package octez-libs
A package that contains multiple base libraries used by the Octez suite
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/octez-libs.polynomial/polynomial.ml.html
Source file polynomial.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
(*****************************************************************************) (* *) (* Copyright (c) 2020-2021 Danny Willems <be.danny.willems@gmail.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) include Utils type natural_with_infinity = Natural of int | Infinity module type UNIVARIATE = sig (** The type of the polynomial coefficients. Can be a field or more generally a ring. For the moment, it is restricted to prime fields. *) type scalar (** Represents a polynomial *) type t (** Returns the polynomial [P(X) = 0] *) val zero : t (** Returns the polynomial [P(X) = 1] *) val one : t (** Returns the degree of the polynomial *) val degree : t -> natural_with_infinity val degree_int : t -> int (** [have_same_degree P Q] returns [true] if [P] and [Q] have the same degree *) val have_same_degree : t -> t -> bool (* (\** [shift_by_n P n] multiplies [P] by [X^n]. For instance, * [P(X) = a_{0} + a_{1} X + ... + a_{m} X^m] will be transformed in * [a_{0} X^{n} + a_{1} X^{n + 1} + ... a_{m} X^{n + m}]. * *\) * val shift_by_n : t -> int -> t *) (** [get_dense_polynomial_coefficients P] returns the list of the coefficients of P, including the null coefficients, in decreasing order i.e. if P(X) = a_{0} + a_{1} X + ... + a_{n - 1} X^{n - 1}, the function will return [a_{n - 1}, ..., a_{0}] *) val get_dense_polynomial_coefficients : t -> scalar list (** [get_dense_polynomial_coefficients_with_degree P] returns the list of the coefficients of P with the degree as a tuple, including the null coefficients, in decreasing order i.e. if P(X) = a_{0} + a_{1} X + ... + a_{n - 1} X^{n - 1}, the function will return [(a_{n - 1}, n -1), ..., (a_{0}, 0)]. *) val get_dense_polynomial_coefficients_with_degree : t -> (scalar * int) list (** [get_list_coefficients P] returns [(a_4,4), (a_2,2), (a_0,0)] if P = a_4 X^4 + a_2 X^2 + a_0*) val get_list_coefficients : t -> (scalar * int) list (** [evaluation P s] computes [P(s)]. Use Horner's method in O(n). *) val evaluation : t -> scalar -> scalar (** [constants s] returns the constant polynomial [P(X) = s] *) val constants : scalar -> t (** [add P Q] returns [P(X) + Q(X)] *) val add : t -> t -> t (** [sub P Q] returns [P(X) - Q(X)] *) val sub : t -> t -> t (** [mult_by_scalar s P] returns [s*P(X)] *) val mult_by_scalar : scalar -> t -> t (** [is_null P] returns [true] iff [P(X) = 0] *) val is_null : t -> bool (** [is_constant P] returns [true] iff [P(X) = s] for s scalar *) val is_constant : t -> bool (** [opposite P] returns [-P(X)] *) val opposite : t -> t (** [equal P Q] returns [true] iff [P(X) = Q(X)] on S *) val equal : t -> t -> bool (** [of_coefficients [(x_0, y_0) ; (x_1, y_1); ... ; (x_n ; y_n)]] builds the polynomial Σ(a_i * X^i) as a type [t]. By default, the null coefficients will be removed as the internal representation of polynomials is sparsed. However, a version with null coefficients can be generated if required. It is not recommended to use this possibility as it breaks an invariant of the type [t]. *) val of_coefficients : (scalar * int) list -> t (** [lagrange_interpolation [(x_0, y_0) ; (x_1, y_1); ... ; (x_n ; y_n)]] builds the unique polynomial P of degre n such that P(x_i) = y_i for i = 0...n using the intermediate lagrange polynomials. [lagrange_interpolation_fft] can be used in case of a FFT friendly scalar structure. It is supposed all x_i are different. *) val lagrange_interpolation : (scalar * scalar) list -> t (** [even_polynomial P] returns the polynomial P_even containing only the even coefficients of P *) val even_polynomial : t -> t (** [odd_polynomial P] returns the polynomial P_odd containing only the odd coefficients of P *) val odd_polynomial : t -> t (** [evaluate_fft_imperative ~domain P] evaluates P on the points given in the [domain]. The domain should be of the form [g^{i}] where [g] is a principal root of unity. If the domain is of size [n], [g] must be a [n]-th principal root of unity. The degree of [P] can be smaller than the domain size. Larger polynomials can also be used but the implementation is not the most memory efficient yet and must be improved. The complexity is in [O(n log(m))] where [n] is the domain size and [m] the degree of the polynomial. When [m] is smaller than [n], the polynomial is padded with zeroes to reach [n] coefficients. The resulting list contains the evaluation points [P(1), P(w), ..., P(w^{n - 1})]. *) val evaluation_fft : domain:scalar array -> t -> scalar list (** [generate_random_polynomial n] returns a random polynomial of degree [n] *) val generate_random_polynomial : natural_with_infinity -> t (** [get_highest_coefficient P] where [P(X) = a_n X^n + ... a_0] returns [a_n] *) val get_highest_coefficient : t -> scalar (** [interpolation_fft ~domain [y_{0} ; y_{1} ; ... y_{n}]] computes the interpolation at the points [y_{0}, ..., y_{n}] using FFT Cookey Tukey. The domain should be of the form [g^{i}] where [g] is a principal root of unity. If the domain is of size [n], [g] must be a [n]-th principal root of unity. The domain size must be exactly the same than the number of points. The complexity is [O(n log(n))] where [n] is the domain size. *) val interpolation_fft : domain:scalar array -> scalar list -> t (** [polynomial_multiplication P Q] computes the product P(X).Q(X) *) val polynomial_multiplication : t -> t -> t (** [polynomial_multiplication_fft ~domain P Q] computes the product [P(X).Q(X)] using FFT. The domain should be of the form [g^{i}] where [g] is a principal root of unity. If the domain is of size [n], [g] must be a [n]-th principal root of unity. The degrees of [P] and [Q] can be different. The only condition is [degree P + degree Q] should be smaller or equal to [n - 2] (i.e. the domain should be big enough to compute [n - 1] points of [P * Q]). *) val polynomial_multiplication_fft : domain:scalar array -> t -> t -> t val euclidian_division_opt : t -> t -> (t * t) option (** [extended_euclide P S] returns (GCD, U, V) the greatest common divisor of [P] and [S] and the Bezout's coefficient: [U P + V S = GCD] and [GCD] greatest coefficient is one *) val extended_euclide : t -> t -> t * t * t (** Infix operator for [equal] *) val ( = ) : t -> t -> bool (** Infix operator for [add] *) val ( + ) : t -> t -> t (** Infix operator for [polynomial_multiplication] *) val ( * ) : t -> t -> t (** Infix operator for [sub] *) val ( - ) : t -> t -> t val to_string : t -> string end module DomainEvaluation (R : Bls12_381.Ff_sig.PRIME) = struct type t = {size : int; generator : R.t; domain_values : R.t array} let generate_domain generator n = let rec aux previous acc i = if i = n then List.rev acc else let current = R.mul previous generator in aux current (current :: acc) (i + 1) in Array.of_list @@ aux R.one [R.one] 1 let generate size generator = {size; generator; domain_values = generate_domain generator size} let _size d = d.size let _generator d = d.generator let domain_values d = d.domain_values end (* TODO: Functions should use DomainEvaluation *) let generate_evaluation_domain (type a) (module Fp : Bls12_381.Ff_sig.PRIME with type t = a) size (generator : a) = let module D = DomainEvaluation (Fp) in let g = D.generate size generator in D.domain_values g (* TODO: this function should be part of DomainEvaluation. However, for the moment, functions do not use this representation *) let inverse_domain_values domain = let length_domain = Array.length domain in Array.init length_domain (fun i -> if i = 0 then domain.(i) else domain.(length_domain - i)) module MakeUnivariate (R : Bls12_381.Ff_sig.PRIME) = struct type scalar = R.t (* We encode the polynomials as a list with decreasing degree. Invariants to respect for the type: - all coefficients are non null. - [a_n * X^n + ... a_1 X + a0] is encoded as [a_n ; ... ; a_1 ; a_0] with [a_i] non zero for all [i], i.e. the monomials are given in decreasing order. - the zero polynomial is represented as the empty list. *) type t = (scalar * int) list let degree p = match p with | [] -> Infinity | [(e, 0)] -> if R.is_zero e then Infinity else Natural 0 | _ as l -> Natural (snd (List.hd l)) let degree_int p = match degree p with Infinity -> -1 | Natural n -> n let have_same_degree p q = degree p = degree q (* let shift_by_n p n = * assert (n >= 1) ; * List.map (fun (c, e) -> (c, e + n)) p *) let zero = [] let one = [(R.one, 0)] let constants c = if R.eq c R.zero then [] else [(c, 0)] let is_null p = match p with [] -> true | _ -> false let is_constant p = match p with | [] -> true | l -> if List.compare_length_with l 1 > 0 then false else let _, p = List.hd l in if p = 0 then true else false let of_coefficients l = (* check if the powers are all positive *) assert (List.for_all (fun (_e, power) -> power >= 0) l) ; (* Remove null coefficients *) let l = List.filter (fun (e, _power) -> not (R.is_zero e)) l in (* sort by the power, higher power first *) let l = List.fast_sort (fun (_e1, power1) (_e2, power2) -> Int.sub power2 power1) l in l let add p1 p2 = let rec inner acc l1 l2 = match (l1, l2) with | [], l | l, [] -> List.rev_append acc l | l1, l2 -> let e1, p1 = List.hd l1 in let e2, p2 = List.hd l2 in if p1 = p2 && R.is_zero (R.add e1 e2) then inner acc (List.tl l1) (List.tl l2) else if p1 = p2 then inner ((R.add e1 e2, p1) :: acc) (List.tl l1) (List.tl l2) else if p1 > p2 then inner ((e1, p1) :: acc) (List.tl l1) l2 else inner ((e2, p2) :: acc) l1 (List.tl l2) in let l = inner [] p1 p2 in of_coefficients l let mult_by_scalar a p = List.filter_map (fun (coef, power) -> let c = R.mul coef a in if R.is_zero c then None else Some (c, power)) p let opposite poly = List.(rev (rev_map (fun (a, i) -> (R.negate a, i)) poly)) let sub p1 p2 = let rec inner acc l1 l2 = match (l1, l2) with | [], l2 -> List.rev_append acc (opposite l2) | l1, [] -> List.rev_append acc l1 | l1, l2 -> let e1, p1 = List.hd l1 in let e2, p2 = List.hd l2 in if p1 = p2 && R.is_zero (R.sub e1 e2) then inner acc (List.tl l1) (List.tl l2) else if p1 = p2 then inner ((R.sub e1 e2, p1) :: acc) (List.tl l1) (List.tl l2) else if p1 > p2 then inner ((e1, p1) :: acc) (List.tl l1) l2 else inner ((R.negate e2, p2) :: acc) l1 (List.tl l2) in let l = inner [] p1 p2 in of_coefficients l let equal p1 p2 = if List.compare_lengths p1 p2 != 0 then false else List.for_all2 (fun (e1, n1) (e2, n2) -> n1 = n2 && R.eq e1 e2) p1 p2 let get_list_coefficients p = p let get_dense_polynomial_coefficients polynomial = match polynomial with | [] -> [R.zero] | l -> let l = List.rev l in let rec to_dense acc current_i l = match l with | [] -> acc | (e, n) :: xs -> if n = current_i then to_dense (e :: acc) (current_i + 1) xs else to_dense (R.zero :: acc) (current_i + 1) l in to_dense [] 0 l let get_dense_polynomial_coefficients_with_degree polynomial = let n = degree_int polynomial in if n = -1 then [(R.zero, 0)] else let h_list = get_dense_polynomial_coefficients polynomial in let ffold (acc, i) a = ((a, i) :: acc, i - 1) in let res, _ = List.fold_left ffold ([], n) h_list in List.rev res let evaluation polynomial point = (* optimized_pow is used instead of Scalar.pow because Scalar.pow makes evaluation slower than the standard Horner algorithm when dif_degree <= 4 is involved. TODO: use memoisation *) let n = degree_int polynomial in let optimized_pow x = function | 0 -> R.one | 1 -> x | 2 -> R.square x | 3 -> R.(x * square x) | 4 -> R.(square (square x)) | n -> R.pow x (Z.of_int n) in let aux (acc, prec_i) (a, i) = let dif_degree = prec_i - i in (R.((acc * optimized_pow point dif_degree) + a), i) in let res, last_degree = List.fold_left aux (R.zero, n) polynomial in R.(res * optimized_pow point last_degree) let assert_no_duplicate_point points = let points = List.map fst points in let points_uniq = List.sort_uniq (fun e1 e2 -> if R.eq e1 e2 then 0 else -1) points in assert (List.compare_lengths points points_uniq = 0) let intermediate_lagrange_interpolation x_i i xs = List.fold_left (fun acc (j, x_j) -> if i = j then acc else match acc with | [] -> [] | acc -> let acc_1 = List.map (fun (e, p) -> (e, p + 1)) acc in let acc_2 = mult_by_scalar x_j (of_coefficients acc) in let acc = add acc_1 (opposite acc_2) in let scalar = R.inverse_exn R.(x_i + R.negate x_j) in let acc_final = mult_by_scalar scalar acc in acc_final) (constants R.one) xs let lagrange_interpolation points = assert_no_duplicate_point points ; let indexed_points = List.mapi (fun i (x_i, y_i) -> (i, x_i, y_i)) points in let evaluated_at = List.mapi (fun i (x_i, _) -> (i, x_i)) points in List.fold_left (fun acc (i, x_i, y_i) -> let l_i = intermediate_lagrange_interpolation x_i i evaluated_at in add acc (mult_by_scalar y_i l_i)) [] indexed_points let even_polynomial polynomial = match polynomial with | [] -> [] | l -> List.filter (fun (_e, n) -> n mod 2 = 0) l let odd_polynomial polynomial = match polynomial with | [] -> [] | l -> List.filter (fun (_e, n) -> n mod 2 = 1) l (* assumes that len(domain) = len(output) *) let evaluation_fft_in_place ~domain output = let n = Array.length output in let logn = Z.log2 (Z.of_int n) in let m = ref 1 in for _i = 0 to logn - 1 do let exponent = n / (2 * !m) in let k = ref 0 in while !k < n do for j = 0 to !m - 1 do let w = domain.(exponent * j) in (* odd *) let right = R.mul output.(!k + j + !m) w in output.(!k + j + !m) <- R.sub output.(!k + j) right ; output.(!k + j) <- R.add output.(!k + j) right done ; k := !k + (!m * 2) done ; m := !m * 2 done ; () let evaluation_fft ~domain polynomial = let open Utils in let n = degree_int polynomial + 1 in let d = Array.length domain in let logd = Z.(log2 (of_int d)) in if is_null polynomial then List.init d (fun _ -> R.zero) else let dense_polynomial = get_dense_polynomial_coefficients polynomial in let output = Array.of_list (List.rev dense_polynomial) in let output = (* if the polynomial is too small, we pad with zeroes *) if d > n then ( let output = Array.append output (Array.make (d - n) R.zero) in reorg_coefficients d logd output ; output (* if the polynomial is larger, we evaluate on the sub polynomials *)) else if n > d then ( let next_power = next_power_of_two n in let log_next_power = Z.log2 (Z.of_int next_power) in let output = Array.append output (Array.make (next_power - n) R.zero) in let n = next_power in reorg_coefficients next_power log_next_power output ; Array.init d (fun i -> let poly = Array.sub output (i * (n / d)) (n / d) in let poly = List.init (n / d) (fun i -> (poly.((n / d) - i - 1), (n / d) - i - 1)) in let poly = of_coefficients poly in (* we may sum *) evaluation poly domain.(0))) else ( reorg_coefficients d logd output ; output) in evaluation_fft_in_place ~domain output ; Array.to_list output let generate_random_polynomial degree = let rec random_non_null () = let r = R.random () in if R.is_zero r then random_non_null () else r in match degree with | Infinity -> [] | Natural n when n >= 0 -> let coefficients = List.init n (fun _i -> R.random ()) in let coefficients = (random_non_null (), n) :: List.mapi (fun i c -> (c, n - i - 1)) coefficients in of_coefficients coefficients | _ -> failwith "The degree must be positive" let get_highest_coefficient polynomial = match polynomial with [] -> R.zero | (c, _e) :: _ -> c let interpolation_fft ~domain points = let n = Array.length domain in assert (List.compare_length_with points n = 0) ; let n_z = Z.of_int n in let logn = Z.log2 n_z in (* Points are in a list of size N. Let's define points = [y_0, y_1, ... y_(N - 1)] We build the polynomial [P(X) = y_(N - 1) X^(N - 1) + ... + y_1 X * y_0]. The resulting value is not necessarily of type [t] because it might not respect the sparse representation as there might be some null coefficients [y_i]. However, [evaluation_fft] gets the dense polynomial in its body. If all the points are zero, mult_by_scalar will take care of keeping the invariant, see below. *) let inverse_domain = inverse_domain_values domain in let inverse_fft = Array.of_list points in (* We evaluate the resulting polynomial on the domain *) Utils.reorg_coefficients n logn inverse_fft ; evaluation_fft_in_place ~domain:inverse_domain inverse_fft ; let polynomial, _ = Array.fold_left (fun (acc, i) p -> ((p, i) :: acc, i + 1)) ([], 0) inverse_fft in (* mult_by_scalar does use filter_map removing all the zero coefficients. Therefore, we keep the invariant consisting of representing the zero polynomial with an empty list *) mult_by_scalar (R.inverse_exn (R.of_z n_z)) polynomial let polynomial_multiplication p q = let mul_by_monom (scalar, int) p = List.map (fun (scalar_2, int_2) -> (R.mul scalar scalar_2, int + int_2)) p in List.fold_left (fun acc monom -> add acc (mul_by_monom monom q)) zero p let polynomial_multiplication_fft ~domain p q = if is_null p || is_null q then zero else (* Evaluate P on the domain -> eval_p contains N points where N is the domain size. The resulting list contains the points P(w_i) where w_i \in D *) let eval_p = evaluation_fft ~domain p in (* Evaluate Q on the domain -> eval_q contains N points where N is the domain size. The resulting list contains the points Q(w_i) where w_i \in D. *) let eval_q = evaluation_fft ~domain q in (* Contains N points, resulting of p(w_i) * q(w_i) where w_i \in D *) let eval_pq = List.(rev (rev_map2 (fun a b -> R.mul a b) eval_p eval_q)) in interpolation_fft ~domain eval_pq let euclidian_division_opt a b = if is_null b then None else let deg_b = degree_int b in let highest_coeff_b = get_highest_coefficient b in let rec aux q r = if degree_int r < deg_b then Some (q, r) else let diff_degree = degree_int r - deg_b in let rescale_factor = R.(get_highest_coefficient r / highest_coeff_b) in let to_sub = polynomial_multiplication b [(rescale_factor, diff_degree)] in aux (add q [(rescale_factor, diff_degree)]) (sub r to_sub) in aux zero a let extended_euclide polynomial_1 polynomial_2 = let n_1 = degree_int polynomial_1 and n_2 = degree_int polynomial_2 in if n_1 = -1 && n_2 = -1 then (zero, zero, zero) else if n_1 = -1 then let rescale_factor = R.inverse_exn @@ get_highest_coefficient polynomial_2 in ( mult_by_scalar rescale_factor polynomial_2, zero, mult_by_scalar rescale_factor one ) else if n_2 = -1 then let rescale_factor = R.inverse_exn @@ get_highest_coefficient polynomial_1 in ( mult_by_scalar rescale_factor polynomial_1, mult_by_scalar rescale_factor one, zero ) else let rec aux poly_1 u_1 v_1 poly_2 u_2 v_2 = let q, r = euclidian_division_opt poly_1 poly_2 |> Option.get in if is_null r then (poly_2, u_2, v_2) else aux poly_2 u_2 v_2 r (sub u_1 (polynomial_multiplication q u_2)) (sub v_1 (polynomial_multiplication q v_2)) in let gcd, u, v = aux polynomial_1 one zero polynomial_2 zero one in let rescale_factor = R.inverse_exn @@ get_highest_coefficient gcd in ( mult_by_scalar rescale_factor gcd, mult_by_scalar rescale_factor u, mult_by_scalar rescale_factor v ) let to_string p = let rec inner l = match l with | [] -> "0" | [(e, p)] -> if R.is_one e && p = 1 then Printf.sprintf "X" else if p = 1 then Printf.sprintf "%sX" (R.to_string e) else if p = 0 then Printf.sprintf "%s" (R.to_string e) else if R.is_one e then Printf.sprintf "X^%d" p else Printf.sprintf "%s X^%d" (R.to_string e) p | (e, p) :: tail -> if R.is_one e && p = 1 then Printf.sprintf "X + %s" (inner tail) else if p = 1 then Printf.sprintf "%sX + %s" (R.to_string e) (inner tail) else if p = 0 then Printf.sprintf "%s" (R.to_string e) else if R.is_one e then Printf.sprintf "X^%d + %s" p (inner tail) else Printf.sprintf "%s X^%d + %s" (R.to_string e) p (inner tail) in inner p let ( = ) = equal let ( + ) = add let ( * ) = polynomial_multiplication let ( - ) = sub end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>