package octez-libs
A package that contains multiple base libraries used by the Octez suite
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/octez-libs.bls12-381-signature/bls12_381_signature.ml.html
Source file bls12_381_signature.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
module CommonStubs = struct type ctxt type scalar external allocate_g1_affine : unit -> Bls12_381.G1.affine = "allocate_p1_affine_stubs" external allocate_g2_affine : unit -> Bls12_381.G2.affine = "allocate_p2_affine_stubs" external uncompress_g1 : Bls12_381.G1.affine -> Bytes.t -> int = "caml_blst_p1_uncompress_stubs" external uncompress_g2 : Bls12_381.G2.affine -> Bytes.t -> int = "caml_blst_p2_uncompress_stubs" external allocate_scalar : unit -> scalar = "allocate_scalar_stubs" external scalar_of_fr : scalar -> Bls12_381.Fr.t -> int = "caml_blst_scalar_from_fr_stubs" external scalar_to_bytes_le : Bytes.t -> scalar -> int = "caml_blst_scalar_to_bytes_stubs" external keygen : scalar -> Bytes.t -> Unsigned.Size_t.t -> Bytes.t -> Unsigned.Size_t.t -> unit = "caml_bls12_381_signature_blst_signature_keygen_stubs" external pairing_init : bool -> Bytes.t -> Unsigned.Size_t.t -> ctxt = "caml_bls12_381_signature_blst_pairing_init_stubs" external pairing_commit : ctxt -> int = "caml_bls12_381_signature_blst_pairing_commit_stubs" external pairing_finalverify : ctxt -> bool = "caml_bls12_381_signature_blst_pairing_finalverify_stubs" end let check_unicity_lst list = let hashtbl = Hashtbl.create (List.length list) in List.for_all (fun x -> let res = not (Hashtbl.mem hashtbl x) in Hashtbl.add hashtbl x 0 ; res) list let with_aggregation_ctxt ciphersuite f = let ciphersuite_length = Bytes.length ciphersuite in let ctxt = CommonStubs.pairing_init true ciphersuite (Unsigned.Size_t.of_int ciphersuite_length) in f ctxt type sk = CommonStubs.scalar let sk_size_in_bytes = Bls12_381.Fr.size_in_bytes let sk_of_bytes_exn bytes = let buffer = CommonStubs.allocate_scalar () in let exn = Invalid_argument "Input should be maximum 32 bytes, encoded the secret key in little \ endian and must be smaller than the order of Bls12_381.Fr" in if Bytes.length bytes > 32 then raise exn else try let sk = Bls12_381.Fr.of_bytes_exn bytes in ignore @@ CommonStubs.scalar_of_fr buffer sk ; buffer with Bls12_381.Fr.Not_in_field _ -> raise exn let sk_of_bytes_opt bytes = try Some (sk_of_bytes_exn bytes) with Invalid_argument _ -> None let sk_to_bytes sk = let bytes = Bytes.make 32 '\000' in ignore @@ CommonStubs.scalar_to_bytes_le bytes sk ; bytes let generate_sk ?(key_info = Bytes.empty) ikm = let buffer_scalar = CommonStubs.allocate_scalar () in let key_info_length = Bytes.length key_info in let ikm_length = Bytes.length ikm in (* https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-bls-signature-04 Section 2.3 - KeyGen For security, IKM MUST be infeasible to guess, e.g., generated by a trusted source of randomness. IKM MUST be at least 32 bytes long, but it MAY be longer. Also, blst_keygen returns a vector of zero (commit 095a8c53787d6c91b725152ebfbbf33acf05a931) if ikm is less than 32 bytes *) if ikm_length < 32 then raise (Invalid_argument "generate_sk: ikm argument must be at least 32 bytes long") else CommonStubs.keygen buffer_scalar ikm (Unsigned.Size_t.of_int ikm_length) key_info (Unsigned.Size_t.of_int key_info_length) ; buffer_scalar module MinPk = struct module Stubs = struct external sk_to_pk : Bls12_381.G1.t -> CommonStubs.scalar -> int = "caml_bls12_381_signature_blst_sk_to_pk_in_g1_stubs" external sign : Bls12_381.G2.t -> Bls12_381.G2.t -> CommonStubs.scalar -> int = "caml_bls12_381_signature_blst_sign_pk_in_g1_stubs" external pairing_chk_n_mul_n_aggr_pk_in_g1 : CommonStubs.ctxt -> Bls12_381.G1.affine -> bool -> Bls12_381.G2.affine option -> bool -> Bytes.t -> Unsigned.Size_t.t -> Bytes.t -> Unsigned.Size_t.t -> Bytes.t -> Unsigned.Size_t.t -> int = "caml_bls12_381_signature_blst_pairing_chk_n_mul_n_aggr_pk_in_g1_stubs_bytecode" "caml_bls12_381_signature_blst_pairing_chk_n_mul_n_aggr_pk_in_g1_stubs" end type pk = Bytes.t let pk_size_in_bytes = Bls12_381.G1.size_in_bytes / 2 let unsafe_pk_of_bytes pk_bytes = Bytes.copy pk_bytes let pk_of_bytes_exn pk_bytes = let pk_opt = Bls12_381.G1.of_compressed_bytes_opt pk_bytes in match pk_opt with | None -> raise (Invalid_argument (Printf.sprintf "%s is not a valid public key" Hex.(show (`Hex (Bytes.to_string pk_bytes))))) | Some _ -> Bytes.copy pk_bytes let pk_of_bytes_opt pk_bytes = let pk_opt = Bls12_381.G1.of_compressed_bytes_opt pk_bytes in match pk_opt with None -> None | Some _ -> Some (Bytes.copy pk_bytes) let pk_to_bytes pk_bytes = Bytes.copy pk_bytes let derive_pk sk = let buffer_g1 = Bls12_381.G1.(copy zero) in ignore @@ Stubs.sk_to_pk buffer_g1 sk ; Bls12_381.G1.to_compressed_bytes buffer_g1 type signature = Bytes.t let signature_size_in_bytes = Bls12_381.G2.size_in_bytes / 2 let unsafe_signature_of_bytes bytes = Bytes.copy bytes let signature_of_bytes_exn bytes = let opt = Bls12_381.G2.of_compressed_bytes_opt bytes in match opt with | None -> raise (Invalid_argument (Printf.sprintf "%s is not a valid signature" Hex.(show (`Hex (Bytes.to_string bytes))))) | Some _ -> Bytes.copy bytes let signature_of_bytes_opt bytes = let opt = Bls12_381.G2.of_compressed_bytes_opt bytes in match opt with None -> None | Some _ -> Some (Bytes.copy bytes) let signature_to_bytes bytes = Bytes.copy bytes let core_sign sk message ciphersuite = let hash = Bls12_381.G2.hash_to_curve message ciphersuite in let buffer = Bls12_381.G2.(copy zero) in ignore @@ Stubs.sign buffer hash sk ; Bls12_381.G2.to_compressed_bytes buffer let core_verify pk msg signature_bytes ciphersuite = with_aggregation_ctxt ciphersuite (fun ctxt -> let msg_length = Bytes.length msg in let unsafe_signature_affine = CommonStubs.allocate_g2_affine () in let res_signature = CommonStubs.uncompress_g2 unsafe_signature_affine signature_bytes in let unsafe_pk_affine = CommonStubs.allocate_g1_affine () in let res_pk = CommonStubs.uncompress_g1 unsafe_pk_affine pk in if res_signature = 0 && res_pk = 0 then let res = Stubs.pairing_chk_n_mul_n_aggr_pk_in_g1 ctxt unsafe_pk_affine (* the pk argument might not be in the subgroup even if the decompression went successfull. `true` means the function must verify the point is in the prime subgroup. IMPORTANT: a test called test_sign_and_verify_with_a_pk_not_in_the_subgroup does exist. We can check the verification is performed correctly because this call returns 3, neaning the point is not in the subgroup. However, even when not verifying the point is in the subgroup, the verification will fail. *) true (Some unsafe_signature_affine) (* the signature argument might not be in the subgroup even if the decompression went successfull. `true` means the function must verify the point is in the prime subgroup. *) true (* scalar *) Bytes.empty Unsigned.Size_t.zero (* msg *) msg (Unsigned.Size_t.of_int msg_length) (* aug *) Bytes.empty Unsigned.Size_t.zero in if res = 0 then ( ignore @@ CommonStubs.pairing_commit ctxt ; CommonStubs.pairing_finalverify ctxt) else false else false) let aggregate_signature_opt signatures = let rec aux signatures acc = match signatures with | [] -> Some acc | signature :: signatures -> ( let signature = Bls12_381.G2.of_compressed_bytes_opt signature in match signature with | None -> None | Some signature -> let acc = Bls12_381.G2.(add signature acc) in aux signatures acc) in let res = aux signatures Bls12_381.G2.zero in Option.map Bls12_381.G2.to_compressed_bytes res let core_aggregate_verify pks_with_msgs aggregated_signature ciphersuite = let rec aux aggregated_signature pks_with_msgs ctxt = match pks_with_msgs with | (unsafe_pk_affine, msg) :: rest -> let msg_length = Bytes.length msg in (* sign the message *) let res = Stubs.pairing_chk_n_mul_n_aggr_pk_in_g1 ctxt unsafe_pk_affine (* the signature argument might not be in the subgroup even if the decompression went successfull. `true` means the function must verify the point is in the prime subgroup. *) true aggregated_signature (* IMPORTANT: does not check signature is a point on the curve and in the subgroup, it is verified by of_compressed_bytes_opt below. *) false (* scalar *) Bytes.empty Unsigned.Size_t.zero (* msg *) msg (Unsigned.Size_t.of_int msg_length) (* aug *) Bytes.empty Unsigned.Size_t.zero in if res = 0 then (* signature: must be null except the first one *) aux None rest ctxt else false | [] -> true in (* IMPORTANT: the verification the aggregated signature is in the subgroup is performed here. *) let aggregated_signature_opt = Bls12_381.G2.of_compressed_bytes_opt aggregated_signature in (* Converts the pk received as bytes in points on the curve. There are no checks about points belonging to the subgroup. It is verified when calling the auxiliary function. *) let pks = List.map fst pks_with_msgs in let are_pks_on_curve = ref true in let unsafe_pks_affine = List.map (fun pk_bytes -> let pk_affine = CommonStubs.allocate_g1_affine () in let res = CommonStubs.uncompress_g1 pk_affine pk_bytes in are_pks_on_curve := res = 0 && !are_pks_on_curve ; pk_affine) pks in let pks_with_msgs = List.map2 (fun pk_affine (_, msg) -> (pk_affine, msg)) unsafe_pks_affine pks_with_msgs in if !are_pks_on_curve then match aggregated_signature_opt with | None -> false | Some aggregated_signature -> with_aggregation_ctxt ciphersuite (fun ctxt -> let signature_affine = Bls12_381.G2.affine_of_jacobian aggregated_signature in let res = aux (Some signature_affine) pks_with_msgs ctxt in if res then ( ignore @@ CommonStubs.pairing_commit ctxt ; CommonStubs.pairing_finalverify ctxt) else false) else false module Basic = struct let ciphersuite = Bytes.of_string "BLS_SIG_BLS12381G2_XMD:SHA-256_SSWU_RO_NUL_" let sign sk message = core_sign sk message ciphersuite let verify pk msg signature = core_verify pk msg signature ciphersuite let aggregate_verify pks_with_msgs aggregated_signature = let msgs = List.map snd pks_with_msgs in if check_unicity_lst msgs then core_aggregate_verify pks_with_msgs aggregated_signature ciphersuite else raise (Invalid_argument "Messages must be distinct") end module Aug = struct let ciphersuite = Bytes.of_string "BLS_SIG_BLS12381G2_XMD:SHA-256_SSWU_RO_AUG_" let sign sk msg = let pk = derive_pk sk in (* Important note: we concatenate with the compressed representation of the point! *) let msg = Bytes.concat Bytes.empty [pk; msg] in core_sign sk msg ciphersuite let verify pk msg signature = (* Important note: we concatenate with the compressed representation of the point! *) let msg = Bytes.concat Bytes.empty [pk; msg] in core_verify pk msg signature ciphersuite let aggregate_verify pks_with_msgs aggregated_signature = let pks_with_msgs = List.map (fun (pk, msg) -> (pk, Bytes.concat Bytes.empty [pk; msg])) pks_with_msgs in core_aggregate_verify pks_with_msgs aggregated_signature ciphersuite end module Pop = struct type proof = Bytes.t let sign sk message = let ciphersuite = Bytes.of_string "BLS_SIG_BLS12381G2_XMD:SHA-256_SSWU_RO_POP_" in core_sign sk message ciphersuite let verify pk msg signature = let ciphersuite = Bytes.of_string "BLS_SIG_BLS12381G2_XMD:SHA-256_SSWU_RO_POP_" in core_verify pk msg signature ciphersuite let pop_prove sk = let ciphersuite = Bytes.of_string "BLS_POP_BLS12381G2_XMD:SHA-256_SSWU_RO_POP_" in let pk = derive_pk sk in core_sign sk pk ciphersuite let pop_verify pk signature = let ciphersuite = Bytes.of_string "BLS_POP_BLS12381G2_XMD:SHA-256_SSWU_RO_POP_" in core_verify pk pk signature ciphersuite let aggregate_verify pks_with_pops msg aggregated_signature = let pks_bytes = List.map fst pks_with_pops in let pks_opts = List.map Bls12_381.G1.of_compressed_bytes_opt pks_bytes in let pks_are_ok = List.for_all Option.is_some pks_opts in if not pks_are_ok then false else let pks = List.map Option.get pks_opts in let aggregated_pk = List.fold_left Bls12_381.G1.add Bls12_381.G1.zero pks in let aggregated_pk = Bls12_381.G1.to_compressed_bytes aggregated_pk in let signature_check = verify aggregated_pk msg aggregated_signature in let pop_checks = List.for_all (fun (pk, signature) -> pop_verify pk signature) pks_with_pops in pop_checks && signature_check end end module MinSig = struct module Stubs = struct external sk_to_pk : Bls12_381.G2.t -> CommonStubs.scalar -> int = "caml_bls12_381_signature_blst_sk_to_pk_in_g2_stubs" external sign : Bls12_381.G1.t -> Bls12_381.G1.t -> CommonStubs.scalar -> int = "caml_bls12_381_signature_blst_sign_pk_in_g2_stubs" external pairing_chk_n_mul_n_aggr_pk_in_g2 : CommonStubs.ctxt -> Bls12_381.G2.affine -> bool -> Bls12_381.G1.affine option -> bool -> Bytes.t -> Unsigned.Size_t.t -> Bytes.t -> Unsigned.Size_t.t -> Bytes.t -> Unsigned.Size_t.t -> int = "caml_bls12_381_signature_blst_pairing_chk_n_mul_n_aggr_pk_in_g2_stubs_bytecode" "caml_bls12_381_signature_blst_pairing_chk_n_mul_n_aggr_pk_in_g2_stubs" end type pk = Bytes.t let pk_size_in_bytes = Bls12_381.G2.size_in_bytes / 2 let unsafe_pk_of_bytes pk_bytes = Bytes.copy pk_bytes let pk_of_bytes_exn pk_bytes = let pk_opt = Bls12_381.G2.of_compressed_bytes_opt pk_bytes in match pk_opt with | None -> raise (Invalid_argument (Printf.sprintf "%s is not a valid public key" Hex.(show (`Hex (Bytes.to_string pk_bytes))))) | Some _ -> Bytes.copy pk_bytes let pk_of_bytes_opt pk_bytes = let pk_opt = Bls12_381.G2.of_compressed_bytes_opt pk_bytes in match pk_opt with None -> None | Some _ -> Some (Bytes.copy pk_bytes) let pk_to_bytes pk_bytes = Bytes.copy pk_bytes let derive_pk sk = let buffer = Bls12_381.G2.(copy one) in ignore @@ Stubs.sk_to_pk buffer sk ; Bls12_381.G2.to_compressed_bytes buffer type signature = Bytes.t let signature_size_in_bytes = Bls12_381.G1.size_in_bytes / 2 let unsafe_signature_of_bytes bytes = Bytes.copy bytes let signature_of_bytes_exn bytes = let opt = Bls12_381.G1.of_compressed_bytes_opt bytes in match opt with | None -> raise (Invalid_argument (Printf.sprintf "%s is not a valid signature" Hex.(show (`Hex (Bytes.to_string bytes))))) | Some _ -> Bytes.copy bytes let signature_of_bytes_opt bytes = let opt = Bls12_381.G1.of_compressed_bytes_opt bytes in match opt with None -> None | Some _ -> Some (Bytes.copy bytes) let signature_to_bytes bytes = Bytes.copy bytes let core_sign sk message ciphersuite = let hash = Bls12_381.G1.hash_to_curve message ciphersuite in let buffer = Bls12_381.G1.(copy one) in ignore @@ Stubs.sign buffer hash sk ; Bls12_381.G1.to_compressed_bytes buffer let core_verify pk msg signature_bytes ciphersuite = with_aggregation_ctxt ciphersuite (fun ctxt -> let msg_length = Bytes.length msg in let unsafe_signature_affine = CommonStubs.allocate_g1_affine () in let res_signature = CommonStubs.uncompress_g1 unsafe_signature_affine signature_bytes in let unsafe_pk_affine = CommonStubs.allocate_g2_affine () in let res_pk = CommonStubs.uncompress_g2 unsafe_pk_affine pk in if res_signature = 0 && res_pk = 0 then let res = Stubs.pairing_chk_n_mul_n_aggr_pk_in_g2 ctxt unsafe_pk_affine (* the pk argument might not be in the subgroup even if the decompression went successfull. `true` means the function must verify the point is in the prime subgroup. IMPORTANT: a test called test_sign_and_verify_with_a_pk_not_in_the_subgroup does exist. We can check the verification is performed correctly because this call returns 3, neaning the point is not in the subgroup. However, even when not verifying the point is in the subgroup, the verification will fail. *) true (Some unsafe_signature_affine) (* the signature argument might not be in the subgroup even if the decompression went successfull. `true` means the function must verify the point is in the prime subgroup. *) true (* scalar *) Bytes.empty Unsigned.Size_t.zero (* msg *) msg (Unsigned.Size_t.of_int msg_length) (* aug *) Bytes.empty Unsigned.Size_t.zero in if res = 0 then ( ignore @@ CommonStubs.pairing_commit ctxt ; CommonStubs.pairing_finalverify ctxt) else false else false) let aggregate_signature_opt signatures = let rec aux signatures acc = match signatures with | [] -> Some acc | signature :: signatures -> ( let signature = Bls12_381.G1.of_compressed_bytes_opt signature in match signature with | None -> None | Some signature -> let acc = Bls12_381.G1.(add signature acc) in aux signatures acc) in let res = aux signatures Bls12_381.G1.zero in Option.map Bls12_381.G1.to_compressed_bytes res let core_aggregate_verify pks_with_msgs aggregated_signature ciphersuite = let rec aux aggregated_signature pks_with_msgs ctxt = match pks_with_msgs with | (unsafe_pk_affine, msg) :: rest -> let msg_length = Bytes.length msg in (* sign the message *) let res = Stubs.pairing_chk_n_mul_n_aggr_pk_in_g2 ctxt unsafe_pk_affine (* the signature argument might not be in the subgroup even if the decompression went successfull. `true` means the function must verify the point is in the prime subgroup. *) true aggregated_signature (* IMPORTANT: does not check signature is a point on the curve and in the subgroup, it is verified by of_compressed_bytes_opt below. *) false (* scalar *) Bytes.empty Unsigned.Size_t.zero (* msg *) msg (Unsigned.Size_t.of_int msg_length) (* aug *) Bytes.empty Unsigned.Size_t.zero in if res = 0 then (* signature: must be null except the first one *) aux None rest ctxt else false | [] -> true in (* IMPORTANT: the verification the aggregated signature is in the subgroup is performed here. *) let aggregated_signature_opt = Bls12_381.G1.of_compressed_bytes_opt aggregated_signature in (* Converts the pk received as bytes in points on the curve. There are no checks about points belonging to the subgroup. It is verified when calling the auxiliary function. *) let pks = List.map fst pks_with_msgs in let are_pks_on_curve = ref true in let unsafe_pks_affine = List.map (fun pk_bytes -> let pk_affine = CommonStubs.allocate_g2_affine () in let res = CommonStubs.uncompress_g2 pk_affine pk_bytes in are_pks_on_curve := res = 0 && !are_pks_on_curve ; pk_affine) pks in let pks_with_msgs = List.map2 (fun pk_affine (_, msg) -> (pk_affine, msg)) unsafe_pks_affine pks_with_msgs in if !are_pks_on_curve then match aggregated_signature_opt with | None -> false | Some aggregated_signature -> with_aggregation_ctxt ciphersuite (fun ctxt -> let signature_affine = Bls12_381.G1.affine_of_jacobian aggregated_signature in let res = aux (Some signature_affine) pks_with_msgs ctxt in if res then ( ignore @@ CommonStubs.pairing_commit ctxt ; CommonStubs.pairing_finalverify ctxt) else false) else false module Basic = struct let ciphersuite = Bytes.of_string "BLS_SIG_BLS12381G1_XMD:SHA-256_SSWU_RO_NUL_" let sign sk message = core_sign sk message ciphersuite let verify pk msg signature = core_verify pk msg signature ciphersuite let aggregate_verify pks_with_msgs aggregated_signature = let msgs = List.map snd pks_with_msgs in if check_unicity_lst msgs then core_aggregate_verify pks_with_msgs aggregated_signature ciphersuite else raise (Invalid_argument "Messages must be distinct") end module Aug = struct let ciphersuite = Bytes.of_string "BLS_SIG_BLS12381G1_XMD:SHA-256_SSWU_RO_AUG_" let sign sk msg = let pk = derive_pk sk in (* Important note: we concatenate with the compressed representation of the point! *) let msg = Bytes.concat Bytes.empty [pk; msg] in core_sign sk msg ciphersuite let verify pk msg signature = (* Important note: we concatenate with the compressed representation of the point! *) let msg = Bytes.concat Bytes.empty [pk; msg] in core_verify pk msg signature ciphersuite let aggregate_verify pks_with_msgs aggregated_signature = let pks_with_msgs = List.map (fun (pk, msg) -> (pk, Bytes.concat Bytes.empty [pk; msg])) pks_with_msgs in core_aggregate_verify pks_with_msgs aggregated_signature ciphersuite end module Pop = struct type proof = Bytes.t let sign sk message = let ciphersuite = Bytes.of_string "BLS_SIG_BLS12381G1_XMD:SHA-256_SSWU_RO_POP_" in core_sign sk message ciphersuite let verify pk msg signature = let ciphersuite = Bytes.of_string "BLS_SIG_BLS12381G1_XMD:SHA-256_SSWU_RO_POP_" in core_verify pk msg signature ciphersuite let pop_prove sk = let ciphersuite = Bytes.of_string "BLS_POP_BLS12381G1_XMD:SHA-256_SSWU_RO_POP_" in let pk = derive_pk sk in core_sign sk pk ciphersuite let pop_verify pk signature = let ciphersuite = Bytes.of_string "BLS_POP_BLS12381G1_XMD:SHA-256_SSWU_RO_POP_" in core_verify pk pk signature ciphersuite let aggregate_verify pks_with_pops msg aggregated_signature = let pks_bytes = List.map fst pks_with_pops in let pks_opts = List.map Bls12_381.G2.of_compressed_bytes_opt pks_bytes in let pks_are_ok = List.for_all Option.is_some pks_opts in if not pks_are_ok then false else let pks = List.map Option.get pks_opts in let aggregated_pk = List.fold_left Bls12_381.G2.add Bls12_381.G2.zero pks in let aggregated_pk = Bls12_381.G2.to_compressed_bytes aggregated_pk in let signature_check = verify aggregated_pk msg aggregated_signature in let pop_checks = List.for_all (fun (pk, signature) -> pop_verify pk signature) pks_with_pops in pop_checks && signature_check end end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>