package octez-libs
A package that contains multiple base libraries used by the Octez suite
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/octez-libs.base/skip_list.ml.html
Source file skip_list.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
(*****************************************************************************) (* *) (* Open Source License *) (* Copyright (c) 2022 Nomadic Labs <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) module type MONAD = sig type 'a t val bind : 'a t -> ('a -> 'b t) -> 'b t val return : 'a -> 'a t end module type S = sig type ('content, 'ptr) cell val pp : pp_ptr:(Format.formatter -> 'ptr -> unit) -> pp_content:(Format.formatter -> 'content -> unit) -> Format.formatter -> ('content, 'ptr) cell -> unit val equal : ('ptr -> 'ptr -> bool) -> ('content -> 'content -> bool) -> ('content, 'ptr) cell -> ('content, 'ptr) cell -> bool val encoding : 'ptr Data_encoding.t -> 'content Data_encoding.t -> ('content, 'ptr) cell Data_encoding.t val index : (_, _) cell -> Z.t val content : ('content, 'ptr) cell -> 'content val back_pointer : ('content, 'ptr) cell -> int -> 'ptr option val back_pointers : ('content, 'ptr) cell -> 'ptr list val genesis : 'content -> ('content, 'ptr) cell val next : prev_cell:('content, 'ptr) cell -> prev_cell_ptr:'ptr -> 'content -> ('content, 'ptr) cell type ('ptr, 'content) search_cell_result = | Found of ('ptr, 'content) cell | Nearest of { lower : ('ptr, 'content) cell; upper : ('ptr, 'content) cell option; } | No_exact_or_lower_ptr | Deref_returned_none type ('ptr, 'content) search_result = { rev_path : ('ptr, 'content) cell list; last_cell : ('ptr, 'content) search_cell_result; } val pp_search_result : pp_cell:(Format.formatter -> ('ptr, 'content) cell -> unit) -> Format.formatter -> ('ptr, 'content) search_result -> unit module type MONADIC = sig type 'a result val find : deref:('ptr -> ('content, 'ptr) cell option result) -> cell_ptr:'ptr -> target_index:Z.t -> ('content, 'ptr) cell option result val back_path : deref:('ptr -> ('content, 'ptr) cell option result) -> cell_ptr:'ptr -> target_index:Z.t -> 'ptr list option result val valid_back_path : equal_ptr:('ptr -> 'ptr -> bool) -> deref:('ptr -> ('content, 'ptr) cell option result) -> cell_ptr:'ptr -> target_ptr:'ptr -> 'ptr list -> bool result val search : deref:('ptr -> ('content, 'ptr) cell option result) -> compare:('content -> int) -> cell:('content, 'ptr) cell -> ('content, 'ptr) search_result result end include MONADIC with type 'a result := 'a module Lwt : MONADIC with type 'a result := 'a Lwt.t module Make_monadic (M : MONAD) : MONADIC with type 'a result := 'a M.t end module Make (Parameters : sig val basis : int end) : S = struct let () = assert (Compare.Int.(Parameters.basis >= 2)) open Parameters (* A cell of a skip list with some [`content] and back pointers of type [`ptr]. Invariants ---------- - back_pointers[i] = Some (pointer to (index - (index mod (basis ** i)) - 1)) (for all i < length back_pointers) - length back_pointers = log basis index Notes ----- - The [index] field is not strictly required but helps in making the data structure more robust. Indeed, otherwise, we should also ask the client to provide the index of the cell to be built, which can be error-prone. - The back pointers of a cell are chosen from the back pointers of its predecessor (except for the genesis cell) and a pointer to this predecessor. This locality makes the insertion of new cell very efficient in practice. *) type ('content, 'ptr) cell = { content : 'content; back_pointers : 'ptr option FallbackArray.t; index : Z.t; } let equal equal_ptr equal_content cell1 cell2 = let equal_back_pointers b1 b2 = let open FallbackArray in Compare.Int.(length b1 = length b2) && fst @@ fold (fun (equal, i) h1 -> (equal && Option.equal equal_ptr h1 (get b2 i), i + 1)) b1 (true, 0) in let {content; back_pointers; index} = cell1 in equal_content content cell2.content && Compare.Z.equal index cell2.index && equal_back_pointers back_pointers cell2.back_pointers let index cell = cell.index let back_pointers_to_list a = FallbackArray.fold (fun l -> function | Some ptr -> ptr :: l | None -> (* By [cell] invariants. *) assert false) a [] |> List.rev let pp ~pp_ptr ~pp_content fmt {content; back_pointers; index} = Format.fprintf fmt "content: %a@,index: %s@,@[<hv 2>back_pointers:@ %a@]" pp_content content (Z.to_string index) (Format.pp_print_list ~pp_sep:(fun fmt () -> Format.pp_print_string fmt "; ") pp_ptr) (back_pointers_to_list back_pointers) let encoding ptr_encoding content_encoding = let of_list = FallbackArray.of_list ~fallback:None ~proj:(fun c -> Some c) in let to_list = back_pointers_to_list in let open Data_encoding in conv (fun {index; content; back_pointers} -> (index, content, to_list back_pointers)) (fun (index, content, back_pointers) -> {index; content; back_pointers = of_list back_pointers}) (obj3 (req "index" n) (req "content" content_encoding) (req "back_pointers" (list ptr_encoding))) let content cell = cell.content let back_pointers cell = back_pointers_to_list cell.back_pointers let genesis content = {index = Z.zero; content; back_pointers = FallbackArray.make 0 None} let back_pointer cell i = FallbackArray.get cell.back_pointers i (* Precondition: i < length cell.back_pointers *) let back_pointer_unsafe cell i = match FallbackArray.get cell.back_pointers i with | Some ptr -> ptr | None -> (* By precondition and invariants of cells. *) assert false let next ~prev_cell ~prev_cell_ptr content = let index = Z.succ prev_cell.index in let back_pointers = let rec aux power accu i = if Compare.Z.(index < power) then List.rev accu else let back_pointer_i = if Compare.Z.(Z.rem index power = Z.zero) then prev_cell_ptr else (* The following call is valid because of - [i < List.length prev_cell.back_pointer] because [log_basis index = log_basis prev_cell.index] - the invariants of [prev_cell] *) back_pointer_unsafe prev_cell i in let accu = back_pointer_i :: accu in aux Z.(mul power (of_int basis)) accu (i + 1) in aux Z.one [] 0 in let back_pointers = FallbackArray.of_list ~fallback:None ~proj:Option.some back_pointers in {index; content; back_pointers} (* returns the array of [basis^i] forall [i < len (back_pointers cell)] *) let list_powers cell = let rec aux n prev p = if Compare.Int.(n <= 0) then List.rev p else aux (n - 1) (basis * prev) (prev :: p) in FallbackArray.of_list ~fallback:0 ~proj:(fun x -> x) (aux (FallbackArray.length cell.back_pointers) 1 []) (* [back_pointers] are sorted in decreasing order of their pointing cell index in the list. So we can do a [binary_search] to find the [cell] with the smallest index that is greater than [target] in the list. More formally, min({c : cell | c.index >= target.index}) where [c] is one of the pointed cells in the array of back pointers of the [cell] parameter. *) let best_skip cell target_index powers = let open FallbackArray in let pointed_cell_index i = Z.(pred @@ sub cell.index (rem cell.index (of_int (get powers i)))) in (* cell.index - (cell.index mod get powers i) - 1 in *) let rec binary_search start_idx end_idx = if Compare.Int.(start_idx >= end_idx) then Some start_idx else let mid_idx = start_idx + ((end_idx - start_idx) / 2) in let mid_cell_index = pointed_cell_index mid_idx in if Compare.Z.(mid_cell_index = target_index) then Some mid_idx else if Compare.Z.(mid_cell_index < target_index) then binary_search start_idx (mid_idx - 1) else let prev_mid_cell_index = pointed_cell_index (mid_idx + 1) in if Compare.Z.(prev_mid_cell_index = target_index) then Some (mid_idx + 1) else if Compare.Z.(prev_mid_cell_index < target_index) then (* If (mid_cell_index > target_index) && (prev_mid_cell_index < target_index) then we found the closest cell to the target, which is mid_cell, so we return its index [mid_idx] in the array of back_pointers. *) Some mid_idx else binary_search (mid_idx + 1) end_idx in binary_search 0 (length cell.back_pointers - 1) type ('ptr, 'content) search_cell_result = | Found of ('ptr, 'content) cell | Nearest of { lower : ('ptr, 'content) cell; upper : ('ptr, 'content) cell option; } | No_exact_or_lower_ptr | Deref_returned_none type ('ptr, 'content) search_result = { rev_path : ('ptr, 'content) cell list; last_cell : ('ptr, 'content) search_cell_result; } let pp_rev_path ~pp_cell = Format.pp_print_list ~pp_sep:Format.pp_print_space pp_cell let pp_search_cell_result ~pp_cell fmt = function | Found cell -> Format.fprintf fmt "Found(%a)" pp_cell cell | Nearest {lower; upper} -> Format.fprintf fmt "Nearest(lower=%a;upper=%a)" pp_cell lower (Format.pp_print_option pp_cell) upper | No_exact_or_lower_ptr -> Format.fprintf fmt "No_exact_or_lower_ptr" | Deref_returned_none -> Format.fprintf fmt "Deref_returned_none" let pp_search_result ~pp_cell fmt {rev_path; last_cell} = Format.fprintf fmt "{rev_path = %a; last_point = %a}" (pp_rev_path ~pp_cell) rev_path (pp_search_cell_result ~pp_cell) last_cell module type MONADIC = sig type 'a result val find : deref:('ptr -> ('content, 'ptr) cell option result) -> cell_ptr:'ptr -> target_index:Z.t -> ('content, 'ptr) cell option result val back_path : deref:('ptr -> ('content, 'ptr) cell option result) -> cell_ptr:'ptr -> target_index:Z.t -> 'ptr list option result val valid_back_path : equal_ptr:('ptr -> 'ptr -> bool) -> deref:('ptr -> ('content, 'ptr) cell option result) -> cell_ptr:'ptr -> target_ptr:'ptr -> 'ptr list -> bool result val search : deref:('ptr -> ('content, 'ptr) cell option result) -> compare:('content -> int) -> cell:('content, 'ptr) cell -> ('content, 'ptr) search_result result end module Make_monadic (M : MONAD) : MONADIC with type 'a result := 'a M.t = struct module Monad_syntax = struct include M let ( let* ) = bind module Option = struct let (return [@ocaml.inline "always"]) = fun x -> M.return (Some x) let ( let* ) lo f = M.bind lo (function None -> M.return None | Some x -> f x) let ( let*? ) o f = match o with Some x -> f x | None -> M.return None end end let rev_back_path ~deref ~cell_ptr ~target_index = let open Monad_syntax.Option in let* cell = deref cell_ptr in let powers = list_powers cell in let rec aux path ptr = let path = ptr :: path in let* cell = deref ptr in let index = cell.index in if Compare.Z.(target_index = index) then return path else if Compare.Z.(target_index > index) then M.return None else let*? best_idx = best_skip cell target_index powers in let*? ptr = back_pointer cell best_idx in aux path ptr in aux [] cell_ptr let find ~deref ~cell_ptr ~target_index = let open Monad_syntax.Option in let* rev_back_path = rev_back_path ~deref ~cell_ptr ~target_index in let*? cell_ptr = List.hd rev_back_path in deref cell_ptr let back_path ~deref ~cell_ptr ~target_index = let open Monad_syntax.Option in let* rev_back_path = rev_back_path ~deref ~cell_ptr ~target_index in return (List.rev rev_back_path) let mem equal x l = let open FallbackArray in let n = length l in let rec aux idx = if Compare.Int.(idx >= n) then false else match get l idx with | None -> aux (idx + 1) | Some y -> if equal x y then true else aux (idx + 1) in aux 0 let assume_some o f = let open Monad_syntax in let* o in match o with None -> return false | Some x -> f x let valid_back_path ~equal_ptr ~deref ~cell_ptr ~target_ptr path = let open Monad_syntax in assume_some (deref target_ptr) @@ fun target -> assume_some (deref cell_ptr) @@ fun cell -> let target_index = index target and cell_index = index cell and powers = list_powers cell in let rec valid_path index cell_ptr path = match (cell_ptr, path) with | final_cell, [] -> return (equal_ptr target_ptr final_cell && Compare.Z.(index = target_index)) | cell_ptr, cell_ptr' :: path -> assume_some (deref cell_ptr) @@ fun cell -> assume_some (deref cell_ptr') @@ fun cell' -> if mem equal_ptr cell_ptr' cell.back_pointers then assume_some (return @@ best_skip cell target_index powers) @@ fun best_idx -> assume_some (return @@ back_pointer cell best_idx) @@ fun best_ptr -> let minimal = equal_ptr best_ptr cell_ptr' in let index' = cell'.index in if minimal then valid_path index' cell_ptr' path else return false else return false in match path with | [] -> return false | first_cell_ptr :: path -> if equal_ptr first_cell_ptr cell_ptr then valid_path cell_index cell_ptr path else return false let search (type ptr) ~(deref : ptr -> ('content, ptr) cell option M.t) ~compare ~cell = let open Monad_syntax in let ( = ), ( < ), ( > ) = Compare.Int.(( = ), ( < ), ( > )) in (* Given a cell, to compute the minimal path, we need to find the good back-pointer. This is done linearly with respect to the number of back-pointers. This number of back-pointers is logarithmic with respect to the number of non-empty inboxes. The complexity is consequently in O(log_2^2(n)). Since in practice, [n < 2^32], we have at most [1000] calls. Besides, the recursive function is tail recursive. The linear search could be turned into a dichotomy search if necessary. But since this piece of code won't be used in a carbonated function, we prefer to keep a simple implementation for the moment. *) let rec aux rev_path cell last_candidate ix = (* Below, we call the [target] the cell for which [compare target = 0]. *) (* Invariant: - compare cell > target - ix >= 0 - if cell <> genesis => ix < List.length (back_pointers cell) - \exists path' rev_path = cell:path' - last_candidate = None <-> ix = 0 *) let back_pointers_length = FallbackArray.length cell.back_pointers in if back_pointers_length = 0 then (* [cell] is the genesis cell. *) return {rev_path; last_cell = No_exact_or_lower_ptr} else let candidate_ptr = match back_pointer cell ix with | None -> (* At this point we have [cell <> genesis]. Consequently, thanks to the invariant of this function, we have [ix < List.length (back_pointers cell)]. Consequently, the call to [back_pointer] cannot fail. *) assert false | Some candidate_ptr -> candidate_ptr in let* derefed = deref candidate_ptr in match derefed with | None -> ( (* It is important to assume that [deref] can fail while producing a minimal path. This is to ensure that when computing a path from cell [cell] to the target cell (assuming the target cell is part of the list), it is sufficient to know cells only from the target cell up to the initial one. To do so, we remember whether we have seen a candidate towards the target cell when [ix > 0]. If [deref] fails when [ix=0], it means we are unable to produce a path up to the target cell because some cell between the target cell up to the initial cell is unknown. If [deref] fails when [ix>0], then we already have computed a [last_candidate] cell on the path (for at index [ix-1]) which means this candidate is actually the best one. *) match last_candidate with | None -> (* ix = 0 *) (* If we cannot dereference a pointer, We stop the search and return the current path. *) return {rev_path; last_cell = Deref_returned_none} | Some next_cell -> let rev_path = next_cell :: rev_path in aux rev_path next_cell None 0) | Some next_cell -> ( let comparison = compare next_cell.content in if comparison = 0 then (* We have found the target.*) let rev_path = next_cell :: rev_path in return {rev_path; last_cell = Found next_cell} else if comparison > 0 then if ix < back_pointers_length - 1 then (* There might be a short path by dereferencing the next pointer. *) aux rev_path cell (Some next_cell) (ix + 1) else (* The last pointer is still above the target. We are on the good track, *) let rev_path = next_cell :: rev_path in aux rev_path next_cell None 0 else if ix = 0 then (* We found a cell lower than the target. *) (* The first back pointers gives a cell below the target *) let rev_path = next_cell :: rev_path in return { rev_path; last_cell = Nearest {lower = next_cell; upper = Some cell}; } else (* We found a cell lower than the target. *) (* The previous pointer was actually the good one. *) let good_candidate_ptr = match back_pointer cell (ix - 1) with | None -> assert false | Some candidate_ptr -> candidate_ptr in let* derefed = deref good_candidate_ptr in match derefed with | None -> (* We already dereferenced this pointer before. *) assert false | Some good_next_cell -> let rev_path = good_next_cell :: rev_path in aux rev_path good_next_cell None 0) in let comparison = compare cell.content in if Compare.Int.(comparison = 0) then (* Particular case where the target is the start cell. *) return {rev_path = [cell]; last_cell = Found cell} else if Compare.Int.(comparison < 0) then return {rev_path = [cell]; last_cell = Nearest {lower = cell; upper = None}} else aux [cell] cell None 0 end include Make_monadic (struct type 'a t = 'a let (bind [@ocaml.inline "always"]) = ( |> ) let[@ocaml.inline always] return x = x end) module Lwt = Make_monadic (Lwt) end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>