package octez-libs
A package that contains multiple base libraries used by the Octez suite
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/octez-libs.lazy-containers/lazy_vector.ml.html
Source file lazy_vector.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
(*****************************************************************************) (* *) (* Open Source License *) (* Copyright (c) 2022 Trili Tech <contact@trili.tech> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) exception Bounds exception SizeOverflow module type KeyS = sig include Map.OrderedType val unsigned_compare : t -> t -> int val zero : t val add : t -> t -> t val sub : t -> t -> t val pred : t -> t val succ : t -> t val to_string : t -> string end module type S = sig type key type 'a producer = key -> 'a Lwt.t module Map : Lazy_map.S with type key = key type 'a t val pp : (Format.formatter -> 'a -> unit) -> Format.formatter -> 'a t -> unit val to_string : ('a -> string) -> 'a t -> string val string_of_key : key -> string val num_elements : 'a t -> key val create : ?first_key:key -> ?values:'a Map.Map.t -> ?produce_value:'a producer -> ?origin:Tezos_tree_encoding.wrapped_tree -> key -> 'a t val origin : 'a t -> Tezos_tree_encoding.wrapped_tree option val empty : unit -> 'a t val singleton : 'a -> 'a t val of_list : 'a list -> 'a t val get : key -> 'a t -> 'a Lwt.t val set : key -> 'a -> 'a t -> 'a t val cons : 'a -> 'a t -> 'a t val split : 'a t -> key -> 'a t * 'a t val grow : ?default:(unit -> 'a) -> key -> 'a t -> 'a t val drop : 'a t -> 'a t val pop : 'a t -> ('a * 'a t) Lwt.t val prepend_list : 'a list -> 'a t -> 'a t val append : 'a -> 'a t -> 'a t * key val concat : 'a t -> 'a t -> 'a t Lwt.t val unsafe_concat : 'a t -> 'a t -> 'a t val to_list : 'a t -> 'a list Lwt.t val loaded_bindings : 'a t -> (key * 'a option) list val first_key : 'a t -> key val encoding : key Tezos_tree_encoding.t -> 'a Tezos_tree_encoding.t -> 'a t Tezos_tree_encoding.t end module ZZ : KeyS with type t = Z.t = struct include Z (** Note that, in fixed sized integers we need to use a specialized `unsigned` version of compare. This is because, internally, some keys can be represented by negative integers (using wraparound). For example after a while the value of num_elements will surpass max_int and so it will become negative Nevertheless we still want this to represent large unsigned integers (up until 2*max_int). In the case of Z this is not an issue as there is no wraparound.*) let unsigned_compare = Z.compare end module Make_no_enc (Key : KeyS) = struct module Map = Lazy_map.Make (Key) type key = Key.t type 'a producer = key -> 'a Lwt.t type 'a t = {first : key; num_elements : key; values : 'a Map.t} let pp pp_value fmt map = Format.fprintf fmt "@[<hv 2>{ first = %s;@ num_elements = %s;@ values = %a }@]" (Key.to_string map.first) (Key.to_string map.num_elements) (Map.pp pp_value) map.values let to_string show_value map = let pp_value fmt value = Format.pp_print_string fmt (show_value value) in Format.asprintf "%a" (pp pp_value) map let string_of_key = Key.to_string let num_elements map = map.num_elements let create ?(first_key = Key.zero) ?values ?produce_value ?origin num_elements = let values = Map.create ?values ?produce_value ?origin () in {first = first_key; num_elements; values} let origin {values; _} = Map.origin values let empty () = create Key.zero let of_list values = let fold (map, len) value = (Map.Map.add len value map, Key.succ len) in let values, num_elements = List.fold_left fold (Map.Map.empty, Key.zero) values in create ~values num_elements let invalid_key key map = Key.unsigned_compare key map.num_elements >= 0 let get key map = if invalid_key key map then raise Bounds ; let key = Key.add map.first key in Map.get key map.values let set key value map = if invalid_key key map then raise Bounds ; let key = Key.add map.first key in {map with values = Map.set key value map.values} let singleton value = create Key.(succ zero) |> set Key.zero value let overflow k1 k2 = Key.unsigned_compare k1 (Key.add k1 k2) > 0 let cons value map = if overflow map.num_elements (Key.succ Key.zero) then raise SizeOverflow else let first = Key.pred map.first in let values = Map.set first value map.values in let num_elements = Key.succ map.num_elements in {first; values; num_elements} let split vec at = if Key.( unsigned_compare at zero < 0 || unsigned_compare (num_elements vec) at < 0) then raise Bounds else ( {first = vec.first; num_elements = at; values = Map.dup vec.values}, { first = Key.(add vec.first at); num_elements = Key.(sub vec.num_elements at); values = Map.dup vec.values; } ) let append_opt elt map = if overflow map.num_elements (Key.succ Key.zero) then raise SizeOverflow else let num_elements = map.num_elements in let map = {map with num_elements = Key.succ num_elements} in let map = match elt with Some elt -> set num_elements elt map | None -> map in (map, num_elements) (* This version of drop simply doesn't check for bounds, but is used in functions actually checking the bounds, to prevent doing it twice. *) let unsafe_drop map = let values = Map.remove map.first map.values in { first = Key.succ map.first; num_elements = Key.pred map.num_elements; values; } let drop map = if Key.(unsigned_compare zero map.num_elements < 0) then unsafe_drop map else raise Bounds let pop map = let open Lwt.Syntax in if Key.(unsigned_compare zero map.num_elements < 0) then let+ x = get Key.zero map in (x, unsafe_drop map) else raise Bounds let append elt map = append_opt (Some elt) map let prepend_list es es0 = let es = List.rev es in let rec aux v = function x :: rst -> aux (cons x v) rst | [] -> v in aux es0 es let rec grow ?default delta map = if overflow map.num_elements delta then raise SizeOverflow else if Key.(delta <= zero) then map else let map, _ = append_opt (Option.map (fun f -> f ()) default) map in grow ?default Key.(pred delta) map let to_list map = let open Lwt.Syntax in let rec unroll acc index = if Key.unsigned_compare index Key.zero > 0 then let* prefix = get index map in (unroll [@ocaml.tailcall]) (prefix :: acc) (Key.pred index) else let* prefix = get Key.zero map in Lwt.return (prefix :: acc) in (* The empty vector is not correctly taken into account otherwise, since `pred zero` = `-1`, which is an invalid key according to {!invalid_key}. *) if map.num_elements = Key.zero then Lwt.return_nil else (unroll [@ocaml.tailcall]) [] (Key.pred map.num_elements) let concat lhs rhs = let open Lwt.Syntax in if overflow lhs.num_elements rhs.num_elements then raise SizeOverflow else let* lhs = to_list lhs in let+ rhs = to_list rhs in of_list (lhs @ rhs) let loaded_bindings m = Map.loaded_bindings m.values let unsafe_concat lhs rhs = let lhs = loaded_bindings lhs |> List.map snd in let rhs = loaded_bindings rhs |> List.map snd in of_list (List.filter_map Fun.id (lhs @ rhs)) let first_key vector = vector.first end module Make (Key : KeyS) : S with type key = Key.t = struct module No_enc = Make_no_enc (Key) module Encoding = Tezos_tree_encoding.Lazy_vector_encoding.Make (No_enc) include No_enc let encoding = Encoding.lazy_vector end module Int = struct include Int let unsigned_compare n m = compare (n - min_int) (m - min_int) end module IntVector = Make (Int) module Int32Vector = Make (Int32) module Int64Vector = Make (Int64) module ZVector = Make (ZZ) module Mutable = struct module type ImmutableS = S module type S = sig type key module Vector : S with type key = key type 'a t val num_elements : 'a t -> key val of_immutable : 'a Vector.t -> 'a t val create : ?values:'a Vector.Map.Map.t -> ?produce_value:'a Vector.producer -> ?origin:Tezos_tree_encoding.wrapped_tree -> key -> 'a t val origin : 'a t -> Tezos_tree_encoding.wrapped_tree option val get : key -> 'a t -> 'a Lwt.t val set : key -> 'a -> 'a t -> unit val grow : ?default:(unit -> 'a) -> key -> 'a t -> unit val append : 'a -> 'a t -> key val cons : 'a -> 'a t -> unit val drop : 'a t -> unit val pop : 'a t -> 'a Lwt.t val reset : 'a t -> unit val snapshot : 'a t -> 'a Vector.t end module Make (Vector : ImmutableS) : S with type key = Vector.key and module Vector = Vector = struct module Vector = Vector type key = Vector.key type 'a t = 'a Vector.t ref let num_elements map_ref = Vector.num_elements !map_ref let of_immutable = ref let create ?values ?produce_value ?origin num_elements = of_immutable (Vector.create ?values ?produce_value ?origin num_elements) let origin vector = Vector.origin !vector let get key map_ref = Vector.get key !map_ref let set key value map_ref = map_ref := Vector.set key value !map_ref let grow ?default delta map_ref = map_ref := Vector.grow ?default delta !map_ref let append elt map_ref = let new_map, i = Vector.append elt !map_ref in map_ref := new_map ; i let cons a map_ref = map_ref := Vector.cons a !map_ref let drop map_ref = map_ref := Vector.drop !map_ref let pop map_ref = let open Lwt.Syntax in let+ v, map = Vector.pop !map_ref in map_ref := map ; v let reset map_ref = map_ref := Vector.empty () let snapshot map_ref = !map_ref end module IntVector = Make (IntVector) module Int32Vector = Make (Int32Vector) module Int64Vector = Make (Int64Vector) module ZVector = Make (ZVector) end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>