package octez-libs
A package that contains multiple base libraries used by the Octez suite
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/octez-libs.crypto/timelock_legacy.ml.html
Source file timelock_legacy.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
(*****************************************************************************) (* *) (* Open Source License *) (* Copyright (c) 2020-2021 Nomadic Labs, <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) open Tezos_hacl type rsa_secret = {p : Z.t; q : Z.t} type rsa_public = Z.t (* RSA modulus = p * q*) type timelock_proof = Z.t type locked_value = Z.t type unlocked_value = Z.t type symmetric_key = Crypto_box.Secretbox.key type ciphertext = {nonce : Crypto_box.nonce; payload : bytes} (*Should be sufficient since the public key will not be exposed for a long time*) let size_modulus = 2048 (* Creates a symmetric key using hash based key derivation from the time locked value*) let unlocked_value_to_symmetric_key unlocked_value = let kdf_key = "Tezoskdftimelockv0" in let to_hash = Z.to_string unlocked_value in let hash = Blake2B.(to_bytes @@ hash_string ~key:kdf_key [to_hash]) in Crypto_box.Secretbox.unsafe_of_bytes hash (* A random Z arith element of size [size] bytes *) let random_z size = Hacl.Rand.gen size |> Bytes.to_string |> Z.of_bits let random_prime_z size = let rec aux () = let trial = random_z size in if Z.probab_prime trial 25 = 0 then aux () else trial in aux () (* Generates and RSA key pair of 2048 bits (= 256 bytes) *) let gen_rsa_keys () = (* We divide by 8 to convert to bytes and by 2 because we generate two primes *) let size = size_modulus / (2 * 8) in let p = random_prime_z size in let q = random_prime_z size in (Z.(p * q), {p; q}) (* Generates almost uniformly a Zarith element between 0 and [public key]. Intended for generating the time lock *) let gen_locked_value rsa_public = (* We divide by 8 to convert to bytes *) Z.erem (random_z ((size_modulus / 8) + 16)) rsa_public (* The resulting prime has size 256 bits or slightly more. *) let hash_to_prime rsa_public ~time value key = let personalization = Bytes.of_string "\032" in let s = String.concat "\xff\x00\xff\x00\xff\x00\xff\x00" (Int.to_string time :: List.map Z.to_bits [rsa_public; value; key]) in let (Hacl.Blake2b.Hash hash_result) = Hacl.Blake2b.direct ~key:personalization (Bytes.of_string s) 32 in Z.(nextprime (of_bits (Bytes.to_string hash_result))) let prove_without_secret rsa_public ~time locked_value unlocked_value = let l = hash_to_prime rsa_public ~time locked_value unlocked_value in let pow = Z.(pow (of_int 2) time / l) in Z.powm locked_value pow rsa_public let prove_with_secret secret ~time locked_value unlocked_value = let rsa_public = Z.(secret.p * secret.q) in let l = hash_to_prime rsa_public ~time locked_value unlocked_value in let phi = Z.((secret.p - one) * (secret.q - one)) in let pow = Z.(pow (of_int 2) time / l mod phi) in Z.powm locked_value pow rsa_public (* The proof is verified by checking that lv ^ (2 ^ time) = (proof ^ l) * (lv ^ r) mod public which is equivalent to 2 ^ time = (((2 ^ time) / l) * l) + (2 ^ time mod l) mod phi see https://eprint.iacr.org/2018/712.pdf section 3.2 for this proof *) let verify_timelock rsa_public ~time locked_value unlocked_value proof = let l = hash_to_prime rsa_public ~time locked_value unlocked_value in let r = Z.(powm (of_int 2) (Z.of_int time) l) in unlocked_value = Z.(powm proof l rsa_public * powm locked_value r rsa_public mod rsa_public) (* Gives the value that was timelocked from the timelock, the secret and the time. Works in logarithmic time in [time] *) let unlock_with_secret secret ~(time : int) (locked_value : locked_value) = let phi = Z.((secret.p - one) * (secret.q - one)) in let e = Z.powm (Z.of_int 2) (Z.of_int time) phi in Z.powm locked_value e Z.(secret.p * secret.q) let unlock_and_prove_with_secret secret ~(time : int) (locked_value : locked_value) = let unlocked_value = unlock_with_secret secret ~time locked_value in let pi = prove_with_secret secret ~time locked_value unlocked_value in (unlocked_value, pi) let locked_value_to_symmetric_key_with_secret secret ~(time : int) (locked_value : locked_value) : symmetric_key = unlocked_value_to_symmetric_key (unlock_with_secret secret ~time locked_value) (* Gives the value that was timelocked from the timelock, the public modulus and the time. Works in linear time in [time] *) let unlock_and_prove_without_secret rsa_public ~time locked_value = let rec aux time v = if time = 0 then v else aux Int.(pred time) Z.(v * v mod rsa_public) in let unlocked_value = aux time locked_value in let pi = prove_without_secret rsa_public ~time locked_value unlocked_value in (unlocked_value, pi) let locked_value_to_symmetric_key_with_proof (rsa_public : rsa_public) ~(time : int) locked_value unlocked_value proof = if verify_timelock rsa_public ~time locked_value unlocked_value proof then Some (unlocked_value_to_symmetric_key unlocked_value) else None let encrypt symmetric_key plaintext = let nonce = Crypto_box.random_nonce () in { nonce; payload = Crypto_box.Secretbox.secretbox symmetric_key plaintext nonce; } let decrypt symmetric_key ciphertext = Crypto_box.Secretbox.secretbox_open symmetric_key ciphertext.payload ciphertext.nonce (* ------------*) type chest_key = {unlocked_value : unlocked_value; proof : timelock_proof} type chest = { locked_value : locked_value; rsa_public : rsa_public; ciphertext : ciphertext; } let proof_encoding = Data_encoding.n let chest_key_encoding = let open Data_encoding in def "timelock.chest_key" @@ conv (fun chest_key -> (chest_key.unlocked_value, chest_key.proof)) (fun (unlocked_value, proof) -> {unlocked_value; proof}) (obj2 (req "unlocked_value" Data_encoding.n) (req "proof" Data_encoding.n)) let ciphertext_encoding = let open Data_encoding in def "timelock.ciphertext" @@ conv_with_guard (fun ciphertext -> (ciphertext.nonce, ciphertext.payload)) (fun (nonce, payload) -> if Bytes.length payload <= Crypto_box.tag_length then Error "The ciphertext has a negative size" else Ok {nonce; payload}) (obj2 (req "timelock.nonce" Crypto_box.nonce_encoding) (req "timelock.payload" bytes)) let min_rsa_modulus = Z.(shift_left (of_int 2) 2000) let chest_encoding = let open Data_encoding in def "timelock.chest" @@ conv_with_guard (fun chest -> (chest.locked_value, chest.rsa_public, chest.ciphertext)) (fun (locked_value, rsa_public, ciphertext) -> if Z.Compare.(locked_value < Z.zero || locked_value >= rsa_public) then Error "locked value is not in the rsa group" else if Z.leq rsa_public min_rsa_modulus then Error "rsa modulus is too small" else Ok {locked_value; rsa_public; ciphertext}) (obj3 (req "locked_value" n) (req "rsa_public" n) (req "ciphertext" ciphertext_encoding)) type opening_result = Correct of Bytes.t | Bogus_cipher | Bogus_opening let open_chest chest chest_key ~time = if time < 0 then failwith "Timelock: trying to open with a negative time" else let sym_key_opt = locked_value_to_symmetric_key_with_proof chest.rsa_public ~time chest.locked_value chest_key.unlocked_value chest_key.proof in match sym_key_opt with | None -> Bogus_opening | Some sym_key -> ( let plaintext_opt = decrypt sym_key chest.ciphertext in match plaintext_opt with | None -> Bogus_cipher | Some plaintext -> Correct plaintext) let create_chest_and_chest_key ~payload ~time = let rsa_public, rsa_secret = gen_rsa_keys () in let locked_value = gen_locked_value rsa_public in let unlocked_value, proof = unlock_and_prove_with_secret rsa_secret ~time locked_value in let sym_key = unlocked_value_to_symmetric_key unlocked_value in let ciphertext = encrypt sym_key payload in ({locked_value; rsa_public; ciphertext}, {unlocked_value; proof}) let create_chest_key chest ~time = let unlocked_value, proof = unlock_and_prove_without_secret chest.rsa_public ~time chest.locked_value in {unlocked_value; proof} let get_plaintext_size chest = Bytes.length chest.ciphertext.payload - Crypto_box.tag_length (*-------- sampling function for gas benchmarks-----*) (* Those function are unsafe for wallet usage as they use the OCaml random generator. This is used to easily reproduce benchmarks. *) let gen_random_bytes_unsafe size = Bytes.init size (fun _ -> Char.chr (Random.int 256)) let gen_random_z_unsafe size = gen_random_bytes_unsafe size |> Bytes.to_string |> Z.of_bits let gen_random_prime_unsafe size = gen_random_z_unsafe size |> Z.nextprime let gen_rsa_keys_unsafe () = let size = size_modulus / (2 * 8) in let p = gen_random_prime_unsafe size in let q = gen_random_prime_unsafe size in (Z.(p * q), {p; q}) let gen_locked_value_unsafe rsa_public = Z.erem (gen_random_z_unsafe (size_modulus / 8)) rsa_public let encrypt_unsafe symmetric_key plaintext = let nonce = Data_encoding.Binary.of_bytes_exn Crypto_box.nonce_encoding (gen_random_bytes_unsafe Crypto_box.nonce_size) in { nonce; payload = Crypto_box.Secretbox.secretbox symmetric_key plaintext nonce; } let chest_sampler ~rng_state ~plaintext_size ~time = Random.set_state rng_state ; let plaintext = gen_random_bytes_unsafe plaintext_size in let rsa_public, rsa_secret = gen_rsa_keys_unsafe () in let locked_value = gen_locked_value_unsafe rsa_public in let unlocked_value, proof = unlock_and_prove_with_secret rsa_secret ~time locked_value in let sym_key = unlocked_value_to_symmetric_key unlocked_value in let ciphertext = encrypt_unsafe sym_key plaintext in ({locked_value; rsa_public; ciphertext}, {unlocked_value; proof})
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>