package octez-libs
A package that contains multiple base libraries used by the Octez suite
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/octez-libs.plompiler/linear_algebra.ml.html
Source file linear_algebra.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
(*****************************************************************************) (* *) (* MIT License *) (* Copyright (c) 2022 Nomadic Labs <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) module type Ring_sig = sig type t val add : t -> t -> t val mul : t -> t -> t val negate : t -> t val zero : t val one : t val eq : t -> t -> bool end module type Field_sig = sig include Ring_sig val inverse_exn : t -> t end (** This refers to the mathematical generalization of vector space called "module", where the field of scalars is replaced by a ring *) module type Module_sig = sig type t type matrix = t array array (** [zeros r c] is a matrix with [r] rows and [c] columns filled with zeros *) val zeros : int -> int -> matrix (** [identity n] is the identity matrix of dimension [n] *) val identity : int -> matrix (** matrix equality *) val equal : matrix -> matrix -> bool (** matrix addition *) val add : matrix -> matrix -> matrix (** matrix multiplication *) val mul : matrix -> matrix -> matrix (** matrix transposition *) val transpose : matrix -> matrix (** [row_add ~coeff i j m] adds to the i-th row, the j-th row times coeff in m *) val row_add : ?coeff:t -> int -> int -> matrix -> unit (** [row_swap i j m] swaps the i-th and j-th rows of m *) val row_swap : int -> int -> matrix -> unit (** [row_mul coeff i m] multiplies the i-th row by coeff in m *) val row_mul : t -> int -> matrix -> unit (** [filter_cols f m] removes the columns of [m] whose index does not satisfy [f] *) val filter_cols : (int -> bool) -> matrix -> matrix (** splits matrix [m] into the first n columns and the rest, producing two matrices *) val split_n : int -> matrix -> matrix * matrix end module type VectorSpace_sig = sig include Module_sig (** reduced row Echelon form of m *) val reduced_row_echelon_form : matrix -> matrix (** [inverse m] is the inverse matrix of m @raise [Invalid_argument] if [m] is not invertible *) val inverse : matrix -> matrix end module Make_Module (Ring : Ring_sig) : Module_sig with type t = Ring.t = struct type t = Ring.t type matrix = t array array let zeros r c = Array.make_matrix r c Ring.zero let identity n = Array.(init n (fun i -> init n Ring.(fun j -> if i = j then one else zero))) let equal = Array.(for_all2 (for_all2 Ring.eq)) let add = Array.(map2 (map2 Ring.add)) let mul m1 m2 = let nb_rows = Array.length m1 in let nb_cols = Array.length m2.(0) in let n = Array.length m1.(0) in assert (Array.length m2 = n) ; let p = zeros nb_rows nb_cols in for i = 0 to nb_rows - 1 do for j = 0 to nb_cols - 1 do for k = 0 to n - 1 do p.(i).(j) <- Ring.(add p.(i).(j) @@ mul m1.(i).(k) m2.(k).(j)) done done done ; p let transpose m = let nb_rows = Array.length m in let nb_cols = Array.length m.(0) in Array.(init nb_cols (fun i -> init nb_rows (fun j -> m.(j).(i)))) let row_add ?(coeff = Ring.one) i j m = m.(i) <- Array.map2 Ring.(fun a b -> add a (mul coeff b)) m.(i) m.(j) let row_swap i j m = let aux = m.(i) in m.(i) <- m.(j) ; m.(j) <- aux let row_mul coeff i m = m.(i) <- Array.map (Ring.mul coeff) m.(i) let filter_cols f = Array.map (fun row -> List.filteri (fun i _ -> f i) (Array.to_list row) |> Array.of_list) let split_n n m = (filter_cols (fun i -> i < n) m, filter_cols (fun i -> i >= n) m) end module Make_VectorSpace (Field : Field_sig) : VectorSpace_sig with type t = Field.t = struct include Make_Module (Field) let reduced_row_echelon_form m = let n = Array.length m in (* returns the first non-zero index in the row *) let find_pivot row = let rec aux cnt = function | [] -> None | x :: xs -> if Field.(eq zero x) then aux (cnt + 1) xs else Some cnt in aux 0 (Array.to_list row) in let move_zeros_to_bottom m = let is_non_zero_row = Array.exists (fun a -> not Field.(eq zero a)) in let rec aux nonzeros zeros = function | [] -> Array.of_list (List.rev nonzeros @ zeros) | r :: rs -> if is_non_zero_row r then aux (r :: nonzeros) zeros rs else aux nonzeros (r :: zeros) rs in aux [] [] (Array.to_list m) in let rec aux k = if k >= Array.length m then m else match find_pivot m.(k) with | Some j when j < n -> row_mul (Field.inverse_exn m.(k).(j)) k m ; Array.iteri (fun i _ -> if i <> k then row_add ~coeff:Field.(negate @@ m.(i).(j)) i k m) m ; row_swap k j m ; aux (k + 1) | _ -> aux (k + 1) in aux 0 |> move_zeros_to_bottom let inverse m = let n = Array.length m in let id_n = identity n in let augmented = Array.(map2 append m id_n) in let reduced = reduced_row_echelon_form augmented in let residue, inv = split_n n reduced in let is_zero_row = Array.for_all Field.(eq zero) in if Array.exists is_zero_row residue then raise @@ Invalid_argument "matrix [m] is not invertible" else inv end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>