is used in [of_bytes_opt] and [Bytes.sub] creates a new buffer *) match of_bytes_opt b with None -> raise (Not_on_curve b) | Some p -> p let check_bytes b = match of_bytes_opt b with None -> false | Some _ -> true let one = of_bytes_exn bytes_generator let rec random ?state () = let () = match state with Some s -> Random.set_state s | None -> () in let u = Base.random ?state:None () in let uu = Base.(square u) in let auu = Base.(a * uu) in let duu = Base.(d * uu) in if Base.(is_one duu) then random ?state:None () else (* a u^2 + v^2 = 1 + d u^2 v^2 *) (* <==> a u^2 + v^2 - d u^2 v^2 = 1 *) (* <==> v^2 - d u^2 v^2 = 1 - a u^2 *) (* <==> v^2 * (1 - d u^2) = 1 - a u^2 *) (* <==> v^2 = (1 - a * u^2) / (1 - d * u^2) *) let tmp = Base.((one + negate auu) / (one + negate duu)) in let v_sqrt = Base.(sqrt_opt tmp) in match v_sqrt with | None -> random ?state:None () | Some v -> let p = mul {u; v} (Scalar.of_z cofactor) in if eq p zero then random ?state:None () else p let get_u_coordinate p = p.u let get_v_coordinate p = p.v (* https://en.wikipedia.org/wiki/Montgomery_curve *) let to_montgomery p = match (p.u, p.v) with | u, v when Base.(is_zero u && is_one v) -> raise (Invalid_argument "Zero") | u, v -> assert (not Base.(eq a d)) ; if Base.is_zero u || Base.(is_zero (one + v)) then None else let one_plus_v = Base.(one + v) in let one_minus_v = Base.(one + negate v) in let x = Base.(one_plus_v / one_minus_v) in let y = Base.(x / u) in Some (x, y) let to_montgomery_curve_parameters () = let gen = to_montgomery one in if Option.is_none gen then None else let gen = Option.get gen in let two = Base.of_string "2" in let four = Base.of_string "4" in let a_min_d = Base.(a + negate d) in let b = Base.(four / a_min_d) in let a = Base.(two * (a + d) / a_min_d) in Some (a, b, Params.cofactor, gen) let from_coordinates_opt ~u ~v = let p = {u; v} in if is_on_curve ~u ~v && is_in_prime_subgroup ~u ~v then Some p else None let from_coordinates_exn ~u ~v = match from_coordinates_opt ~u ~v with | None -> raise (Not_on_curve (Bytes.concat Bytes.empty [Base.to_bytes u; Base.to_bytes v])) | Some p -> p let unsafe_from_coordinates ~u ~v = {u; v} end let from_affine_weierstrass_to_jacobian_weierstrass (type affine jacobian base scalar) (module Affine : Ec_sig.AffineWeierstrassT with type t = affine and type Base.t = base and type Scalar.t = scalar) (module Jacobian : Ec_sig.JacobianWeierstrassT with type t = jacobian and type Base.t = base and type Scalar.t = scalar) (p_affine : affine) : jacobian = if Affine.is_zero p_affine then Jacobian.zero else let x = Affine.get_x_coordinate p_affine in let y = Affine.get_y_coordinate p_affine in Jacobian.from_affine_coordinates_exn ~x ~y let from_jacobian_weierstrass_to_affine_weierstrass (type affine jacobian base scalar) (module Jacobian : Ec_sig.JacobianWeierstrassT with type t = jacobian and type Base.t = base and type Scalar.t = scalar) (module Affine : Ec_sig.AffineWeierstrassT with type t = affine and type Base.t = base and type Scalar.t = scalar) (p_jacobian : jacobian) : affine = if Jacobian.is_zero p_jacobian then Affine.zero else let x = Jacobian.get_x_coordinate p_jacobian in let y = Jacobian.get_y_coordinate p_jacobian in let z = Jacobian.get_z_coordinate p_jacobian in let zz = Jacobian.Base.square z in let zzz = Jacobian.Base.(z * zz) in let x' = Jacobian.Base.(x / zz) in let y' = Jacobian.Base.(y / zzz) in Affine.from_coordinates_exn ~x:x' ~y:y' let from_affine_weierstrass_to_projective_weierstrass (type affine projective base scalar) (module Affine : Ec_sig.AffineWeierstrassT with type t = affine and type Base.t = base and type Scalar.t = scalar) (module Projective : Ec_sig.ProjectiveWeierstrassT with type t = projective and type Base.t = base and type Scalar.t = scalar) (p_affine : affine) : projective = if Affine.is_zero p_affine then Projective.zero else let x = Affine.get_x_coordinate p_affine in let y = Affine.get_y_coordinate p_affine in Projective.from_affine_coordinates_exn ~x ~y let from_projective_weierstrass_to_affine_weierstrass (type affine projective base scalar) (module Projective : Ec_sig.ProjectiveWeierstrassT with type t = projective and type Base.t = base and type Scalar.t = scalar) (module Affine : Ec_sig.AffineWeierstrassT with type t = affine and type Base.t = base and type Scalar.t = scalar) (p_projective : projective) : affine = if Projective.is_zero p_projective then Affine.zero else let x = Projective.get_x_coordinate p_projective in let y = Projective.get_y_coordinate p_projective in let z = Projective.get_z_coordinate p_projective in let x' = Projective.Base.(x / z) in let y' = Projective.Base.(y / z) in Affine.from_coordinates_exn ~x:x' ~y:y' let from_affine_montgomery_to_affine_weierstrass (type affine_mt affine_wt base scalar) (module Affine_mt : Ec_sig.AffineMontgomeryT with type t = affine_mt and type Base.t = base and type Scalar.t = scalar) (module Affine_wt : Ec_sig.AffineWeierstrassT with type t = affine_wt and type Base.t = base and type Scalar.t = scalar) (p_mt : affine_mt) : affine_wt option = let coords_opt = Affine_mt.to_weierstrass p_mt in Option.bind coords_opt (fun (x, y) -> Affine_wt.from_coordinates_opt ~x ~y) (* let from_weierstrass_montgomery (type affine_wt affine_mt base scalar) (module Affine_wt : Ec_sig.AffineWeierstrassT with type t = affine_wt and type Base.t = base and type Scalar.t = scalar) (module Affine_mt : Ec_sig.AffineMontgomeryT with type t = affine_mt and type Base.t = base and type Scalar.t = scalar) (p_wt : affine_wt) : affine_mt option = let coords_opt = Affine_wt.to_montgomery p_wt in Option.bind coords_opt (fun (x, y) -> Affine_mt.from_coordinates_opt ~x ~y) *) let from_affine_montgomery_to_affine_edwards (type affine_mt affine_tw base scalar) (module Affine_mt : Ec_sig.AffineMontgomeryT with type t = affine_mt and type Base.t = base and type Scalar.t = scalar) (module Affine_tw : Ec_sig.AffineEdwardsT with type t = affine_tw and type Base.t = base and type Scalar.t = scalar) (p_mt : affine_mt) : affine_tw option = let coords_opt = Affine_mt.to_twisted p_mt in Option.bind coords_opt (fun (u, v) -> Affine_tw.from_coordinates_opt ~u ~v) let from_affine_edwards_to_affine_montgomery (type affine_tw affine_mt base scalar) (module Affine_tw : Ec_sig.AffineEdwardsT with type t = affine_tw and type Base.t = base and type Scalar.t = scalar) (module Affine_mt : Ec_sig.AffineMontgomeryT with type t = affine_mt and type Base.t = base and type Scalar.t = scalar) (p_tw : affine_tw) : affine_mt option = let coords_opt = Affine_tw.to_montgomery p_tw in Option.bind coords_opt (fun (x, y) -> Affine_mt.from_coordinates_opt ~x ~y) module MakeAffineEdwardsToAffineMontgomery (E : Ec_sig.AffineEdwardsT) : Ec_sig.AffineMontgomeryT with module Base = E.Base and module Scalar = E.Scalar = MakeAffineMontgomery (E.Base) (E.Scalar) (struct let two = E.Base.(double one) let four = E.Base.(double two) let a_neg_d = E.Base.(E.a + negate E.d) let a = E.Base.(two * (E.a + E.d) / a_neg_d) let b = E.Base.(four / a_neg_d) let cofactor = E.cofactor let bytes_generator = let u = E.get_u_coordinate E.one in let v = E.get_v_coordinate E.one in let one_plus_v = E.Base.(one + v) in let one_minus_v = E.Base.(one + negate v) in let x = E.Base.(one_plus_v / one_minus_v) in let y = E.Base.(x / u) in Bytes.concat Bytes.empty [E.Base.to_bytes x; E.Base.to_bytes y] end)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>