package octez-libs
A package that contains multiple base libraries used by the Octez suite
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/octez-libs.bls12-381-hash/poseidon_utils.ml.html
Source file poseidon_utils.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
let array_for_all2 p l1 l2 = let n1 = Array.length l1 and n2 = Array.length l2 in if n1 <> n2 then invalid_arg "Array.for_all2" else let rec loop i = if i = n1 then true else if p (Array.unsafe_get l1 i) (Array.unsafe_get l2 i) then loop (succ i) else false in loop 0 (** Linear algebra module, copied from {{: https://gitlab.com/nomadic-labs/privacy-team/-/blob/9e4050cb4a304848901c3434d61a8d7f0c7107c4/nuplompiler/linear_algebra.ml } Nomadic Labs privacy team repository } *) module type Ring_sig = sig type t val add : t -> t -> t val mul : t -> t -> t val negate : t -> t val zero : t val one : t val eq : t -> t -> bool end module type Field_sig = sig include Ring_sig val inverse_exn : t -> t end (** This refers to the mathematical generalization of vector space called "module", where the field of scalars is replaced by a ring *) module type Module_sig = sig type t type matrix = t array array (** [zeros r c] is a matrix with [r] rows and [c] columns filled with zeros *) val zeros : int -> int -> matrix (** [identity n] is the identity matrix of dimension [n] *) val identity : int -> matrix (** matrix equality *) val equal : matrix -> matrix -> bool (** matrix addition *) val add : matrix -> matrix -> matrix (** matrix multiplication *) val mul : matrix -> matrix -> matrix (** matrix transposition *) val transpose : matrix -> matrix (** [row_add ~coeff i j m] adds to the i-th row, the j-th row times coeff in m *) val row_add : ?coeff:t -> int -> int -> matrix -> unit (** [row_swap i j m] swaps the i-th and j-th rows of m *) val row_swap : int -> int -> matrix -> unit (** [row_mul coeff i m] multiplies the i-th row by coeff in m *) val row_mul : t -> int -> matrix -> unit (** [filter_cols f m] removes the columns of [m] whose index does not satisfy [f] *) val filter_cols : (int -> bool) -> matrix -> matrix (** splits matrix [m] into the first n columns and the rest, producing two matrices *) val split_n : int -> matrix -> matrix * matrix end module type VectorSpace_sig = sig include Module_sig (** reduced row Echelon form of m *) val reduced_row_echelon_form : matrix -> matrix (** [inverse m] is the inverse matrix of m @raise [Invalid_argument] if [m] is not invertible *) val inverse : matrix -> matrix end module Make_Module (Ring : Ring_sig) : Module_sig with type t = Ring.t = struct type t = Ring.t type matrix = t array array let zeros r c = Array.make_matrix r c Ring.zero let identity n = Array.(init n (fun i -> init n Ring.(fun j -> if i = j then one else zero))) let equal = array_for_all2 (array_for_all2 Ring.eq) let add = Array.(map2 (map2 Ring.add)) let mul m1 m2 = let nb_rows = Array.length m1 in let nb_cols = Array.length m2.(0) in let n = Array.length m1.(0) in assert (Array.length m2 = n) ; let p = zeros nb_rows nb_cols in for i = 0 to nb_rows - 1 do for j = 0 to nb_cols - 1 do for k = 0 to n - 1 do p.(i).(j) <- Ring.(add p.(i).(j) @@ mul m1.(i).(k) m2.(k).(j)) done done done ; p let transpose m = let nb_rows = Array.length m in let nb_cols = Array.length m.(0) in Array.(init nb_cols (fun i -> init nb_rows (fun j -> m.(j).(i)))) let row_add ?(coeff = Ring.one) i j m = m.(i) <- Array.map2 Ring.(fun a b -> add a (mul coeff b)) m.(i) m.(j) let row_swap i j m = let aux = m.(i) in m.(i) <- m.(j) ; m.(j) <- aux let row_mul coeff i m = m.(i) <- Array.map (Ring.mul coeff) m.(i) let list_filteri p l = let rec aux i acc = function | [] -> List.rev acc | x :: l -> aux (i + 1) (if p i x then x :: acc else acc) l in aux 0 [] l let filter_cols f = Array.map (fun row -> list_filteri (fun i _ -> f i) (Array.to_list row) |> Array.of_list) let split_n n m = (filter_cols (fun i -> i < n) m, filter_cols (fun i -> i >= n) m) end module Make_VectorSpace (Field : Field_sig) : VectorSpace_sig with type t = Field.t = struct include Make_Module (Field) let reduced_row_echelon_form m = let n = Array.length m in (* returns the first non-zero index in the row *) let find_pivot row = let rec aux cnt = function | [] -> None | x :: xs -> if Field.(eq zero x) then aux (cnt + 1) xs else Some cnt in aux 0 (Array.to_list row) in let move_zeros_to_bottom m = let is_non_zero_row = Array.exists (fun a -> not Field.(eq zero a)) in let rec aux nonzeros zeros = function | [] -> Array.of_list (List.rev nonzeros @ zeros) | r :: rs -> if is_non_zero_row r then aux (r :: nonzeros) zeros rs else aux nonzeros (r :: zeros) rs in aux [] [] (Array.to_list m) in let rec aux k = if k >= Array.length m then m else match find_pivot m.(k) with | Some j when j < n -> row_mul (Field.inverse_exn m.(k).(j)) k m ; Array.iteri (fun i _ -> if i <> k then row_add ~coeff:Field.(negate @@ m.(i).(j)) i k m) m ; row_swap k j m ; aux (k + 1) | _ -> aux (k + 1) in aux 0 |> move_zeros_to_bottom let inverse m = let n = Array.length m in let id_n = identity n in let augmented = Array.(map2 append m id_n) in let reduced = reduced_row_echelon_form augmented in let residue, inv = split_n n reduced in let is_zero_row = Array.for_all Field.(eq zero) in if Array.exists is_zero_row residue then raise @@ Invalid_argument "matrix [m] is not invertible" else inv end (* Partial copy of https://gitlab.com/dannywillems/ocaml-polynomial/-/blob/950dc70e8c3070918329d1e7e722f8361c25e182/src/polynomial.ml#L233 *) module MakePoly (R : Bls12_381.Ff_sig.PRIME) = struct (* We encode the polynomials as a list with decreasing degree. Invariants to respect for the type: - all coefficients are non null. - [a_n * X^n + ... a_1 X + a0] is encoded as [a_n ; ... ; a_1 ; a_0] with [a_i] non zero for all [i], i.e. the monomials are given in decreasing order. - the zero polynomial is represented as the empty list. *) type t = (R.t * int) list let zero = [] let one = [(R.one, 0)] let of_coefficients l = (* check if the powers are all positive *) assert (List.for_all (fun (_e, power) -> power >= 0) l) ; (* Remove null coefficients *) let l = List.filter (fun (e, _power) -> not (R.is_zero e)) l in (* sort by the power, higher power first *) let l = List.fast_sort (fun (_e1, power1) (_e2, power2) -> Int.sub power2 power1) l in l let get_dense_polynomial_coefficients polynomial = match polynomial with | [] -> [R.zero] | l -> let l = List.rev l in let rec to_dense acc current_i l = match l with | [] -> acc | (e, n) :: xs -> if n = current_i then to_dense (e :: acc) (current_i + 1) xs else to_dense (R.zero :: acc) (current_i + 1) l in to_dense [] 0 l let add p1 p2 = let rec inner acc l1 l2 = match (l1, l2) with | [], l | l, [] -> List.rev_append acc l | l1, l2 -> let e1, p1 = List.hd l1 in let e2, p2 = List.hd l2 in if p1 = p2 && R.is_zero (R.add e1 e2) then inner acc (List.tl l1) (List.tl l2) else if p1 = p2 then inner ((R.add e1 e2, p1) :: acc) (List.tl l1) (List.tl l2) else if p1 > p2 then inner ((e1, p1) :: acc) (List.tl l1) l2 else inner ((e2, p2) :: acc) l1 (List.tl l2) in let l = inner [] p1 p2 in of_coefficients l let mul p q = let mul_by_monom (scalar, int) p = List.map (fun (scalar_2, int_2) -> (R.mul scalar scalar_2, int + int_2)) p in List.fold_left (fun acc monom -> add acc (mul_by_monom monom q)) zero p let equal p1 p2 = if List.compare_lengths p1 p2 != 0 then false else List.for_all2 (fun (e1, n1) (e2, n2) -> n1 = n2 && R.eq e1 e2) p1 p2 let opposite poly = List.(rev (rev_map (fun (a, i) -> (R.negate a, i)) poly)) let sub p1 p2 = let rec inner acc l1 l2 = match (l1, l2) with | [], l2 -> List.rev_append acc (opposite l2) | l1, [] -> List.rev_append acc l1 | l1, l2 -> let e1, p1 = List.hd l1 in let e2, p2 = List.hd l2 in if p1 = p2 && R.is_zero (R.sub e1 e2) then inner acc (List.tl l1) (List.tl l2) else if p1 = p2 then inner ((R.sub e1 e2, p1) :: acc) (List.tl l1) (List.tl l2) else if p1 > p2 then inner ((e1, p1) :: acc) (List.tl l1) l2 else inner ((R.negate e2, p2) :: acc) l1 (List.tl l2) in let l = inner [] p1 p2 in of_coefficients l let ( - ) = sub let ( * ) = mul end let compute_updated_constants_one_batch width batch_size mds k_cols = let var_name ?(s2 = "") s1 i = s1 ^ "_" ^ string_of_int i ^ s2 in (* We will represent the variables with monomials of increasing degree. For width = 3 and batch = 4, we would have the following matching: x_0, x_1, x_2^5, a, a^5, b, b^5, c, c^5, y_0, y_1, y_2 | | | | | | | | | | | | x^1, x^2, x^3, x^4, x^5, x^6, x^7, x^8, x^9, x^10, x^11, x^12 *) let module Poly = MakePoly (Bls12_381.Fr) in let module Poly_Module = Make_Module (struct include Poly type t = Poly.t let eq = Poly.equal let negate p = Poly.(sub zero p) let mul = Poly.( * ) end) in (* For convenience, we will store the variables and their degree in a StringMap: key = variable's name, value = degree. *) (* We start by create a map for each variables we need *) let module SMap = Map.Make (String) in let varsMap = let vars = (* The initial state of the batch: x_0, ..., x_{width-2}, x_{width-1}^alpha. *) let init_state = List.init width (fun i -> if i != width - 1 then var_name "x" i else var_name "x" i ~s2:"^alpha") in (* The temporary variables of the batch: tmp_0 (= a above), tmp_0^5, ..., tmp_{batch-2}, tmp_{batch-2}^5. *) let tmp = List.concat (List.init (batch_size - 1) (fun i -> [var_name "tmp" i; var_name "tmp" i ~s2:"^alpha"])) in (* The final state of the batch: y_0, ..., y_{width-1}. *) let final_state = List.init width (fun i -> var_name "y" i) in init_state @ tmp @ final_state in SMap.of_seq @@ List.(to_seq @@ mapi (fun i s -> (s, i + 1)) vars) in let get_var s = try SMap.find s varsMap with e -> raise e in let pvar s = Poly.of_coefficients [(Bls12_381.Fr.one, get_var s)] in (* We convert the MDS and round constants into matrices of constant polynomials. *) let to_poly = Array.(map (map (fun c -> Poly.of_coefficients [(c, 0)]))) in let matrix = to_poly mds in let k_cols = Array.map to_poly k_cols in (* And now, we will compute the coefficients *) (* We store in variable "state", the state after the first SBox. *) let state = (* [| [| pvar "x0" |]; [| pvar "x1" |]; [| pvar "x2_5" |] |] *) Array.init width (fun i -> if i != width - 1 then [|pvar (var_name "x" i)|] else [|pvar (var_name "x" i ~s2:"^alpha")|]) in (* We start by computing the temporary state and saving corresponding polys for each of them. a = α_31 x_0 + α_32 x_1 + α_33 x_2^alpha + κ_0 b = β_1 x_1 + β_2 x_1 + β_3 x_2^alpha + β_a a^5 + κ_b c = γ_1 x_1 + γ_2 x_1 + γ_3 x_2^alpha + γ_a a^5 + γ_b b^5 + κ_c *) let dummy_list = List.init (batch_size - 1) (fun i -> i) in let state, polys = List.fold_left (fun (acc_state, acc_poly) i -> (* Updating state by applying the MDS matrix and round constants. *) let state = Poly_Module.(add (mul matrix acc_state) @@ k_cols.(i)) in (* Updating state by applying SBox, defining the next tmp var and saving tmp state to retrieve coeffs later. *) let permuted_var = pvar (var_name "tmp" i) in let poly = Poly.(state.(Int.pred width).(0) - permuted_var) in state.(width - 1) <- [|pvar (var_name "tmp" i ~s2:"^alpha")|] ; (state, poly :: acc_poly)) (state, []) dummy_list in let polys_tmp_var = List.rev polys in (* Computing last state. y_0 = δ_11 x_0 + δ_12 x_1 + δ_13 x_2^alpha + δ_1a a^alpha + δ_1b b^alpha + δ_1c c^alpha + κ_y1 y_1 = δ_21 x_0 + δ_22 x_1 + δ_23 x_2^alpha + δ_2a a^alpha + δ_2b b^alpha + δ_2c c^alpha + κ_y2 y_2 = δ_31 x_0 + δ_32 x_1 + δ_33 x_2^alpha + δ_3a a^alpha + δ_3b b^alpha + δ_3c c^alpha + κ_y3 *) let state = Poly_Module.(add (mul matrix state) @@ k_cols.(batch_size - 1)) in (* Saving final polynomials to retrieve coeffs later. *) let polys_final = List.init width (fun i -> Poly.(state.(i).(0) - pvar (var_name "y" i))) in let polys = let nb_coefs = SMap.cardinal varsMap + 1 in let row_of_eq eq = (* This function gives coefficients in decending order of degree *) let coeffs = Poly.get_dense_polynomial_coefficients eq in let size = nb_coefs - List.length coeffs in List.(rev coeffs @ init size (fun _ -> Bls12_381.Fr.zero)) |> Array.of_list in List.map row_of_eq (polys_tmp_var @ polys_final) in (* We retrieve the updated coefficients and round constants for each round/poly. *) let coeffs, _, _ = (* We list the name of the variables whose coeff need to be retrieved. *) let vars = List.init width (fun i -> if i != width - 1 then var_name "x" i else var_name "x" i ~s2:"^alpha") in (* We iterate over each equations/polys in the paper (c.f. page 8 Fig 5). *) List.fold_left (fun (coeffs, i, vars) poly -> (* For each batched round, we retrieve the constants: the coefficients first followed by the round constant. *) let coeffs = coeffs @ List.map (fun s -> poly.(get_var s)) vars @ [poly.(0)] in (* We update vars by appending the new tmp variable. *) let new_var = [var_name "tmp" i ~s2:"^alpha"] in let vars = if i < batch_size - 1 then vars @ new_var else vars in (* We retrieve the round constant, which is the polynomial constant. *) (coeffs, i + 1, vars)) ([], 0, vars) polys in coeffs let compute_updated_constants r_p r_f width batch_size arc mds = (* We retrieve the partial rounds' round constants by offsetting with the number of constants used in the first full rounds and the first shifted partial round. *) let arc_offset = (r_f * width / 2) + width in let nb_batch = r_p / batch_size in let arc_per_batch = batch_size * width in (* We retrieve the ARC constants for each batch. *) let batched_arc = Array.init nb_batch (fun i -> Array.sub arc (arc_offset + (i * arc_per_batch)) arc_per_batch) in (* We retrieve the remaining ARC constants. *) let unbatched_arc_offset = arc_offset + (arc_per_batch * nb_batch) in let unbatched_arc_size = r_p mod batch_size * width in let unbatched_arc = Array.sub arc unbatched_arc_offset unbatched_arc_size in (* The remaining constants are for the last set of full rounds. As a round ends with adding the round keys, there are (r_f / 2 - 1) * width constants left. *) let arc_full_round_end = Array.sub arc (unbatched_arc_offset + unbatched_arc_size) (((r_f / 2) - 1) * width) in let constants = Array.fold_left (fun acc ks -> (* We split the ARC constants per batch in chunks of size width and format them in a matrix, each batch corresponding to the constants used in one partial round.*) let k_cols = Array.init batch_size (fun i -> Array.init width (fun j -> [|ks.((i * width) + j)|])) in let batch_constants = compute_updated_constants_one_batch width batch_size mds k_cols in acc @ batch_constants) [] batched_arc in let arc_full_round_start = Array.sub arc 0 arc_offset in ( arc_full_round_start, Array.of_list constants, unbatched_arc, arc_full_round_end )
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>