package octez-libs
A package that contains multiple base libraries used by the Octez suite
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/octez-libs.plompiler/gadget_edwards.ml.html
Source file gadget_edwards.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
(*****************************************************************************) (* *) (* MIT License *) (* Copyright (c) 2022 Nomadic Labs <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) open Lang_core open Lang_stdlib let one = S.one let mone = S.negate one module MakeAffine (Curve : Mec.CurveSig.AffineEdwardsT) : Affine_curve_intf.EDWARDS = functor (L : LIB) -> struct module L = L open L type point = scalar * scalar let scalar_order = Curve.Scalar.order let base_order = Curve.Base.order let param_d = Curve.(d |> Base.to_z) |> S.of_z let input_point ?(kind = `Private) (u, v) = Input.(pair (scalar u) (scalar v)) |> input ~kind let get_x_coordinate p = of_pair p |> fst let get_y_coordinate p = of_pair p |> snd let id = (S.zero, S.one) (* 1 constraint *) let is_on_curve p = with_label ~label:"Edwards.is_on_curve" @@ let x, y = of_pair p in let* x2 = Num.square x in let* y2 = Num.square y in (* x_l = x^2 *) (* x_r = y^2 *) (* -1 * x^2 + 1 * y^2 - d * x^2 y^2 - 1 = 0 *) (* | | | | | *) (* ql qr qm qc qo *) let qm = S.negate param_d in let* o = Num.custom ~qc:mone ~ql:mone ~qr:one ~qm x2 y2 in Num.is_zero o (* 1 constraint *) let assert_is_on_curve p = with_label ~label:"Edwards.is_on_curve" @@ let x, y = of_pair p in let* x2 = Num.square x in let* y2 = Num.square y in let qm = S.negate param_d in (* The last wire is multiplied by 0 so we can put any value, we chose x here. *) Num.assert_custom ~qc:mone ~ql:mone ~qr:one ~qm x2 y2 x let from_coordinates x y = with_label ~label:"Edwards.from_coordinates" @@ let p = pair x y in with_bool_check (is_on_curve p) >* ret p let unsafe_from_coordinates x y = with_label ~label:"Edwards.unsafe_from_coordinates" (pair x y |> ret) (* P1:(u1, v1) + P2:(u2, v2) = P3:(u3, v3) 2 constraints *) let add p1 p2 = Ecc.edwards_add p1 p2 let cond_add p1 p2 b = Ecc.edwards_cond_add p1 p2 b (* 2 * P1:(u1, v1) = P1:(u1, v1) + P1:(u1, v1) = P3:(u3, v3) as the addition is complete 12 constraints *) let double p = add p p let point_or_zero point b = with_label ~label:"Edwards.point_or_zero" @@ let p_x = get_x_coordinate point in let p_y = get_y_coordinate point in (* if b = 1, return (p_u, p_v); otherwise the zero point (0, 1) *) let b = scalar_of_bool b in let* u = Num.mul b p_x in let* v = Num.custom ~qr:mone ~qc:one ~qm:one p_y b in ret @@ pair u v let scalar_mul s p = let* one = Bool.constant true in with_label ~label:"Edwards.scalar_mul" @@ let rev_s = List.rev (of_list s) in let* init = point_or_zero p (List.hd rev_s) in foldM (fun acc b -> let* acc = cond_add acc acc one in cond_add acc p b) init (List.tl rev_s) (* Computes \prod_i p_i^s_i with inputs: - ls: [[s_11; ...; s_1m]; ...; [s_n1; ...; s_nm]] - lp: [p1; ...; pn] *) let multi_scalar_mul ls lp = let* one = Bool.constant true in with_label ~label:"Edwards.multi_scalar_mul" @@ (* Check we apply Shamir's trick on at least 2 points *) let () = assert (List.(length (of_list ls) > 1)) in (* Converting ls to ls' = [[s_11; ...; s_n1]; ...; [s_1m; ...; s_nm]] *) let ls = List.map of_list (of_list ls) |> Utils.transpose |> List.rev in let points = of_list lp in (* Check we perform scalar multiplications on lists of at least 1 bit *) assert (List.(length ls > 0)) ; (* Initializing the accumulator with the first round of Shamir's trick *) let heads = List.hd ls in let* init = point_or_zero (List.hd points) (List.hd heads) in let* init = fold2M cond_add init (List.tl points) (List.tl heads) in (* Applying Shamir's trick on the rest of the rounds *) foldM (fun acc lb -> let* acc = cond_add acc acc one in fold2M cond_add acc points (of_list lb)) init List.(map to_list (tl ls)) end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>