package octez-libs
A package that contains multiple base libraries used by the Octez suite
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/octez-libs.crypto/s.ml.html
Source file s.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
(*****************************************************************************) (* *) (* Open Source License *) (* Copyright (c) 2018 Dynamic Ledger Solutions, Inc. <contact@tezos.com> *) (* Copyright (c) 2020 Metastate AG <hello@metastate.dev> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) open Error_monad (** {2 Hash Types} *) (** The signature of an abstract hash type, as produced by functor {!Make_Blake2B}. The {!t} type is abstracted for separating the various kinds of hashes in the system at typing time. Each type is equipped with functions to use it as is of as keys in the database or in memory sets and maps. *) module type MINIMAL_HASH = sig type t val name : string val title : string val pp : Format.formatter -> t -> unit val pp_short : Format.formatter -> t -> unit include Compare.S with type t := t val hash_bytes : ?key:Bytes.t -> Bytes.t list -> t (** [hash_string ?key inputs] returns a hash. Raises an [Assert_failure] if [String.length key > 64]. *) val hash_string : ?key:string -> string list -> t val zero : t end module type RAW_DATA = sig type t val size : int (* in bytes *) val to_hex : t -> Hex.t val of_hex : Hex.t -> t tzresult val of_hex_opt : Hex.t -> t option val of_hex_exn : Hex.t -> t val to_string : t -> string val of_string : string -> t tzresult val of_string_opt : string -> t option val of_string_exn : string -> t val to_bytes : t -> Bytes.t val of_bytes : Bytes.t -> t tzresult val of_bytes_opt : Bytes.t -> t option val of_bytes_exn : Bytes.t -> t end module type B58_DATA = sig type t val to_b58check : t -> string val to_short_b58check : t -> string val of_b58check : string -> t tzresult val of_b58check_exn : string -> t val of_b58check_opt : string -> t option type Base58.data += val b58check_encoding : t Base58.encoding end module type ENCODER = sig type t val encoding : t Data_encoding.t val rpc_arg : t Tezos_rpc.Arg.t end module type PVSS = sig type proof module Commitment : sig type t include B58_DATA with type t := t include ENCODER with type t := t end module Public_key : sig type t val pp : Format.formatter -> t -> unit include Compare.S with type t := t include RAW_DATA with type t := t include B58_DATA with type t := t include ENCODER with type t := t end module Secret_key : sig type t include ENCODER with type t := t val to_public_key : t -> Public_key.t end val proof_encoding : proof Data_encoding.t val check_dealer_proof : Encrypted_share.t list -> Commitment.t list -> proof:proof -> public_keys:Public_key.t list -> bool val reconstruct : Clear_share.t list -> int list -> Public_key.t end module type INDEXES = sig type t val hash : t -> int val seeded_hash : int -> t -> int val to_path : t -> string list -> string list val of_path : string list -> t option val of_path_exn : string list -> t val prefix_path : string -> string list val path_length : int module Set : sig include Set.S with type elt = t val random_elt : t -> elt val encoding : t Data_encoding.t end module Map : sig include Map.S with type key = t val encoding : 'a Data_encoding.t -> 'a t Data_encoding.t end module Table : sig include Hashtbl.SeededS with type key = t val encoding : 'a Data_encoding.t -> 'a t Data_encoding.t end module Error_table : sig include Tezos_error_monad.TzLwtreslib.Hashtbl.S_ES with type key = t end module WeakRingTable : sig include Aches.Vache.MAP with type key = t val encoding : 'a Data_encoding.t -> 'a t Data_encoding.t end end module type HASH = sig include MINIMAL_HASH include RAW_DATA with type t := t include B58_DATA with type t := t include ENCODER with type t := t include INDEXES with type t := t end module type MERKLE_TREE = sig (** The element type [elt] of the Merkle tree. *) type elt (** [elt_bytes x] returns the byte sequence representation of the element [x]. *) val elt_bytes : elt -> Bytes.t include HASH (** [compute xs] computes a full binary tree from the list [xs]. In this tree the ith leaf (from left to right) is the ith element of the list [xs]. If [xs] is the empty list, then the result is the empty tree. If the length of [xs] is not a power of 2, then the tree is padded with leaves containing the last element of [xs] such that a full tree is obtained. Example: given the list [[1; 2; 3]], the tree {v /\ / \ /\ /\ 1 2 3 3 v} is built. *) val compute : elt list -> t (** The [empty] Merkle tree. *) val empty : t (** A [path] to an element in a Merkle tree. A [path] is either: - [Left (p, r)], indicating that the element is in the left subtree, from which the path [p] should be taken to find the element. [r] is the left subtree where this branching decision is made. - [Right (l, p)], indicating that the element is in the right subtree, from which the path [p] should be taken to find the element. [l] is the left subtree where this branching decision is made. - [Op], indicating that the path traversal has reached the element. Example: {v /\ / \ /\ /\ 4 5 6 7 v} The path to the third leaf, containing [6] will be: {v Right (node (leaf 4, leaf 5), Left (Op, leaf 7)) v} Consequently, the path will contain all the information to reconstruct the full tree, except the element to which the path lead. *) type path = Left of path * t | Right of t * path | Op (** Encoding of a path. *) val path_encoding : path Data_encoding.t (** Encoding of a path, with optional bound [max_length]. The encoding is bounded to [log2(max_length) * (size + 1) + 1] bytes. *) val bounded_path_encoding : ?max_length:int -> unit -> path Data_encoding.t (** [compute_path xs i] computes the path to the [i]th leaf of the Merkle tree computed from [xs], that will also contain the ith element of [xs]. *) val compute_path : elt list -> int -> path (** [check_path p x] returns a pair [(t, i)] where [t] is the full Merkle tree reconstructed from the path [t] with [x] at the last position of the path, and [i] is the index of [x] in that tree. *) val check_path : path -> elt -> t * int end module type COMMON_SIGNATURE = sig module Public_key_hash : sig type t val pp : Format.formatter -> t -> unit val pp_short : Format.formatter -> t -> unit include Compare.S with type t := t include RAW_DATA with type t := t include B58_DATA with type t := t include ENCODER with type t := t include INDEXES with type t := t val zero : t module Logging : sig val tag : t Tag.def end end module Public_key : sig type t val pp : Format.formatter -> t -> unit include Compare.S with type t := t include B58_DATA with type t := t include ENCODER with type t := t val hash : t -> Public_key_hash.t val size : t -> int (* in bytes *) val of_bytes_without_validation : bytes -> t option end module Secret_key : sig type t val pp : Format.formatter -> t -> unit include Compare.S with type t := t include B58_DATA with type t := t include ENCODER with type t := t val to_public_key : t -> Public_key.t end type t val pp : Format.formatter -> t -> unit include Compare.S with type t := t include B58_DATA with type t := t include ENCODER with type t := t end module type SIGNATURE = sig include COMMON_SIGNATURE val zero : t type watermark (** [sign ?watermark sk message] produce the signature of [message] (with possibly [watermark]) using [sk].*) val sign : ?watermark:watermark -> Secret_key.t -> Bytes.t -> t (** [check pk ?watermark signature message] check that [signature] is the signature produced by signing [message] (with possibly [watermark]) with the secret key of [pk]. *) val check : ?watermark:watermark -> Public_key.t -> t -> Bytes.t -> bool val generate_key : ?seed:Bytes.t -> unit -> Public_key_hash.t * Public_key.t * Secret_key.t (** [deterministic_nonce sk msg] returns a nonce that is determined by [sk] and [msg] *) val deterministic_nonce : Secret_key.t -> Bytes.t -> Bytes.t (** [deterministic_nonce_hash sk msg] returns the BLAKE2b hash of a nonce that is determined by [sk] and [msg]. In other words, [Blake2b.digest (deterministic_nonce sk msg) = deterministic_nonce_hash sk msg] *) val deterministic_nonce_hash : Secret_key.t -> Bytes.t -> Bytes.t end module type AGGREGATE_SIGNATURE = sig include SIGNATURE (** [agregate_check pk_msg_list signature] returns [true] if the [signature] is a valid aggregate signature of the signatures produced by signing message [msg] (with optional [watermark]) with the secret key of [pk] for each element [(pk, watermark, msg)] of the list [pk_msg_list]. *) val aggregate_check : (Public_key.t * watermark option * bytes) list -> t -> bool (** [agregate_signature_opt sig_list] creates an aggregated signature using the list of signatures [sig_list]. *) val aggregate_signature_opt : t list -> t option end module type SPLIT_SIGNATURE = sig include SIGNATURE (** A signature prefix potentially carries data. *) type prefix (** A splitted signature is a binary representation of a signature with a fixed 64 bytes suffix and a possible prefix. *) type splitted = {prefix : prefix option; suffix : Bytes.t} (** [split_signature s] splits the signature [s] into [{prefix; suffix}] where suffix is the fixed 64 bytes suffix of [s] and prefix are the remaining preceding bytes if any. *) val split_signature : t -> splitted (** [of_splitted s] reconstructs a signature from a splitted one, if possible. *) val of_splitted : splitted -> t option (** Encoding for signature prefixes. *) val prefix_encoding : prefix Data_encoding.t end module type FIELD = sig exception Not_in_field of Bytes.t type t (** The order of the finite field *) val order : Z.t (** minimal number of bytes required to encode a value of the field. *) val size_in_bytes : int (** [check_bytes bs] returns [true] if [bs] is a correct byte representation of a field element *) val check_bytes : Bytes.t -> bool (** The neutral element for the addition *) val zero : t (** The neutral element for the multiplication *) val one : t (** [add a b] returns [a + b mod order] *) val add : t -> t -> t (** [mul a b] returns [a * b mod order] *) val mul : t -> t -> t (** [eq a b] returns [true] if [a = b mod order], else [false] *) val eq : t -> t -> bool (** [negate x] returns [-x mod order]. Equivalently, [negate x] returns the unique [y] such that [x + y mod order = 0] *) val negate : t -> t (** [inverse_exn x] returns [x^-1] if [x] is not [0], else raise [Division_by_zero] *) val inverse_exn : t -> t (** [inverse_opt x] returns [x^-1] if [x] is not [0] as an option, else [None] *) val inverse_opt : t -> t option (** [pow x n] returns [x^n] *) val pow : t -> Z.t -> t (** From a predefined bytes representation, construct a value t. It is not required that to_bytes (of_bytes_exn t) = t. Raise [Not_in_field] if the bytes do not represent an element in the field. *) val of_bytes_exn : Bytes.t -> t (** From a predefined bytes representation, construct a value t. It is not required that to_bytes (Option.get (of_bytes_opt t)) = t. By default, little endian encoding is used and the given element is modulo the prime order *) val of_bytes_opt : Bytes.t -> t option (** Convert the value t to a bytes representation which can be used for hashing for instance. It is not required that to_bytes (of_bytes_exn t) = t. By default, little endian encoding is used, and length of the resulting bytes may vary depending on the order. *) val to_bytes : t -> Bytes.t end (** Module type for the prime fields GF(p) *) module type PRIME_FIELD = sig include FIELD (** Actual number of bytes allocated for a value of type t *) val size_in_memory : int (** [of_z x] builds an element t from the Zarith element [x]. [mod order] is applied if [x >= order] or [x < 0]. *) val of_z : Z.t -> t (** [to_z x] builds a Zarith element, using the decimal representation. Arithmetic on the result can be done using the modular functions on integers *) val to_z : t -> Z.t end module type CURVE = sig exception Not_on_curve of Bytes.t (** The type of the element in the elliptic curve *) type t (** Actual number of bytes allocated for a value of type t *) val size_in_memory : int (** The size of a point representation, in bytes *) val size_in_bytes : int module Scalar : FIELD (** Check if a point, represented as a byte array, is on the curve **) val check_bytes : Bytes.t -> bool (** Attempt to construct a point from a byte array *) val of_bytes_opt : Bytes.t -> t option (** Attempt to construct a point from a byte array. Raise [Not_on_curve] if the point is not on the curve *) val of_bytes_exn : Bytes.t -> t (** Return a representation in bytes *) val to_bytes : t -> Bytes.t (** Zero of the elliptic curve *) val zero : t (** A fixed generator of the elliptic curve *) val one : t (** Return the addition of two element *) val add : t -> t -> t (** Double the element *) val double : t -> t (** Return the opposite of the element *) val negate : t -> t (** Return [true] if the two elements are algebraically the same *) val eq : t -> t -> bool (** Multiply an element by a scalar *) val mul : t -> Scalar.t -> t end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>