package octez-libs
A package that contains multiple base libraries used by the Octez suite
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/octez-libs.aplonk/circuit.ml.html
Source file circuit.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
(*****************************************************************************) (* *) (* MIT License *) (* Copyright (c) 2022 Nomadic Labs <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) (* This files contains all tools that can be used to create the verification circuit of aPlonK. *) module SMap = Kzg.SMap open Kzg.Bls let nb_wires = Plompiler.Csir.nb_wires_arch module V (Main : Aggregation.Main_protocol.S) = struct module Gates = Main.Gates module Perm = Main.Perm module RC = Main.RangeCheck module S = Plompiler.S open Plompiler.LibCircuit type scalar_input = scalar Input.input (* This type gathers all inputs of the verification circuit alpha, beta, gamma, delta, x, r are challenges generated from Fiat-Shamir ss_list are preprocessed permutation polynomials evaluations at x selectors are the list of the selectors evaluations at x with their names ids_batch is the batch (with alpha) of the evaluated identities at x wires_g is the lists of all wires evaluations at gx for each proof wires is the lists of all wires evaluations at x for each proof zg is the permutation polynomial evaluation at gx z is the permutation polynomial evaluation at x batch are the expected batched values with r of · ss_list selectors · ids_batch · wires_g · wires · zg_list · z_list outer_pi is the list of public inputs that are public to aPlonK’s verifier inner_pi is the list of hidden public inputs that are not known from aPlonK’s verifier rc_selectors are range checks dedicated selectors lnin1, pnin1, RC_ss1 & RC_ss2 z_rc is the list of Range checks’ Z proof polynomials evaluations for each proof z_rc_perm & z_rc_perm are Range checks’ permutation polynomial evaluation for X and gX. Note that the list must be at most of size 1 (1 permutation polynomial per circuit). We use lists here in order make handling in plompiler easier. *) type circuit_inputs = { switches : bool Input.input list; compressed_switches : scalar_input; alpha : scalar_input; beta : scalar_input; gamma : scalar_input; delta : scalar_input; x : scalar_input; r : scalar_input; ss_list : scalar_input list; selectors : (string * scalar_input) list; ids_batch : scalar_input; wires_g : scalar_input list list; wires : scalar_input list list; zg : scalar_input; z : scalar_input; batch : scalar_input list; inner_pi : scalar_input list list; outer_pi : scalar_input list; rc_selectors : scalar_input list; zg_rc_perm : scalar_input list; z_rc_perm : scalar_input list; } (* by default, there is one batch for the preprocessed polynomials, two for the permutation polynomials (also evaluated at gX), and one for the wires. *) let nb_batches_default = 4 (* The number of batches increases by one if there is a gX evaluation for wires (using RC protocol induces a gX evaluations for wires) *) let nb_batches circuit = let gates = Plonk.Circuit.get_selectors circuit |> List.map (fun g -> (g, ())) |> SMap.of_list in let nb_rc = SMap.cardinal circuit.range_checks in if Gates.exists_gx_composition ~gates || nb_rc <> 0 then nb_batches_default + 1 else nb_batches_default (* This inputs is given to the verification circuit when it’s created. The value of the dummy inputs is irrelevant, only their structures & sizes matter *) let dummy_input range_checks gates nb_batches nb_proofs nb_inner_pi nb_outer_pi = let nb_rc = SMap.cardinal range_checks in let switches = List.init nb_proofs (fun _ -> Input.bool true) in let dummy_input = Input.scalar S.one in let wires = (* wires also contain RC.Z polynomials when there are range-checks *) List.init nb_proofs (fun _ -> List.init (nb_wires + nb_rc) (fun _ -> dummy_input)) in let inner_pi = List.init nb_proofs (fun _ -> List.init nb_inner_pi (fun _ -> dummy_input)) in let outer_pi = List.init nb_outer_pi (fun _ -> dummy_input) in let selectors = List.map (fun q -> (q, dummy_input)) gates in let ss_list = List.init Plompiler.Csir.nb_wires_arch @@ Fun.const dummy_input in let batch = List.init nb_batches (fun _ -> dummy_input) in let wires_g = if nb_batches = nb_batches_default then [] else wires in let z_rc_perm, rc_selectors = if SMap.is_empty range_checks then ([], []) else ( List.init nb_rc (Fun.const dummy_input), List.init (4 * nb_rc) (Fun.const dummy_input) ) in { switches; compressed_switches = dummy_input; alpha = dummy_input; beta = dummy_input; gamma = dummy_input; delta = dummy_input; x = dummy_input; r = dummy_input; ss_list; selectors; ids_batch = dummy_input; wires_g; wires; zg = dummy_input; z = dummy_input; batch; inner_pi; outer_pi; rc_selectors; zg_rc_perm = z_rc_perm; z_rc_perm; } module Constraints = struct (* replace by [zero] all elements of the second list that correspond to false in the first one *) let switch_list = map2M (fun s l -> mapM (Num.mul s) l) (* Replace with zeros all the wires values when the correponding switch is false *) let switch switches ~wires ~wires_g ~inner_pi = let switches = List.map scalar_of_bool switches in let* wires = switch_list switches wires in let* wires_g = match wires_g with | [] -> ret [] | wires_g -> switch_list switches wires_g in let* inner_pi = switch_list switches inner_pi in ret (wires, wires_g, inner_pi) (* Because we can’t deal as we want with the monad in the output of Gates functions & for gates uniformity, Arith monomials are expected to be given as scalar repr t list t. *) let format_arith_cs : scalar repr list t -> scalar repr t = fun scalar_repr_list_t -> let* scalar_repr_list = scalar_repr_list_t in match scalar_repr_list with | [cs] -> ret cs | _ -> raise (Invalid_argument "Invalid format for Arith constraint.") (* For a selector name and value q, given the wires values wires & wires_g, returns the evaluation of arithmetic monomial associated with the selector. *) let cs_of_arith_sel name q wires wires_g = let wires = Array.of_list wires in let wires_g = Array.of_list wires_g in format_arith_cs (Gates.get_cs name ~q ~wires ~wires_g ()) (* For a selector name and value q, given the wires values wires & wires_g, returns the evaluation of identity given by the selector. *) let cs_of_custom_sel ?precomputed_advice name q wires wires_g = let wires = Array.of_list wires in let wires_g = Array.of_list wires_g in Gates.get_cs name ~q ~wires ~wires_g ?precomputed_advice () (* Circuit that computes x^n - 1 *) let compute_zs x n = with_label ~label:"zs" @@ let nb_bits = S.size_in_bytes in let* n_repr = Num.constant n in let* n_bytes = bits_of_scalar ~nb_bits n_repr in let* xn = Num.pow x (of_list n_bytes) in Num.add_constant S.(negate one) xn (* Circuit that computes L1(x) := (g / n) * (x^n - 1) / (x - g) *) let compute_l1 x xn_minus_one n generator = let* den = Num.add_constant S.(negate generator) x in Num.div ~den_coeff:(S.div_exn n generator) xn_minus_one den (* Circuit that computes (x₀ + αx₁ + α²x₂ + …) for list_circuit = [x₀, x₁, x₂, …] *) let sum_alpha_i list_circuit alpha = let list_circuit = List.rev list_circuit in match list_circuit with | [] -> Num.zero | init :: list_circuit -> foldM (fun acc circuit -> let* tmp = Num.mul acc alpha in Num.add tmp circuit) init list_circuit (* Circuit that computes (x₀ + αx₁ + α²x₂ + …) for list_circuit = [x₀, x₁, x₂, …] and ignores the coefficients when corresponding switch is false ; for instance, if switch₁ = 0 and all other switches are 1, it will compute (x₀ + αx₂ + α²x₃ + …) *) let sum_alpha_i_switched switches list_circuit alpha = let* zero = Num.zero in let* alpha_min_one = Num.add ~qc:S.(negate one) alpha zero in let nb_proofs = List.length switches in let list_circuit = List.rev list_circuit in let switches = List.rev switches in match list_circuit with | [] -> Num.zero | list_circuit -> let* res, _ = fold2M (fun (acc, i) coeff switch -> let switch = scalar_of_bool switch in let* coeff = Num.mul switch coeff in (* α = [switch × (α - 1)] + 1 *) let* alpha = Num.custom ~qm:S.one ~qc:S.one switch alpha_min_one in let* tmp = Num.add acc coeff in let* res = if i = nb_proofs then ret tmp else Num.mul tmp alpha in ret (res, i + 1)) (zero, 1) list_circuit switches in ret res (* Circuit that recomputes T polynomial from the t_list of its parts & x^n *) let compute_t xn t_list = sum_alpha_i t_list xn let add_circuits circuit_list = let* circuit_list = mapM Fun.id circuit_list in Num.add_list (to_list circuit_list) (* Checks that compressed_switches is the sum of all switches and that switches has the structure [1…10…0] *) let check_switches compressed_switches switches = let switches = List.map scalar_of_bool switches in let* sum = Num.add_list (to_list switches) in let switches_pairs, _ = List.fold_left (fun (pairs, s_prev) s -> ((s_prev, s) :: pairs, s)) ([], List.hd switches) (List.tl switches) in iterM (fun (s_prev, s) -> Num.assert_custom ~qm:S.one ~qr:S.(negate one) s_prev s s) switches_pairs >* equal compressed_switches sum (* Recomputes batches & compare them to claimed batches *) let check_batch r (g_list, wires, wiresg, z_list, zg_list) batch = let wires = List.flatten wires in let wiresg = List.flatten wiresg in let* batch_g = sum_alpha_i g_list r in let* batch_wires = sum_alpha_i wires r in let* batch_z = sum_alpha_i z_list r in let* batch_zg = sum_alpha_i zg_list r in let g_exp = List.nth batch 0 in let zg_exp = List.nth batch 1 in let z_exp = List.nth batch 2 in let* g = equal batch_g g_exp in let* zg = equal batch_zg zg_exp in let* z = equal batch_z z_exp in match wiresg with | [] -> let wires_exp = List.nth batch 3 in let* wires = equal batch_wires wires_exp in Bool.band_list [g; wires; zg; z] | wg -> let* batch_wires_g = sum_alpha_i wg r in let wiresg_exp = List.nth batch 3 in let wires_exp = List.nth batch 4 in let* wiresg = equal batch_wires_g wiresg_exp in let* wires = equal batch_wires wires_exp in Bool.band_list [g; wiresg; wires; zg; z] (* custom_ids is a nested list with 3 levels: - the outter one corresponds to different proofs - the middle level corresponds to different identities - the inner level corresponds to different equations of the same identity *) let format_custom_ids custom_ids = let suffix_ids l = List.map (fun (s, l) -> List.mapi (fun i x -> (s ^ "." ^ string_of_int i, x)) l) l |> List.flatten in let index_proofs l = let n = List.length l in List.mapi (fun i inner_l -> List.map (fun (s, x) -> (SMap.Aggregation.add_prefix ~n ~i "" s, x)) inner_l) l in index_proofs (List.map suffix_ids custom_ids) |> List.flatten let format_arith_ids arith_ids = let arith = Plonk.Custom_gates.arith_label in let n = List.length arith_ids in List.mapi (fun i x -> (SMap.Aggregation.add_prefix ~n ~i "" arith, x)) arith_ids (* This function separates the wires in two blocks, the first stands for the Z_RC & the seconds for the pure wire evaluations *) let split_rc_wires nb_rc wires = if nb_rc = 0 then ([], wires) else let rec aux acc_rc acc_w = function | [] -> List.(rev acc_rc, rev acc_w) | rc_w :: tl -> let rc, w = Plonk.List.split_n nb_rc rc_w in aux (rc :: acc_rc) (w :: acc_w) tl in aux [] [] wires (* Verifies that the linear combination of identities with alpha is equal to T×Zs The identities are computed from evaluations, with the functions cs of Custom_gates & Permutation_gate *) let check_identities ~switches (n, generator) x rc_wires ids_batch rc_selectors (q_names, selectors) (alpha, beta, gamma, delta) (wires_g, wires, zg, z, zg_rc_perm, z_rc_perm) ss_list pi_list_list = let nb_rc = List.length rc_wires in (* We don’t care about wires_g value if it’s empty so we just take wires *) let wires_g = match wires_g with [] -> wires | w -> w in let zg_rc, wires_g = split_rc_wires nb_rc wires_g in let z_rc, wires = split_rc_wires nb_rc wires in (* precompute some constant *) let* t = Bool.constant true in let* zs = compute_zs x n in let* l1 = compute_l1 x zs n generator in (* split the arith selectors & other selectors in two lists *) let is_advice_sel s = String.starts_with ~prefix:Gates.qadv_label s in let arith_selectors, custom_selectors = List.combine q_names selectors |> List.partition (fun (q_name, _) -> if is_advice_sel q_name then false else let id_name, nb_id = Gates.get_ids q_name in if id_name = Gates.arith_label then if nb_id <> 1 then failwith "partition_selector : invalid Arith identity." else true else false) in let advice_selectors, custom_selectors = List.partition (fun (s, _) -> is_advice_sel s) custom_selectors in let precomputed_advice = SMap.of_list advice_selectors in (* Custom identities are usually composed with several identities Custom_ids has format [[[q₁.ida₁ ; q₁.idb₁] ; [q₂.ida₁ ; q₂.idb₁]] ; [[q₁.ida₂ ; q₁.idb₂] ; [q₂.ida₂ ; q₂.idb₂]] ; [[q₁.ida₃ ; q₁.idb₃] ; [q₂.ida₃ ; q₂.idb₃]]] for 2 selectors q₁ & q₂ with 2 identities each (ida & idb) & 3 proofs *) let* custom_ids = map2M (fun wires wires_g -> mapM (fun (name, q) -> let* id_values = cs_of_custom_sel ~precomputed_advice name q wires wires_g in ret (name, id_values)) custom_selectors) wires wires_g in let* arith_list = let monomials = List.map (fun (name, q) -> List.map2 (cs_of_arith_sel name q) wires wires_g) arith_selectors in let pi_list = List.map (Gates.cs_pi ~generator ~n ~x ~zs) pi_list_list in Plonk.List.mapn add_circuits (pi_list :: monomials) |> mapM Fun.id in (* Using switched wires is enough for adapting the perm identity to the lower number of proof *) let* aggregated_wires = Plonk.List.mapn (fun i -> sum_alpha_i i delta) wires |> mapM Fun.id in let* perm_ids = (Perm.cs ~l1 ~ss_list ~beta ~gamma ~x ~z ~zg) ~aggregated_wires () in let* rc_ids = match rc_wires with | [] -> ret [] | _ -> let nb_proofs = List.length wires in let lnin1 = Plonk.List.sub rc_selectors 0 nb_rc in let pnin1 = Plonk.List.sub rc_selectors nb_rc nb_rc in let ss_list = List.init nb_rc (fun i -> Plonk.List.sub rc_selectors (nb_rc * (2 + i)) 2) in RC.cs ~rc_index:rc_wires ~nb_proofs ~lnin1 ~pnin1 ~z_rc ~zg_rc ~z_perm:z_rc_perm ~zg_perm:zg_rc_perm ~aggregated_wires ~sum_alpha_i ~l1 ~ss_list ~beta ~gamma ~delta ~x in let identities = format_arith_ids arith_list @ format_custom_ids custom_ids @ perm_ids @ rc_ids |> List.sort (fun (s, _) (s', _) -> String.compare s s') |> List.map snd in (* Adapt the switches to match the identities. Note that the way we handle shifts here only works because the switches are of form [11…00] *) let id_switches = let for_each_proof = let nb_ids_per_proof = let nb_custom_ids = List.( hd custom_ids |> fold_left (fun acc l -> acc + length (snd l)) 0) in (* +1 for the arithmetic identity & + 2×nb_rc for the range check ids *) match rc_ids with | [] -> nb_custom_ids + 1 | _ -> nb_custom_ids + 1 + (2 * nb_rc) in List.concat_map (fun b -> List.init nb_ids_per_proof (Fun.const b)) switches in (* [true ; true] is added for the permutation identities, & nb_rc × [true ; true] is added for the RC permutation identities *) let for_whole_circuit = match rc_ids with | [] -> [t; t] | _ -> [t; t] @ List.init (2 * nb_rc) (Fun.const t) in for_each_proof @ for_whole_circuit in let* sum_id = sum_alpha_i_switched id_switches identities alpha in equal sum_id ids_batch end let verify_batch r batch batches t_answers = let init_sum = List.map (SMap.map @@ Fun.const Scalar.zero) (List.tl batch) in let init_sizes = List.map (SMap.map @@ Fun.const 0) (List.tl batch) in let sum_batches, _ = SMap.fold (fun _circuit_name this_batch (acc_sum, acc_sizes) -> let values = List.map (SMap.map fst) this_batch in let sizes_list = List.map (SMap.map snd) this_batch in let acc_sum = List.map2 (fun map_sum (map_this_batch, map_sizes) -> SMap.mapi (fun key acc_value -> let size = SMap.find key map_sizes |> Z.of_int in let this_value = SMap.find key map_this_batch in Scalar.(acc_value + (this_value * pow r size))) map_sum) acc_sum (List.combine values acc_sizes) in let acc_sizes = List.map2 (fun map_acc_sizes map_sizes -> SMap.mapi (fun key size -> size + SMap.find key map_sizes) map_acc_sizes) acc_sizes sizes_list in (acc_sum, acc_sizes)) batches (init_sum, init_sizes) in let t_batch = List.fold_left (fun (acc, rk) x -> Scalar.(acc + (rk * x), r * rk)) (Scalar.zero, Scalar.one) t_answers |> fst in (* Complete the first element of [sum_batches] with [t_batch] *) let sum_batches = let hd = List.hd batch in assert (SMap.cardinal hd = 1) ; let t_key, _t_value = SMap.choose hd in SMap.singleton t_key t_batch :: sum_batches in let given = List.concat_map SMap.values batch in let computed = List.concat_map SMap.values sum_batches in List.for_all2 Scalar.( = ) given computed (* Format verification circuit public inputs *) let aggreg_public_inputs pi_size (alpha, beta, gamma, delta, x, r) batch ids_batch compressed_switches outer_pi = let batch = List.concat_map SMap.values batch |> List.map fst in let public_input = Array.of_list ([alpha; beta; gamma; delta; x; r] @ batch @ [ids_batch; compressed_switches] @ outer_pi) in let l = Array.length public_input in if l <> pi_size then failwith (Printf.sprintf "Public input has not expected size (expected: %d; actual: %d)." pi_size l) ; public_input let compute_switches max_nb_proofs nb_proofs = let switches = Array.init max_nb_proofs S.(fun i -> if i < nb_proofs then one else zero) in (switches, S.of_int nb_proofs) (* Applies the function [f] to the last element of the list [l] ; if [l] is empty, it returns the empty list. *) let map_end f l = let rec aux acc = function | [] -> [] | [x] -> List.rev (f x :: acc) | x :: tl -> aux (x :: acc) tl in aux [] l (* This function converts answers to a list of scalars. If [nb_proofs] < [nb_max_proofs], the missing answers will be added as zero, in an order that is suitable for aPlonK’s switches *) let pad_answers nb_max_proofs nb_rc_wires nb_proofs (answers : S.t SMap.t SMap.t list) = let answers = List.map (SMap.map SMap.values) answers in (* We want to work on the 'a map list because it’s the only way to find the wires in the answers without knowing if there is ultra or next wire *) let answers_padded = map_end (SMap.map (fun w_list -> w_list @ List.init ((nb_max_proofs - nb_proofs) * (Plompiler.Csir.nb_wires_arch + nb_rc_wires)) (Fun.const S.zero))) answers in answers_padded |> List.concat_map SMap.values |> List.flatten let pad_inputs nb_max_proofs nb_rc_wires inner_pi answers = let nb_proofs = List.length inner_pi in let padded_inner_pi = let to_pad = nb_max_proofs - nb_proofs in let nb_inner_pi = List.(length (hd inner_pi)) in List.flatten inner_pi @ List.(init (to_pad * nb_inner_pi) (Fun.const S.zero)) in let padded_answers = pad_answers nb_max_proofs nb_rc_wires nb_proofs answers in (padded_inner_pi, padded_answers) (* Returns witness of verification circuit *) let get_witness max_nb_proofs nb_rc_wires (p : Main.prover_aux) circuit_name pi_size solver (inner_pi, outer_pi) switches compressed_switches batch = let ids_batch = SMap.find circuit_name p.ids_batch |> fst in let public = aggreg_public_inputs pi_size (p.alpha, p.beta, p.gamma, p.delta, p.x, p.r) batch ids_batch compressed_switches outer_pi in let circuit_answers = List.map (SMap.Aggregation.select_answers_by_circuit circuit_name) (* ignore the first element in p.answers corresponding to T evaluations, which are handled outside of the meta-verification circuit *) (List.tl p.answers) in let inputs = let inner_pi, answers = pad_inputs max_nb_proofs nb_rc_wires inner_pi circuit_answers in Array.(concat [of_list (inner_pi @ answers); public; switches]) in try Plompiler.Solver.solve solver inputs with e -> print_string "\nSolver failure\n" ; raise e let get_batches inputs answers r = let batch_map r map = Kzg.Utils.Fr_generation.batch r (SMap.values map) in (* we map over [inputs] just because it contains the circuit_names *) SMap.mapi (fun circuit_name _ -> let answers = List.map (SMap.Aggregation.select_answers_by_circuit circuit_name) (List.tl answers) in List.map SMap.(map (fun m -> (batch_map r m, cardinal m))) answers) inputs (* generator & n are the subgroup generator & size of the subgroup of identities verification check_pi is a function related to PI, given here as argument in order to allow several PI handling forms note that wires & wires_g may also contain RC_Z polynomials *) let verification_circuit (generator, n) rc_wires check_pi { switches; compressed_switches; alpha; beta; gamma; delta; x; r; ss_list; selectors; ids_batch; wires_g; wires; zg; z; batch; outer_pi; inner_pi; rc_selectors; zg_rc_perm; z_rc_perm; } = let n = S.of_int n in (* input selectors in the same order they are given *) let q_names, selectors = List.split selectors in let* inner_pi = begin_input_com (fun inner_pi -> List.map of_list (of_list inner_pi)) |: Input.list (List.map Input.list inner_pi) |> end_input_com in let* ( rc_selectors, ss_list, selectors, zg_rc_perm, zg, z_rc_perm, z, wires_g, wires ) = begin_input_com (fun rc_selectors ss_list selectors zg_rc_perm zg z_rc_perm z wires_g wires -> ( of_list rc_selectors, ss_list, of_list selectors, of_list zg_rc_perm, zg, of_list z_rc_perm, z, List.map of_list (of_list wires_g), List.map of_list (of_list wires) )) |: Input.list rc_selectors |: Input.list ss_list |: Input.list selectors |: Input.list zg_rc_perm |: zg |: Input.list z_rc_perm |: z |: Input.list (List.map Input.list wires_g) |: Input.list (List.map Input.list wires) |> end_input_com in let* alpha = input ~kind:`Public alpha in let* beta = input ~kind:`Public beta in let* gamma = input ~kind:`Public gamma in let* delta = input ~kind:`Public delta in let* x = input ~kind:`Public x in let* r = input ~kind:`Public r in let* batch = mapM (input ~kind:`Public) batch in let* ids_batch = input ~kind:`Public ids_batch in let* compressed_switches = input ~kind:`Public compressed_switches in (* Input PI *) let* outer_pi = mapM (input ~kind:`Public) outer_pi in let* switches = mapM input switches in (* We use the switch to only take the n first wires evaluations (where n is the number of proofs actually performed), the rest is set to zero ; this nullifies batches and the permutation argument where proofs were not computed *) let* switched_wires, switched_wires_g, switched_inner_pi = Constraints.switch switches ~wires ~wires_g ~inner_pi in let ss_list = of_list ss_list in let* check_switches = with_label ~label:"check_switches" @@ Constraints.check_switches compressed_switches switches in let* check_pi = with_label ~label:"check_pi" @@ check_pi ~switches ~outer:outer_pi ~inner:inner_pi in let* check_identities = with_label ~label:"check_identities" @@ Constraints.check_identities ~switches (n, generator) x rc_wires ids_batch rc_selectors (q_names, selectors) (alpha, beta, gamma, delta) (switched_wires_g, switched_wires, zg, z, zg_rc_perm, z_rc_perm) ss_list switched_inner_pi in let* check_batch = with_label ~label:"check_batch" @@ let g_list = rc_selectors @ ss_list @ selectors in let z_list = z_rc_perm @ [z] in let zg_list = zg_rc_perm @ [zg] in Constraints.check_batch r (g_list, switched_wires, switched_wires_g, z_list, zg_list) batch in let* res = with_label ~label:"check_aplonk_res" @@ Bool.band_list [check_switches; check_batch; check_identities; check_pi] in Bool.assert_true res (* Function that creates the verification circuit as cs *) let get_cs_verification pp circuit nb_batches nb_proofs (nb_outer_pi, nb_inner_pi) check_pi = let gen, n = Main.get_gen_n_prover pp in let gates = Plonk.Circuit.get_selectors circuit in let dummy_input = dummy_input circuit.range_checks gates nb_batches nb_proofs nb_inner_pi nb_outer_pi in let rc_wires = SMap.(keys circuit.range_checks) |> List.map Plompiler.Csir.int_of_wire_name in Plompiler.LibCircuit.get_cs (verification_circuit (gen, n) rc_wires check_pi dummy_input) end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>