package octez-libs
A package that contains multiple base libraries used by the Octez suite
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/octez-libs.crypto/timelock.ml.html
Source file timelock.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
(*****************************************************************************) (* *) (* Open Source License *) (* Copyright (c) 2023 Nomadic Labs, <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) (* -------- Helpers I/O functions -------- *) let blake : ?key:string -> string -> bytes = fun ?key s -> let key = Option.map Bytes.of_string key in let module Blake2b = Hacl_star.Hacl.Blake2b_32 in Blake2b.hash ?key (Bytes.of_string s) 32 let ( / ) r n = r ^ "/" ^ n let read_enc filepath filename enc = let inc = open_in (filepath / filename) in let file_size = In_channel.length inc |> Int64.to_int in let data = Stdlib.really_input_string inc file_size in close_in inc ; match Data_encoding.Json.from_string data with | Ok json -> Data_encoding.Json.destruct enc json | Error _ -> raise (Invalid_argument "Could not read file") let write_enc filepath filename enc data = let outc = open_out (filepath / filename) in Printf.fprintf outc "%s" Data_encoding.Json.(construct enc data |> to_string) ; close_out outc (* Timelock encryption scheme *) type symmetric_key = Crypto_box.Secretbox.key type ciphertext = {nonce : Crypto_box.nonce; payload : bytes} let ciphertext_encoding = let open Data_encoding in def "timelock.ciphertext" @@ conv_with_guard (fun ciphertext -> (ciphertext.nonce, ciphertext.payload)) (fun (nonce, payload) -> if Bytes.length payload <= Crypto_box.tag_length then Error "The ciphertext has a negative size" else Ok {nonce; payload}) (obj2 (req "timelock.nonce" Crypto_box.nonce_encoding) (req "timelock.payload" bytes)) let encrypt symmetric_key plaintext = let nonce = Crypto_box.random_nonce () in { nonce; payload = Crypto_box.Secretbox.secretbox symmetric_key plaintext nonce; } let decrypt symmetric_key ciphertext = Crypto_box.Secretbox.secretbox_open symmetric_key ciphertext.payload ciphertext.nonce (* -------- Timelock types, conversion functions and encodings -------- *) (* default RSA rsa2048: the 2048 bit RSA rsa2048 challenge c.f. https://en.wikipedia.org/wiki/RSA_numbers#RSA-2048 *) let rsa2048 = Z.of_string "25195908475657893494027183240048398571429282126204032027777137836043662020707595556264018525880784406918290641249515082189298559149176184502808489120072844992687392807287776735971418347270261896375014971824691165077613379859095700097330459748808428401797429100642458691817195118746121515172654632282216869987549182422433637259085141865462043576798423387184774447920739934236584823824281198163815010674810451660377306056201619676256133844143603833904414952634432190114657544454178424020924616515723350778707749817125772467962926386356373289912154831438167899885040445364023527381951378636564391212010397122822120720357" (* RSA2048 RSA modulus size. *) let size_rsa2048 = 2048 (* Timelock challenge, also called "locked" value *) type locked_value = Z.t let to_locked_value_opt x = let y = Z.of_string x in if y >= rsa2048 then None else Some y let to_locked_value_unsafe = Z.of_string (* Timelock opening, also called "unlocked" value. *) type unlocked_value = Z.t (* VDF proof (Wesolowski https://eprint.iacr.org/2018/623.pdf) *) type vdf_proof = Z.t (* Timelock tuple: challenge, opening and VDF proof *) type vdf_tuple = { locked_value : locked_value; unlocked_value : unlocked_value; vdf_proof : vdf_proof; } let vdf_tuple_encoding = let open Data_encoding in def "timelock.vdf_tuple" @@ conv_with_guard (fun vdf_tuple -> (vdf_tuple.locked_value, vdf_tuple.unlocked_value, vdf_tuple.vdf_proof)) (fun (locked_value, unlocked_value, vdf_proof) -> if Z.Compare.(locked_value < Z.zero || locked_value >= rsa2048) then Error "locked_value is not in the rsa group" else if Z.Compare.(locked_value <= Z.one) then Error "invalid value for locked_value" else if Z.Compare.(unlocked_value < Z.zero || unlocked_value >= rsa2048) then Error "unlocked_value is not in the rsa group" else if Z.Compare.(vdf_proof < Z.zero || vdf_proof >= rsa2048) then Error "VDF proof is not in the rsa group" else Ok {locked_value; unlocked_value; vdf_proof}) (obj3 (req "locked_value" n) (req "unlocked_value" n) (req "vdf_proof" n)) (* Timelock proof: - a VDF tuple, and a random coin - a scalar, either the random coin for the precomputer or 1 *) type timelock_proof = {vdf_tuple : vdf_tuple; nonce : Z.t} let proof_encoding = let open Data_encoding in def "timelock.proof" @@ conv_with_guard (fun proof -> (proof.vdf_tuple, proof.nonce)) (fun (t, nonce) -> if Z.Compare.(t.locked_value < Z.zero || t.locked_value >= rsa2048) then Error "locked_value is not in the rsa group" else if Z.Compare.(t.locked_value <= Z.one) then Error "invalid value for locked_value" else if Z.Compare.(t.unlocked_value < Z.zero || t.unlocked_value >= rsa2048) then Error "unlocked_value is not in the rsa group" else if Z.Compare.(t.vdf_proof < Z.zero || t.vdf_proof >= rsa2048) then Error "VDF proof is not in the rsa group" else if Z.Compare.(nonce < Z.one) then Error "nonce is null or negative" else Ok {vdf_tuple = t; nonce}) (obj2 (req "vdf_tuple" vdf_tuple_encoding) (req "nonce" n)) (* -------- Timelock low level functions -------- *) (* Generates almost uniformly a Zarith element between 0 and [public key]. Intended for generating the timelock *) let gen_locked_value_unsafe () = (* We divide by 8 to convert to bytes *) let random_z size = Hacl.Rand.gen size |> Bytes.to_string |> Z.of_bits in Z.erem (random_z (Int.div size_rsa2048 8 + 16)) rsa2048 let gen_locked_value_opt () = try Some (gen_locked_value_unsafe ()) with _ -> None (* Generates almost uniformly a Zarith element between 2 and [public key]. Optional argument [rand] allows to use an unsafe function to generate randomness for benching. *) let generate_z ?(rand = Hacl.Rand.gen) () = (* A random Z arith element of size [size] bytes *) let random_z size = rand size |> Bytes.to_string |> Z.of_bits in Z.erem (random_z (size_rsa2048 + 16)) rsa2048 (* The resulting prime has size 256 bits or slightly more. *) let hash_to_prime ~time value key = let personalization = "\032" in let to_hash = String.concat "\xff\x00\xff\x00\xff\x00\xff\x00" (Int.to_string time :: List.map Z.to_bits [rsa2048; value; key]) in let hash_result = blake ~key:personalization to_hash in (* Beware, the function nextprime gives a biased distribution, using it here is fine as the input is already uniformly distributed *) Z.(nextprime (of_bits (Bytes.to_string hash_result))) (* Proof generation optimisation taken from page 3 of the following paper: https://crypto.stanford.edu/~dabo/pubs/papers/VDFsurvey.pdf page 3 where g is the time-locked value. *) let prove_wesolowski ~time locked_value unlocked_value = let l = hash_to_prime ~time locked_value unlocked_value in let pi, r = Z.(ref one, ref one) in for _ = 1 to time do let two_r = Z.(!r lsl 1) in (* r <- 2*r mod l *) (r := Z.(two_r mod l)) ; let pi_sqr = Z.(!pi * !pi mod rsa2048) in (* pi <- pi^2 * locked_value^b where b = floor(2*r/l) in [0,1] *) pi := if two_r >= l then Z.(pi_sqr * locked_value) else pi_sqr done ; Z.(!pi mod rsa2048) let prove ~time locked_value unlocked_value = let vdf_proof = prove_wesolowski ~time locked_value unlocked_value in let vdf_tuple = {locked_value; unlocked_value; vdf_proof} in {vdf_tuple; nonce = Z.one} let verify_wesolowski ~time vdf_tuple = let l = hash_to_prime ~time vdf_tuple.locked_value vdf_tuple.unlocked_value in let r = Z.(powm (of_int 2) (Z.of_int time) l) in vdf_tuple.unlocked_value = Z.( powm vdf_tuple.vdf_proof l rsa2048 * powm vdf_tuple.locked_value r rsa2048 mod rsa2048) let verify ~time locked_value proof = (* Verify link between precomputed tuple, challenge and evaluation *) let randomized_challenge = Z.powm proof.vdf_tuple.locked_value proof.nonce rsa2048 in let b_exp = Z.(equal randomized_challenge locked_value) in (* Verify Wesolowski proof *) let b_weso = verify_wesolowski ~time proof.vdf_tuple in (* Return *) b_exp && b_weso let rec unlock_timelock ~time locked_value = if time = 0 then locked_value else if locked_value = Z.zero then Z.zero else if locked_value = Z.one then Z.one else unlock_timelock ~time:Int.(pred time) Z.(locked_value * locked_value mod rsa2048) (* Gives the value that was timelocked from the timelock, the public modulus and the time. Works in linear time in [time] *) let unlock_and_prove ~time locked_value = let unlocked_value = unlock_timelock ~time locked_value in prove ~time locked_value unlocked_value let precompute_timelock ?(locked_value = None) ?(precompute_path = None) ~time () = let locked_value = match locked_value with | None -> generate_z () | Some c -> let c_mod = Z.(c mod rsa2048) in assert (Z.compare c_mod Z.one = 1) ; c_mod in let compute_tuple () = let unlocked_value = unlock_timelock ~time locked_value in (prove ~time locked_value unlocked_value).vdf_tuple in match precompute_path with | None -> compute_tuple () | Some filepath -> let brsa = Z.to_bits rsa2048 in let file_prefix = blake brsa |> Hex.of_bytes |> Hex.show in let filename = file_prefix ^ "_" ^ string_of_int time ^ ".json" in let file_exists = Sys.file_exists (filepath / filename) in if file_exists then read_enc filepath filename vdf_tuple_encoding else let precomputed = compute_tuple () in write_enc filepath filename vdf_tuple_encoding precomputed ; precomputed (* Optional argument [rand] allows to use an unsafe function to generate randomness for benching. *) let proof_of_vdf_tuple_aux ?rand ~time vdf_tuple = if Z.compare vdf_tuple.locked_value Z.one < 1 then raise (Invalid_argument "Timelock puzzle is smaller than 1.") ; if Z.compare vdf_tuple.unlocked_value Z.zero < 1 then raise (Invalid_argument "Timelock solution is smaller than 0.") ; if Z.compare vdf_tuple.vdf_proof Z.zero < 1 then raise (Invalid_argument "Timelock proof is smaller than 0.") ; if Z.compare vdf_tuple.locked_value rsa2048 > 0 || Z.compare vdf_tuple.unlocked_value rsa2048 > 0 || Z.compare vdf_tuple.vdf_proof rsa2048 > -1 then raise (Invalid_argument "Invalid timelock tuple, its elements are not in the RSA group.") ; if verify_wesolowski ~time vdf_tuple then let nonce = (Option.value rand ~default:Hacl.Rand.gen) 16 |> Bytes.to_string |> Z.of_bits in let randomized_locked_value = Z.powm vdf_tuple.locked_value nonce rsa2048 in let proof = {vdf_tuple; nonce} in (randomized_locked_value, proof) else raise (Invalid_argument "Timelock tuple verification failed.") let proof_of_vdf_tuple ~time vdf_tuple = proof_of_vdf_tuple_aux ~time vdf_tuple (* Creates a symmetric key using hash based key derivation from the time locked value*) let timelock_proof_to_symmetric_key proof = let updated = Z.powm proof.vdf_tuple.unlocked_value proof.nonce rsa2048 in let kdf_key = "Tezoskdftimelockv1" in let hash = blake ~key:kdf_key (Z.to_string updated) in Crypto_box.Secretbox.unsafe_of_bytes hash (* -------- Timelock high level functions (used in Tezos) -------- *) type chest = {locked_value : locked_value; ciphertext : ciphertext} let chest_encoding = let open Data_encoding in def "timelock.chest" @@ conv_with_guard (fun chest -> (chest.locked_value, chest.ciphertext)) (fun (locked_value, ciphertext) -> if Z.Compare.(locked_value < Z.zero) then Error "locked value is not in the rsa group" else if Z.Compare.(locked_value <= Z.one) then Error "invalid locked_value" else if not @@ (Bytes.length ciphertext.payload > Crypto_box.tag_length) then Error "unexpected payload (smaller than expected tag length)" else Ok {locked_value; ciphertext}) (obj2 (req "locked_value" n) (req "ciphertext" ciphertext_encoding)) type chest_key = timelock_proof let chest_key_encoding = proof_encoding type opening_result = Correct of Bytes.t | Bogus_opening let create_chest_and_chest_key ?(precompute_path = None) ~payload ~time () = let locked_value, proof = if time <= 0 then raise (Invalid_argument "Timelock.create_chest_and_chest_key: the time bound must be \ positive") ; let vdf_tuple = precompute_timelock ~time ~precompute_path () in proof_of_vdf_tuple ~time vdf_tuple in let sym_key = timelock_proof_to_symmetric_key proof in let ciphertext = encrypt sym_key payload in ({locked_value; ciphertext}, proof) let create_chest_key chest ~time = if time <= 0 then raise (Invalid_argument "Timelock.create_chest_key: the time bound must be positive") ; unlock_and_prove ~time chest.locked_value let get_plaintext_size chest = assert (Bytes.length chest.ciphertext.payload > Crypto_box.tag_length) ; Bytes.length chest.ciphertext.payload - Crypto_box.tag_length let open_chest chest chest_key ~time = if time <= 0 then raise (Invalid_argument "Timelock.open_chest: the time bound must be positive") else if not @@ verify ~time chest.locked_value chest_key then Bogus_opening else let sym_key = timelock_proof_to_symmetric_key chest_key in match decrypt sym_key chest.ciphertext with | None -> Correct Bytes.empty | Some plaintext -> Correct plaintext module Internal_for_tests = struct let rsa2048 = rsa2048 let locked_value_to_z x = x let unlocked_value_to_z x = x let vdf_proof_to_z x = x let to_vdf_tuple_unsafe locked_value unlocked_value vdf_proof = {locked_value; unlocked_value; vdf_proof} let hash_to_prime = hash_to_prime let prove_wesolowski = prove_wesolowski let verify_wesolowski = verify_wesolowski end (* -------- Sampling functions for gas benchmarks -------- *) (* Those function are unsafe for wallet usage as they use the OCaml random generator. This is used to easily reproduce benchmarks. *) let gen_random_bytes_bench_unsafe ~rng_state size = Bytes.init size (fun _ -> Char.chr (Random.State.int rng_state 256)) let chest_sampler ~rng_state ~plaintext_size ~time = if time <= 0 then raise (Invalid_argument "Timelock.open_chest: the time bound must be positive") ; let plaintext = gen_random_bytes_bench_unsafe ~rng_state plaintext_size in (* [create_chest_and_chest_key] uses random not based on [rng_state] *) create_chest_and_chest_key ~payload:plaintext ~time ()
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>