package octez-libs
A package that contains multiple base libraries used by the Octez suite
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-18.1.tar.gz
sha256=aa2f5bc99cc4ca2217c52a1af2a2cdfd3b383208cb859ca2e79ca0903396ca1d
sha512=d68bb3eb615e3dcccc845fddfc9901c95b3c6dc8e105e39522ce97637b1308a7fa7aa1d271351d5933febd7476b2819e1694f31198f1f0919681f1f9cc97cb3a
doc/src/octez-libs.mec/ff.ml.html
Source file ff.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
open Bls12_381.Ff_sig module MakeFp (S : sig val prime_order : Z.t end) : PRIME_WITH_ROOT_OF_UNITY = struct exception Not_in_field of Bytes.t type t = Z.t let order = assert (S.prime_order >= Z.of_string "2") ; S.prime_order let two_z = Z.succ Z.one let factor_power_of_two = let rec aux i n = let q, r = Z.ediv_rem n two_z in if Z.equal r Z.zero then aux (i + 1) q else (i, n) in aux 0 (Z.pred order) let log256 n = log n /. log 256. let size_in_bytes = int_of_float (log256 (Z.to_float order)) + 1 let zero = Z.zero let one = Z.one (** By default, any bytes sequence is valid because we care about the result modulo the order *) let check_bytes _bs = true let copy x = x let is_zero s = Z.equal (Z.erem s order) Z.zero let is_one s = Z.equal (Z.erem s order) Z.one let random ?state () = (match state with None -> () | Some s -> Random.set_state s) ; let r = Bytes.init size_in_bytes (fun _ -> char_of_int (Random.int 256)) in Z.erem (Z.of_bits (Bytes.to_string r)) order let non_null_random ?state () = (match state with None -> () | Some s -> Random.set_state s) ; let rec aux () = let r = random () in if is_zero r then aux () else r in aux () let add a b = Z.erem (Z.add a b) order let sub a b = Z.erem (Z.sub a b) order let mul a b = Z.erem (Z.mul a b) order let eq a b = Z.equal (Z.erem a order) (Z.erem b order) let negate a = sub order a let inverse_exn a = if a = zero then raise Division_by_zero else Z.invert a order let inverse_opt a = try Some (Z.invert a order) with Division_by_zero -> None let div_exn a b = if b = zero then raise Division_by_zero else mul a (inverse_exn b) let div_opt a b = if b = zero then None else Some (mul a (inverse_exn b)) let square x = mul x x let double x = add x x let pow x n = if Z.equal n Z.zero then one else if is_zero x then zero else if Z.equal n Z.one then x else Z.powm x n order (* Decimal representation by default *) let of_string s = Z.erem (Z.of_string s) order (* Decimal representation by default *) let to_string s = Z.to_string s (** From a predefined bytes representation, construct a value t. It is not required that to_bytes (of_bytes_exn t)) = t. By default, little endian encoding is used and the given element is modulo the prime order *) let of_bytes_exn s = Z.erem (Z.of_bits (Bytes.to_string s)) order (** From a predefined bytes representation, construct a value t. It is not required that to_bytes (Option.get (of_bytes_opt t)) = t. By default, little endian encoding is used and the given element is modulo the prime order *) let of_bytes_opt s = Some (of_bytes_exn s) (* Little endian representation *) let to_bytes s = let b = Bytes.of_string (Z.to_bits s) in let res = Bytes.make size_in_bytes '\000' in Bytes.blit b 0 res 0 (min (Bytes.length b) size_in_bytes) ; res let is_nth_root_of_unity n x = (not (eq x zero)) && is_one (pow x n) let get_nth_root_of_unity n = let pred_order = Z.pred order in if Z.gt n pred_order || not (Z.(erem pred_order n) = zero) then failwith "n must divide the order of the multiplication subgroup" else let rec aux () = let r = random () in if is_nth_root_of_unity n r then r else aux () in aux () let to_z t = t let of_z t = Z.erem t order let legendre_symbol x = if is_zero x then Z.zero else if is_one (pow x (Z.divexact (Z.pred order) (Z.of_int 2))) then Z.one else Z.neg Z.one let is_quadratic_residue x = if is_zero x then true else is_one (legendre_symbol x) let rec pick_non_square () = let z = random () in if Z.equal (legendre_symbol z) (Z.of_int (-1)) then z else pick_non_square () let sqrt_opt x = if not (is_quadratic_residue x) then None else (* https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm *) let s, q = factor_power_of_two in (* implies p = 3 mod 4 *) if s = 1 then (* r = x^((p + 1) / 4) *) let r = pow x (Z.divexact (Z.succ order) (Z.of_string "4")) in Some r else let rec compute_lowest_n_2th_root_of_unity i x upper = let x = square x in if is_one x then i else if i = upper then failwith "Upperbound should be higher" (* should never happen in this case, just being explicit *) else compute_lowest_n_2th_root_of_unity (i + 1) x upper in let z = pick_non_square () in let c = pow z q in let rec aux m c t r = if eq t zero then zero (* case x is zero *) else if eq t one then r (* base case *) else let i = compute_lowest_n_2th_root_of_unity 1 t m in let b = pow c (Z.pow two_z (m - i - 1)) in let m = i in let c = mul b b in let t = mul t c in let r = mul r b in aux m c t r in Some (aux s c (pow x q) (pow x (Z.divexact (Z.succ q) two_z))) let of_int x = of_z (Z.of_int x) let ( + ) = add let ( * ) = mul let ( - ) = negate let ( ** ) = pow let ( = ) = eq let ( / ) = div_exn end module MakeFp2 (Fp : BASE) (Intf : sig (* Non square residue. Arithmetic is over Fp[X] / X^2 - r *) val nsr : Fp.t end) : sig include BASE val components : t -> Fp.t * Fp.t end = struct exception Not_in_field of Bytes.t type t = Fp.t * Fp.t let components (a, b) = (a, b) let order = Z.mul Fp.order Fp.order let size_in_bytes = Fp.size_in_bytes * 2 let check_bytes b = if Bytes.length b = size_in_bytes then let x = Bytes.sub b 0 (size_in_bytes / 2) in let y = Bytes.sub b (size_in_bytes / 2) (size_in_bytes / 2) in Fp.check_bytes x && Fp.check_bytes y else false let copy x = x let zero = (Fp.zero, Fp.zero) let one = (Fp.one, Fp.zero) let is_zero (x, y) = Fp.(x = zero && y = zero) let is_one (x, y) = Fp.(x = Fp.one && y = Fp.zero) let random ?state () = (match state with None -> () | Some s -> Random.set_state s) ; (Fp.random (), Fp.random ()) let non_null_random ?state () = (match state with None -> () | Some s -> Random.set_state s) ; let x = Random.bool () in if x then (Fp.non_null_random (), Fp.random ()) else (Fp.random (), Fp.non_null_random ()) let add (x1, y1) (x2, y2) = (Fp.(x1 + x2), Fp.(y1 + y2)) let mul (x1, y1) (x2, y2) = let open Fp in let tmp_x = x1 * x2 in let tmp_y = y1 * y2 in let x' = tmp_x + (Intf.nsr * tmp_y) in let y' = (x1 * y2) + (y1 * x2) in (x', y') let eq (x1, y1) (x2, y2) = Fp.(x1 = x2 && y1 = y2) let negate (x, y) = (Fp.negate x, Fp.negate y) let sub a b = add a (negate b) let aux_inverse (x, y) = (* Let's use square in case of `*` is not optimised for the square case *) let x_square = Fp.square x in let y_square = Fp.square y in (* inverse of [x_square - nsr * y_square] *) let tmp_inverse = Fp.(inverse_exn (x_square + Fp.negate (Intf.nsr * y_square))) in let x' = Fp.(x * tmp_inverse) in let y' = Fp.(negate y * tmp_inverse) in (x', y') let inverse_exn x = if is_zero x then raise Division_by_zero else aux_inverse x let inverse_opt x = if is_zero x then None else Some (aux_inverse x) let div_exn a b = if b = zero then raise Division_by_zero else mul a (inverse_exn b) let div_opt a b = if b = zero then None else Some (mul a (inverse_exn b)) let square (a, b) = let ab = Fp.(a * b) in Fp. ( ((a + b) * (a + (Intf.nsr * b))) + Fp.negate ab + Fp.negate (Intf.nsr * ab), ab + ab ) let double x = add x x let two_z = Z.succ Z.one let rec pow x n = if Z.equal n Z.zero then one else if is_zero x then zero else if Z.equal n Z.one then x else let n = Z.erem n (Z.pred order) in let a, r = Z.ediv_rem n two_z in let acc = pow x a in let acc_square = mul acc acc in if Z.equal r Z.zero then acc_square else mul acc_square x (** From a predefined bytes representation, construct a value t. It is not required that to_bytes (of_bytes_exn t)) = t. By default, little endian encoding is used and the given element is modulo the prime order *) let of_bytes_exn b = if Int.equal (Bytes.length b) size_in_bytes then let x_bytes = Bytes.sub b 0 (Int.div size_in_bytes 2) in let y_bytes = Bytes.sub b (Int.div size_in_bytes 2) (Int.div size_in_bytes 2) in (Fp.of_bytes_exn x_bytes, Fp.of_bytes_exn y_bytes) else raise (Not_in_field b) (** From a predefined bytes representation, construct a value t. It is not required that to_bytes (Option.get (of_bytes_opt t)) = t. By default, little endian encoding is used and the given element is modulo the prime order *) let of_bytes_opt b = if Int.equal (Bytes.length b) size_in_bytes then let x_bytes = Bytes.sub b 0 (Int.div size_in_bytes 2) in let y_bytes = Bytes.sub b (Int.div size_in_bytes 2) (Int.div size_in_bytes 2) in let x = Fp.of_bytes_opt x_bytes in let y = Fp.of_bytes_opt y_bytes in match (x, y) with | None, _ | _, None -> None | Some x, Some y -> Some (x, y) else None (* Little endian representation *) let to_bytes (x, y) = let b = Bytes.make size_in_bytes '\000' in Bytes.blit (Fp.to_bytes x) 0 b 0 (Int.div size_in_bytes 2) ; Bytes.blit (Fp.to_bytes y) 0 b (Int.div size_in_bytes 2) (Int.div size_in_bytes 2) ; b let ( + ) = add let ( * ) = mul let ( - ) = negate let ( ** ) = pow let ( = ) = eq let ( / ) = div_exn end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>