package octez-libs
A package that contains multiple base libraries used by the Octez suite
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-18.1.tar.gz
sha256=aa2f5bc99cc4ca2217c52a1af2a2cdfd3b383208cb859ca2e79ca0903396ca1d
sha512=d68bb3eb615e3dcccc845fddfc9901c95b3c6dc8e105e39522ce97637b1308a7fa7aa1d271351d5933febd7476b2819e1694f31198f1f0919681f1f9cc97cb3a
doc/src/octez-libs.epoxy-tx/tx_rollup.ml.html
Source file tx_rollup.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
(*****************************************************************************) (* *) (* MIT License *) (* Copyright (c) 2022 Nomadic Labs <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) module Constants = Constants module Types = Types module Utils = Utils open Utils open Plompiler module HashPV = Anemoi128 module MerklePV = Gadget.Merkle (HashPV) module SchnorrPV = Plompiler.Schnorr (HashPV) module Hash = HashPV.P module Merkle = MerklePV.P module Schnorr = SchnorrPV.P module Curve = Mec.Curve.Jubjub.AffineEdwards module P = struct open Types.P open Constants (* These functions aimed to format integers more efficiently by compressing them in a scalar. *) (* This function computes the maximal bound of a list of bounded variables written as [(value, bound)_1, ..., (value, bound)_n] *) let compression_bound (values : unit Bounded.t list) = let values = (values :> (Z.t * Z.t) list) in List.fold_left Z.mul Z.one (List.map snd values) (* This function attempts to compress a list of integers into one scalar. *) let compress (values : unit Bounded.t list) = assert (compression_bound values < S.order) ; let values = (values :> (Z.t * Z.t) list) in List.fold_left (fun acc (v, v_bound) -> Z.(v + (acc * v_bound))) (fst @@ List.hd values) (List.tl values) let scalar_of_account (acc : account) = (* We can use just the u coordinate of pk as Edwards curves are symmetric and as such there are only two possible v coordinates and the same sk is used to generate both. We could set a convention to only use pk with v coordination of a given parity, for instance v odd. *) (* TODO move this in schnorr and make the pk directly a single coordinate *) let u = Curve.get_u_coordinate acc.pk |> of_bls_scalar in let compressed = compress Bounded.[f acc.tez_balance; f acc.cnt] in let h = Hash.direct ~input_length:2 [|u; S.of_z compressed|] in (* we leverage the Correlation-Intractablity (with respecto to +) of the hash function and add [h] to the ticket's root (which is also the output of a hash); alternatively (and to avoid relying on CI) we could define [scalar_of_account] as the hash of all 3 inputs [u, compressed, acc.tickets_root ], but that would require one extra iteration of the hash function *) S.add h acc.tickets_root let scalar_of_leaf (l : leaf) = let compressed = compress Bounded.[f l.pos; f l.ticket.amount] in Hash.direct ~input_length:2 [|l.ticket.id; S.of_z compressed|] let default_leaf pos = { pos = Bounded.make ~bound:Bound.max_nb_leaves (Z.of_int pos); ticket = Dummy.ticket_balance; } let empty_ticket_tree start_pos = let size = max_nb_tickets in let leaves = Array.init size (fun i -> default_leaf (i + start_pos)) in ( leaves, Merkle.generate_tree ~leaves:(Array.map scalar_of_leaf leaves) tickets_depth ) let default_account acc_index = let start_pos = max_nb_tickets * acc_index in let leaves, ticket_tree = empty_ticket_tree start_pos in let tickets_root = Merkle.root ticket_tree in ( { pk = Curve.one; tez_balance = Bounded.make ~bound:Bound.max_balance Z.zero; cnt = Bounded.make ~bound:Bound.max_counter Z.zero; tickets_root; }, leaves, ticket_tree ) let get_account : int -> (account * leaf array * Merkle.tree) IMap.t -> account * leaf array * Merkle.tree = fun i accs -> IMap.find_opt i accs |> Option.value ~default:(default_account i) let random_leaf pos = let id = S.random () in let amount = Bounded.random Bound.max_balance in {pos; ticket = {id; amount}} let random_ticket_tree start_pos = let size = max_nb_tickets in let leaves = Array.init size (fun i -> random_leaf (Bounded.make ~bound:Bound.max_nb_leaves @@ Z.of_int @@ (i + start_pos))) in ( Merkle.generate_tree ~leaves:(Array.map scalar_of_leaf leaves) tickets_depth, leaves ) let random_account sks i = let open Bound in let tez_balance = Bounded.make Z.(v max_balance / two) ~bound:max_balance in let pk = Schnorr.neuterize sks.(i) in let cnt = Bounded.random max_counter in let start_pos = max_nb_tickets * i in let ticket_tree, leaves = random_ticket_tree start_pos in let tickets_root = Merkle.root ticket_tree in ({tez_balance; pk; cnt; tickets_root}, leaves, ticket_tree) let random_state sks () = (* We don't generate empty states *) let size = 1 + random_int (max_nb_accounts - 1) in let next_index = random_int max_nb_accounts in let next_position = max_nb_tickets * next_index in let indices = List.init size (fun _ -> random_int max_nb_accounts) in let indices = List.filter (fun i -> next_index <> i) indices in let accs_list = List.map (random_account sks) indices in let indexed_accounts = List.combine indices accs_list in let accounts = IMap.of_seq (List.to_seq indexed_accounts) in let account_scalars = Array.init max_nb_accounts (fun i -> scalar_of_account (let x, _, _ = default_account i in x)) in let () = List.iter (fun (i, (acc, _, _)) -> account_scalars.(i) <- scalar_of_account acc) indexed_accounts in let accounts_tree = Merkle.generate_tree ~leaves:account_scalars accounts_depth in {accounts; accounts_tree; next_position} let empty_state () = let accounts = Array.init max_nb_accounts (fun i -> default_account i) in let accounts_tree = Merkle.generate_tree ~leaves:(Array.map (fun (a, _, _) -> scalar_of_account a) accounts) accounts_depth in let accounts = Array.mapi (fun i x -> (i, x)) accounts in let accounts = IMap.of_seq @@ Array.to_seq accounts in {accounts; accounts_tree; next_position = 0} let make_state (bals : (Schnorr.pk * Z.t * balance ticket array) list) = let open Bound in let s = empty_state () in let _, accounts, accounts_tree = List.fold_left (fun (i, accounts, accounts_tree) (pk, tez_bal, tickets) -> let acc, leaves, _tree = get_account i accounts in let leaves = Array.mapi (fun i {pos; ticket} -> let ticket = try tickets.(i) with Invalid_argument _ -> ticket in {pos; ticket}) leaves in let tree = Merkle.generate_tree ~leaves:(Array.map scalar_of_leaf leaves) tickets_depth in let acc = { acc with tez_balance = Bounded.make ~bound:max_balance tez_bal; pk; tickets_root = Merkle.root tree; } in let accounts = IMap.add i (acc, leaves, tree) accounts in let accounts_tree = Merkle.update_tree ~input_length:2 accounts_tree i (scalar_of_account acc) in (i + 1, accounts, accounts_tree)) (0, s.accounts, s.accounts_tree) bals in {accounts; accounts_tree; next_position = List.length bals * max_nb_tickets} let coerce (type a) (x : a Bounded.t) = fst (x : a Bounded.t :> Z.t * Z.t) let hash_op (t : unsigned_tx) = let module Curve = Mec.Curve.Jubjub.AffineEdwards in let module S = Bls12_381.Fr in match t with (* Do not use wildcard patterns, make sure we never forget to sign a field *) | Transfer {header; payload = {src; dst; fee; amount; cnt}} -> let compressed_msg = compress Bounded. [ f header.op_code; f header.price.amount; f src; f dst; f fee; f amount.amount; f cnt; ] in Hash.direct ~input_length:4 [| scalar_of_bytes header.l1_dst; S.of_z compressed_msg; header.price.id; amount.id; |] | Create {header; payload = {pk; fee}} -> let compressed_msg = compress Bounded.[f header.op_code; f header.price.amount; f fee] in let pk_x, pk_y = affine_to_point pk in Hash.direct ~input_length:5 [| scalar_of_bytes header.l1_dst; S.of_z compressed_msg; pk_x; pk_y; header.price.id; |] | Credit {header; payload = {dst; amount; cnt}} -> let compressed_msg = compress Bounded. [ f header.op_code; f header.price.amount; f dst; f amount.amount; f cnt; ] in Hash.direct ~input_length:4 [| scalar_of_bytes header.l1_dst; S.of_z compressed_msg; header.price.id; amount.id; |] | Debit {header; payload = {src; amount; cnt}} -> let compressed_msg = compress Bounded. [ f header.op_code; f header.price.amount; f src; f amount.amount; f cnt; ] in Hash.direct ~input_length:4 [| scalar_of_bytes header.l1_dst; S.of_z compressed_msg; header.price.id; amount.id; |] let sign_op sk (t : unsigned_tx) : tx = let module Curve = Mec.Curve.Jubjub.AffineEdwards in let module S = Bls12_381.Fr in let msg = hash_op t in match t with (* Do not use wildcard patterns, make sure we never forget to sign a field *) | Transfer {header; payload = {src; dst; fee; amount; cnt}} -> let signature = let random = Curve.Scalar.random () in Schnorr.sign ~compressed:true sk msg random in Transfer {header; payload = {msg = {src; dst; fee; amount; cnt}; signature}} | Create {header; payload = {pk; fee}} -> let signature = let random = Curve.Scalar.random () in Schnorr.sign ~compressed:true sk msg random in Create {header; payload = {msg = {pk; fee}; signature}} | Debit {header; payload = {src; amount; cnt}} -> let signature = let random = Curve.Scalar.random () in Schnorr.sign ~compressed:true sk msg random in Debit {header; payload = {msg = {src; amount; cnt}; signature}} | Credit t -> Credit t (* Check if an operation is valid in a certain state and, if possible, return the storage needed to make the proof. The only case where the storage isn't computed is for ill-formed ops, as the ill-formed circuits do not need any storage. *) let preprocess_operation : state -> tx -> tezos_zkru -> state * tx * tx_storage option = fun s tx rollup_id -> match tx with | Transfer ({header; payload = {msg = {cnt; src; dst; amount; fee}; signature}} as op) -> let msg = hash_op @@ Transfer {header; payload = {cnt; src; dst; amount; fee}} in let well_formed = Bounded.( check cnt && check src && check dst && check amount.amount && check fee) in if not well_formed then (s, Transfer op, None) else let src_index = Z.to_int (coerce src) / Constants.max_nb_tickets in let src_offset = Z.to_int (coerce src) mod Constants.max_nb_tickets in let dst_index = Z.to_int (coerce dst) / Constants.max_nb_tickets in let dst_offset = Z.to_int (coerce dst) mod Constants.max_nb_tickets in let src_account, src_leaves, src_tree = get_account src_index s.accounts in let src_leaf = src_leaves.(src_offset) in let is_tez = amount.id = Constants.tez_id in let ticket_amount = if is_tez then Bounded.make ~bound:Constants.Bound.max_amount Z.zero else amount.amount in let tez_transfer_amount = if is_tez then amount.amount else Bounded.make ~bound:Constants.Bound.max_amount Z.zero in let tez_amount = Bounded.add_left ~unsafe:true tez_transfer_amount fee in let new_tez_amount_src = Bounded.(sub_left ~unsafe:true src_account.tez_balance tez_amount) in let new_ticket_amount_src = Bounded.(sub_left ~unsafe:true src_leaf.ticket.amount ticket_amount) in let dst_account, dst_leaves, _dst_tree = (* When src and dst are the same, we need to apply the effects of the transfer from src to the state before checking the validity of the dst *) if dst_index = src_index then ( let new_ticket_src = {src_leaf.ticket with amount = new_ticket_amount_src} in let new_leaf_src = {src_leaf with ticket = new_ticket_src} in src_leaves.(src_offset) <- new_leaf_src ; let src_tree = Merkle.update_tree ~input_length:2 src_tree src_offset (scalar_of_leaf new_leaf_src) in let new_cnt_src = Bounded.succ ~unsafe:true src_account.cnt in let new_acc_src = { src_account with tez_balance = new_tez_amount_src; cnt = new_cnt_src; tickets_root = Merkle.root src_tree; } in (new_acc_src, src_leaves, src_tree)) else get_account dst_index s.accounts in let dst_leaf = dst_leaves.(dst_offset) in let new_tez_amount_dst = Bounded.( add_left ~unsafe:true dst_account.tez_balance tez_transfer_amount) in let new_ticket_amount_dst = Bounded.(add_left ~unsafe:true dst_leaf.ticket.amount ticket_amount) in let check_counter = src_account.cnt < cnt in let check_signature = Schnorr.verify ~compressed:true ~msg ~pk:src_account.pk ~signature () in let check_balances = Z.(coerce new_tez_amount_src >= zero) && Z.(coerce new_ticket_amount_src >= zero) && Bounded.check new_tez_amount_dst && Bounded.check new_ticket_amount_dst in (* TODO: add check for rollup id *) let check_rollup_id = rollup_id = header.rollup_id in let check_ticket_ids = let check_src = is_tez || amount.id = src_leaf.ticket.id in let check_dst = is_tez || Z.(Bounded.v @@ dst_leaf.ticket.amount = zero) || amount.id = dst_leaf.ticket.id in check_src && check_dst in let check_dst_pk = dst_account.pk <> Curve.one in let check_price = Z.(zero = Bounded.v header.price.amount) in let valid = check_counter && check_signature && check_balances && check_dst_pk && check_ticket_ids && check_price && check_rollup_id in let src_proof, s = let _, path = Merkle.proof_path src_index s.accounts_tree in let s = if valid then ( let new_ticket_src = {src_leaf.ticket with amount = new_ticket_amount_src} in let new_leaf_src = {src_leaf with ticket = new_ticket_src} in src_leaves.(src_offset) <- new_leaf_src ; let src_tree = Merkle.update_tree ~input_length:2 src_tree src_offset (scalar_of_leaf new_leaf_src) in let new_cnt_src = Bounded.succ ~unsafe:true src_account.cnt in let new_acc_src = { src_account with tez_balance = new_tez_amount_src; cnt = new_cnt_src; tickets_root = Merkle.root src_tree; } in let accounts = IMap.add src_index (new_acc_src, src_leaves, src_tree) s.accounts in let accounts_tree = Merkle.update_tree ~input_length:2 s.accounts_tree src_index (scalar_of_account new_acc_src) in {s with accounts_tree; accounts}) else s in let root = Merkle.root s.accounts_tree in ({path; root}, s) in let acc_after_src, leaves_after_src, tree_after_src = get_account src_index s.accounts in let leaf_after_src = leaves_after_src.(src_offset) in let _, src_leaf_path = Merkle.proof_path src_offset tree_after_src in let src = { account = {before = src_account; after = acc_after_src; proof = src_proof}; leaf = { before = src_leaf; after = leaf_after_src; path = src_leaf_path; }; } in (* We retrieve bl_dst after updating the src_leaf as dst may be equal to src *) let dst_account, dst_leaves, dst_tree = get_account dst_index s.accounts in let dst_proof, s = let _, path = Merkle.proof_path dst_index s.accounts_tree in let s = if valid then ( let new_ticket_dst = { id = (if is_tez then dst_leaf.ticket.id else amount.id); amount = new_ticket_amount_dst; } in let new_leaf_dst = {dst_leaf with ticket = new_ticket_dst} in dst_leaves.(dst_offset) <- new_leaf_dst ; let dst_tree = Merkle.update_tree ~input_length:2 dst_tree dst_offset (scalar_of_leaf new_leaf_dst) in let new_acc_dst = { dst_account with tez_balance = new_tez_amount_dst; tickets_root = Merkle.root dst_tree; } in let accounts = IMap.add dst_index (new_acc_dst, dst_leaves, dst_tree) s.accounts in let accounts_tree = Merkle.update_tree ~input_length:2 s.accounts_tree dst_index (scalar_of_account new_acc_dst) in {s with accounts_tree; accounts}) else s in let root = Merkle.root s.accounts_tree in ({path; root}, s) in let acc_after_dst, leaves_after_dst, tree_after_dst = get_account dst_index s.accounts in let leaf_after_dst = leaves_after_dst.(dst_offset) in let _, dst_leaf_path = Merkle.proof_path dst_offset tree_after_dst in let dst = { account = {before = dst_account; after = acc_after_dst; proof = dst_proof}; leaf = { before = dst_leaf; after = leaf_after_dst; path = dst_leaf_path; }; } in (s, Transfer op, Some (Transfer {src; dst; valid})) | Create ({header; payload = {msg = {pk; fee}; signature}} as op) -> let msg = hash_op @@ Create {header; payload = {pk; fee}} in let well_formed = Bounded.(check fee) in if not well_formed then (s, Create op, None) else let dst_pos = s.next_position in let dst_index = dst_pos / Constants.max_nb_tickets in let dst_offset = dst_pos mod Constants.max_nb_tickets in assert (dst_offset = 0) ; let next_empty_pos = dst_pos + Constants.max_nb_tickets in let next_empty_index = dst_index + 1 in let next_empty_offset = 0 in let s = {s with next_position = next_empty_pos} in let dst_account, dst_leaves, dst_tree = get_account dst_index s.accounts in let next_empty_account, next_empty_leaves, next_empty_tree = get_account (dst_index + 1) s.accounts in let check_next_is_empty = next_empty_account.pk = Curve.one in let check_rollup_id = rollup_id = header.rollup_id in let check_signature = Schnorr.verify ~compressed:true ~msg ~pk ~signature () in let check_price = Bounded.v header.price.amount = Bounded.v fee && header.price.id = Constants.tez_id in let valid = check_signature && check_next_is_empty && check_price && check_rollup_id in let next_empty_proof, s = let _, path = Merkle.proof_path next_empty_index s.accounts_tree in let root = Merkle.root s.accounts_tree in ({path; root}, s) in let dst_proof, s = let _, path = Merkle.proof_path dst_index s.accounts_tree in let s = if valid then let new_acc_dst = {dst_account with pk} in let accounts = IMap.add dst_index (new_acc_dst, dst_leaves, dst_tree) s.accounts in let accounts_tree = Merkle.update_tree ~input_length:2 s.accounts_tree dst_index (scalar_of_account new_acc_dst) in {s with accounts_tree; accounts} else s in let root = Merkle.root s.accounts_tree in ({path; root}, s) in let acc_after_dst, _, _ = get_account dst_index s.accounts in let dst_leaf = dst_leaves.(dst_offset) in let _, dst_leaf_path = Merkle.proof_path dst_offset dst_tree in let dst = { account = {before = dst_account; after = acc_after_dst; proof = dst_proof}; leaf = {before = dst_leaf; after = dst_leaf; path = dst_leaf_path}; } in let next_empty_leaf = next_empty_leaves.(next_empty_offset) in let _, ne_leaf_path = Merkle.proof_path next_empty_offset next_empty_tree in let next_empty = { account = { before = next_empty_account; after = next_empty_account; proof = next_empty_proof; }; leaf = { before = next_empty_leaf; after = next_empty_leaf; path = ne_leaf_path; }; } in (s, Create op, Some (Create {dst; next_empty; valid})) | Credit ({header; payload = {cnt; dst; amount}} as op) -> let well_formed = Bounded.(check cnt && check dst && check amount.amount) in if not well_formed then (s, Credit op, None) else let dst_index = Z.to_int (coerce dst) / Constants.max_nb_tickets in let dst_offset = Z.to_int (coerce dst) mod Constants.max_nb_tickets in let is_tez = amount.id = Constants.tez_id in let ticket_amount = if is_tez then Bounded.make ~bound:Constants.Bound.max_amount Z.zero else amount.amount in let tez_amount = if is_tez then amount.amount else Bounded.make ~bound:Constants.Bound.max_amount Z.zero in let dst_account, dst_leaves, dst_tree = get_account dst_index s.accounts in let dst_leaf = dst_leaves.(dst_offset) in let new_tez_amount_dst = Bounded.(add_left ~unsafe:true dst_account.tez_balance tez_amount) in let new_ticket_amount_dst = Bounded.(add_left ~unsafe:true dst_leaf.ticket.amount ticket_amount) in let check_counter = dst_account.cnt < cnt in let check_balances = Bounded.check new_tez_amount_dst && Bounded.check new_ticket_amount_dst in let check_rollup_id = rollup_id = header.rollup_id in let check_ticket_ids = is_tez || Z.(Bounded.v @@ dst_leaf.ticket.amount = zero) || amount.id = dst_leaf.ticket.id in let check_price = Bounded.v header.price.amount = Bounded.v amount.amount && header.price.id = amount.id in let check_dst_pk = dst_account.pk <> Curve.one in let valid = check_counter && check_dst_pk && check_balances && check_ticket_ids && check_price && check_rollup_id in let dst_proof, s = let _, path = Merkle.proof_path dst_index s.accounts_tree in let s = if valid then ( let new_ticket_dst = {id = amount.id; amount = new_ticket_amount_dst} in let new_leaf_dst = {dst_leaf with ticket = new_ticket_dst} in dst_leaves.(dst_offset) <- new_leaf_dst ; let dst_tree = Merkle.update_tree ~input_length:2 dst_tree dst_offset (scalar_of_leaf new_leaf_dst) in let new_acc_dst = { dst_account with tez_balance = new_tez_amount_dst; cnt; tickets_root = Merkle.root dst_tree; } in let accounts = IMap.add dst_index (new_acc_dst, dst_leaves, dst_tree) s.accounts in let accounts_tree = Merkle.update_tree ~input_length:2 s.accounts_tree dst_index (scalar_of_account new_acc_dst) in {s with accounts_tree; accounts}) else s in let root = Merkle.root s.accounts_tree in ({path; root}, s) in let acc_after_dst, leaves_after_dst, tree_after_dst = get_account dst_index s.accounts in let leaf_after_dst = leaves_after_dst.(dst_offset) in let _, dst_leaf_path = Merkle.proof_path dst_offset tree_after_dst in let dst = { account = {before = dst_account; after = acc_after_dst; proof = dst_proof}; leaf = { before = dst_leaf; after = leaf_after_dst; path = dst_leaf_path; }; } in (s, Credit op, Some (Credit {dst; valid})) | Debit ({header; payload = {msg = {cnt; src; amount}; signature}} as op) -> let msg = hash_op @@ Debit {header; payload = {cnt; src; amount}} in let well_formed = Bounded.(check cnt && check src && check amount.amount) in if not well_formed then (s, Debit op, None) else let src_index = Z.to_int (coerce src) / Constants.max_nb_tickets in let src_offset = Z.to_int (coerce src) mod Constants.max_nb_tickets in let src_account, src_leaves, src_tree = get_account src_index s.accounts in let src_leaf = src_leaves.(src_offset) in let is_tez = amount.id = Constants.tez_id in let ticket_amount = if is_tez then Bounded.make ~bound:Constants.Bound.max_amount Z.zero else amount.amount in let tez_amount = if is_tez then amount.amount else Bounded.make ~bound:Constants.Bound.max_amount Z.zero in let new_tez_amount_src = Bounded.(sub_left ~unsafe:true src_account.tez_balance tez_amount) in let new_ticket_amount_src = Bounded.(sub_left ~unsafe:true src_leaf.ticket.amount ticket_amount) in let check_counter = src_account.cnt < cnt in let check_signature = Schnorr.verify ~compressed:true ~msg ~pk:src_account.pk ~signature () in let check_balances = Z.(coerce new_tez_amount_src >= zero) && Z.(coerce new_ticket_amount_src >= zero) in let check_rollup_id = rollup_id = header.rollup_id in let check_ticket_ids = is_tez || amount.id = src_leaf.ticket.id in let check_price = Bounded.v header.price.amount = Bounded.v amount.amount && header.price.id = amount.id in let valid = check_counter && check_signature && check_balances && check_ticket_ids && check_price && check_rollup_id in let src_proof, s = let _, path = Merkle.proof_path src_index s.accounts_tree in let s = if valid then ( let new_ticket_src = {src_leaf.ticket with amount = new_ticket_amount_src} in let new_leaf_src = {src_leaf with ticket = new_ticket_src} in src_leaves.(src_offset) <- new_leaf_src ; let src_tree = Merkle.update_tree ~input_length:2 src_tree src_offset (scalar_of_leaf new_leaf_src) in let new_cnt_src = Bounded.succ ~unsafe:true src_account.cnt in let new_acc_src = { src_account with tez_balance = new_tez_amount_src; cnt = new_cnt_src; tickets_root = Merkle.root src_tree; } in let accounts = IMap.add src_index (new_acc_src, src_leaves, src_tree) s.accounts in let accounts_tree = Merkle.update_tree ~input_length:2 s.accounts_tree src_index (scalar_of_account new_acc_src) in {s with accounts_tree; accounts}) else s in let root = Merkle.root s.accounts_tree in ({path; root}, s) in let acc_after_src, leaves_after_src, tree_after_src = get_account src_index s.accounts in let leaf_after_src = leaves_after_src.(src_offset) in let _, src_leaf_path = Merkle.proof_path src_offset tree_after_src in let src = { account = {before = src_account; after = acc_after_src; proof = src_proof}; leaf = { before = src_leaf; after = leaf_after_src; path = src_leaf_path; }; } in (s, Debit op, Some (Debit {src; valid})) (* Get validity from an optional tx storage, as computed by preprocess_op *) let get_validity tx_s : bool = match tx_s with | Some (Transfer t_s) -> t_s.valid | Some (Create t_s) -> t_s.valid | Some (Credit t_s) -> t_s.valid | Some (Debit t_s) -> t_s.valid | None -> false (* Get the actual fee of an op *) let tx_fee (op : tx) op_s = let z = Bounded.make ~bound:Constants.Bound.max_fee Z.zero in match (op, get_validity op_s) with | Transfer tx, true -> tx.payload.msg.fee | Create tx, true -> tx.payload.msg.fee | _ -> z let preprocess_private_batch (s : state) ops rollup_id = let s, ops, ops_s, fees = List.fold_left (fun (s, ops, ops_s, acc_fee) op -> let s, tx, tx_s = preprocess_operation s op rollup_id in let fee = tx_fee tx tx_s in let op = match tx with Transfer op -> op | _ -> assert false in let op_s = match tx_s with Some (Transfer op_s) -> op_s | _ -> assert false in ( s, op :: ops, op_s :: ops_s, Bounded.add_left ~unsafe:true acc_fee fee )) (s, [], [], Bounded.make ~bound:Constants.Bound.max_amount Z.zero) ops in let ops, ops_s = (List.rev ops, List.rev ops_s) in (s, ops, ops_s, fees) type generate_op_result = { tx : tx; tx_s : tx_storage; fee : fee Bounded.t; hash : S.t; exit_validity : bool; } let generate_transaction : ?src_pos:Z.t -> ?dst_pos:Z.t -> ?amount:amount ticket -> ?fee:Z.t -> ?cnt:Z.t -> ?valid:bool -> ?unsafe:bool -> sks:Schnorr.sk array -> state -> generate_op_result * state = fun ?src_pos ?dst_pos ?amount ?fee ?cnt ?(valid = true) ?(unsafe = false) ~sks s -> let open Bound in let unpack_optional ~bound ?opts ?(maxv = Bound.v bound) arg = match (arg, opts) with | Some v, _ -> Bounded.make ~unsafe ~bound v | None, Some opts -> let len_opts = List.length opts in assert (len_opts > 0) ; let i = random_int len_opts in Bounded.make ~unsafe ~bound @@ List.nth opts i | _ -> Bounded.random ~maxv bound in let open_positions = List.of_seq (* TODO: use other offsets *) @@ Seq.map (fun (i, _) -> Z.of_int @@ (max_nb_tickets * i)) @@ IMap.to_seq s.accounts in let src_pos = unpack_optional ~bound:max_nb_leaves ~opts:open_positions src_pos in let src_pos_i = Z.to_int @@ Bounded.v src_pos in let src_index = src_pos_i / max_nb_tickets in let src_offset = src_pos_i mod max_nb_tickets in let dst_pos = unpack_optional ~bound:max_nb_leaves ~opts:open_positions dst_pos in let dst_pos_i = Z.to_int @@ Bounded.v dst_pos in let dst_index = dst_pos_i / max_nb_tickets in let dst_offset = dst_pos_i mod max_nb_tickets in let sk_src = sks.(src_index) in let src_acc, src_leaves, _src_tree = get_account src_index s.accounts in let dst_acc, dst_leaves, _dst_tree = get_account dst_index s.accounts in let src_leaf = src_leaves.(src_offset) in let dst_leaf = dst_leaves.(dst_offset) in let cnt = Option.( value ~default:src_acc.cnt (map (Bounded.make ~unsafe ~bound:max_counter) cnt)) in let cnt = Bounded.succ cnt in let fee = unpack_optional ~bound:max_fee ~maxv:Z.(min (Bounded.v src_acc.tez_balance) (Bound.v max_fee)) fee in let amount_id = Option.(value ~default:tez_id (map (fun {id; _} -> id) amount)) in let is_tez = amount_id = tez_id in let max_src_amount = if is_tez then Z.(min Bounded.(v src_acc.tez_balance - v fee) (Bound.v max_amount)) else Z.(min Bounded.(v src_leaf.ticket.amount) (Bound.v max_amount)) in let max_dst_amount = let bal = if is_tez then dst_acc.tez_balance else dst_leaf.ticket.amount in Z.(Bound.v max_balance - Bounded.v bal) in let amount_amount = unpack_optional ~bound:max_amount ~maxv:Z.(min max_src_amount max_dst_amount) (Option.map (fun {amount; id = _id} -> Bounded.v amount) amount) in let amount = {id = amount_id; amount = amount_amount} in let header = Dummy.header in let unsigned_payload = {cnt; src = src_pos; dst = dst_pos; amount; fee} in let op = sign_op sk_src (Transfer {header; payload = unsigned_payload}) in let msg = hash_op (Transfer {header; payload = unsigned_payload}) in let s, tx, tx_s = preprocess_operation s op header.rollup_id in let tx_s = Option.get tx_s in ( { tx; tx_s; fee = (if valid then fee else Bounded.make ~unsafe ~bound:max_fee Z.zero); hash = msg; exit_validity = false; }, s ) let generate_transactions : ?src_pos:Z.t -> ?dst_pos:Z.t -> ?amount:amount ticket -> ?fee:Z.t -> ?cnt:Z.t -> ?valid:bool -> ?unsafe:bool -> nb_batches:int -> batch_size:int -> sks:Schnorr.sk array -> state -> (generate_op_result list * state) list = fun ?src_pos ?dst_pos ?amount ?fee ?cnt ?(valid = true) ?(unsafe = false) ~nb_batches ~batch_size ~sks state -> let make_batch state = let batch, state = List.fold_left (fun (txs, state) _ -> let tx, state = generate_transaction ?src_pos ?dst_pos ?amount ?fee ?cnt ~valid ~unsafe ~sks state in (tx :: txs, state)) ([], state) (List.init batch_size Fun.id) in (List.rev batch, state) in let batches, _ = List.fold_left (fun (batches, state) _ -> let batch, state = make_batch state in ((batch, state) :: batches, state)) ([], state) (List.init nb_batches Fun.id) in List.rev batches end module V (L : LIB) = struct module Hash = HashPV.V (L) module Plompiler_Curve = JubjubEdwards (L) module Schnorr = SchnorrPV.V (L) module Merkle = MerklePV.V (L) open L module T = Types.V (L) open T module Encodings = Types.Encodings (L) let compression_bound (values : unit Bounded_u.t list) = let values = (values :> (scalar repr * Z.t) list) in List.fold_left Z.mul Z.one (List.map snd values) let monadic_compress (values : unit Bounded_u.t list) = assert (compression_bound values < S.order) ; let values = (values :> (scalar repr * Z.t) list) in foldM (fun acc (v, v_bound) -> Num.add ~ql:(S.of_z v_bound) acc v) (fst @@ List.hd values) (List.tl values) let assert_merkle_proof x path root = let* b = Merkle.merkle_proof path x root in Bool.assert_true b let hash_leaf (l : leaf_u) = let* compressed = monadic_compress Bounded_u.[f l.pos; f l.ticket.amount] in Hash.digest ~input_length:2 (to_list [l.ticket.id; compressed]) let hash_account (acc : account_u) = let pk_x, _pk_y = of_pair acc.pk in let* compressed = monadic_compress Bounded_u.[f acc.tez_balance; f acc.cnt] in let* h = Hash.digest ~input_length:2 (to_list [pk_x; compressed]) in (* we leverage the Correlation-Intractablity (with respecto to +) of the hash function and add [h] to the ticket's root (which is also the output of a hash); alternatively (and to avoid relying on CI) we could define [scalar_of_account] as the hash of all 3 inputs [pk_x, compressed, acc.tickets_root ], but that would require one extra iteration of the hash function *) Num.add h acc.tickets_root let assert_tree_proofs (acc : account_u) (leaf : leaf_u) path_acc path_leaf root = let* scalar_acc = hash_account acc in assert_merkle_proof scalar_acc path_acc root >* let* scalar_leaf = hash_leaf leaf in assert_merkle_proof scalar_leaf path_leaf acc.tickets_root let coerce (type a) (x : a Bounded_u.t) = fst (x : a Bounded_u.t :> scalar repr * Z.t) let check_eq_account (a : account_u) (b : account_u) = with_bool_check (equal a.pk b.pk) >* with_bool_check (equal (coerce a.tez_balance) (coerce b.tez_balance)) >* with_bool_check (equal (coerce a.cnt) (coerce b.cnt)) >* with_bool_check (equal a.tickets_root b.tickets_root) let check_eq_leaf (a : leaf_u) (b : leaf_u) = with_bool_check (equal (coerce a.pos) (coerce b.pos)) >* with_bool_check (equal a.ticket.id b.ticket.id) >* with_bool_check (equal (coerce a.ticket.amount) (coerce b.ticket.amount)) let predicate_fees ~old_root ~old_next_pos ~new_root ~new_next_pos ~fees operator = let safety = Encodings.Bounded_e.Unsafe in let* old_root = input ~kind:`Public @@ Input.scalar old_root in let* old_next_pos = input ~kind:`Public @@ Encodings.(pos_encoding ~safety).input old_next_pos in let* new_root = input ~kind:`Public @@ Input.scalar new_root in let* new_next_pos = input ~kind:`Public @@ Encodings.(pos_encoding ~safety).input new_next_pos in let* fees = input ~kind:`Public @@ Encodings.((amount_encoding ~safety).input) fees in let* operator = input @@ Encodings.account_tree_el_encoding.input operator in let* generator = Plompiler_Curve.(input_point @@ affine_to_point Curve.one) in let fees = Encodings.((amount_encoding ~safety).decode) fees in let operator = Encodings.account_tree_el_encoding.decode operator in assert_equal old_next_pos new_next_pos >* let* before_s = hash_account operator.before in let* after_s = hash_account operator.after in assert_merkle_proof before_s operator.proof.path old_root >* assert_merkle_proof after_s operator.proof.path new_root (* When checking MPs, we need to check that the whole leaves are consistent, not just the new balance *) >* let* new_bl_operator = Bounded_u.add_left operator.before.tez_balance fees in let new_acc_operator = {operator.before with tez_balance = new_bl_operator} in check_eq_account new_acc_operator operator.after >* let x_pk = of_pair operator.before.pk |> fst in let x_g = of_pair generator |> fst in let* diff = Num.add x_pk ~qr:S.mone x_g in with_bool_check (Num.is_not_zero diff) let hash_op = function | `Transfer (tx : transfer_u) -> let* compressed = monadic_compress Bounded_u. [ f tx.header.op_code; f tx.header.price.amount; f tx.payload.msg.src; f tx.payload.msg.dst; f tx.payload.msg.fee; f tx.payload.msg.amount.amount; f tx.payload.msg.cnt; ] in Hash.digest ~input_length:4 (to_list [ tx.header.l1_dst; compressed; tx.header.price.id; tx.payload.msg.amount.id; ]) | `Create (tx : create_u) -> let* compressed = monadic_compress Bounded_u. [ f tx.header.op_code; f tx.header.price.amount; f tx.payload.msg.fee; ] in let x_pk, y_pk = of_pair tx.payload.msg.pk in Hash.digest ~input_length:5 (to_list [tx.header.l1_dst; compressed; x_pk; y_pk; tx.header.price.id]) | `Credit (tx : credit_u) -> let* compressed = monadic_compress Bounded_u. [ f tx.header.op_code; f tx.header.price.amount; f tx.payload.dst; f tx.payload.amount.amount; f tx.payload.cnt; ] in Hash.digest ~input_length:4 (to_list [ tx.header.l1_dst; compressed; tx.header.price.id; tx.payload.amount.id; ]) | `Debit (tx : debit_u) -> let* compressed = monadic_compress Bounded_u. [ f tx.header.op_code; f tx.header.price.amount; f tx.payload.msg.src; f tx.payload.msg.amount.amount; f tx.payload.msg.cnt; ] in Hash.digest ~input_length:4 (to_list [ tx.header.l1_dst; compressed; tx.header.price.id; tx.payload.msg.amount.id; ]) let expected_op_code : Types.P.tx -> S.t = function | Types.P.Transfer _ -> S.zero | Types.P.Create _ -> S.one | Types.P.Credit _ -> S.of_int 2 | Types.P.Debit _ -> S.of_int 3 let get_op_code : Types.P.tx -> Z.t = let open Types.P.Bounded in function | Types.P.Transfer tx -> v tx.header.op_code | Types.P.Create tx -> v tx.header.op_code | Types.P.Credit tx -> v tx.header.op_code | Types.P.Debit tx -> v tx.header.op_code let predicate_ill_formed ~old_root ~old_next_pos ~new_root ~new_next_pos ~fee ~exit_validity ~rollup_id (t : Types.P.tx) = let safety = Encodings.Bounded_e.Safe in let* old_root = input ~kind:`Public @@ Input.scalar old_root in let* old_next_pos = input ~kind:`Public @@ Encodings.(pos_encoding ~safety).input old_next_pos in let* new_root = input ~kind:`Public @@ Input.scalar new_root in let* new_next_pos = input ~kind:`Public @@ Encodings.(pos_encoding ~safety).input new_next_pos in let* fee = input ~kind:`Public @@ Encodings.((fee_encoding ~safety).input) fee in let fee = Encodings.((fee_encoding ~safety).decode) fee in let* exit_validity = input ~kind:`Public @@ Input.bool exit_validity in let* _rollup_id = input ~kind:`Public @@ Encodings.(tezos_zkru_encoding.input) rollup_id in (* Assert that fee = 0 *) Bool.assert_false (unsafe_bool_of_scalar @@ coerce fee) >* assert_equal old_root new_root >* assert_equal old_next_pos new_next_pos >* match t with | Types.P.Transfer tx -> let* tx = input ~kind:`Public @@ Encodings.((transfer_encoding ~safety).input) tx in let tx = Encodings.((transfer_encoding ~safety).decode) tx in Num.assert_eq_const (coerce tx.header.op_code) (expected_op_code t) >* let* b_tx = get_checks_wire in Bool.assert_false b_tx | Types.P.Create tx -> let* tx = input ~kind:`Public @@ Encodings.((create_encoding ~safety).input) tx in let tx = Encodings.((create_encoding ~safety).decode) tx in Num.assert_eq_const (coerce tx.header.op_code) (expected_op_code t) >* Bool.assert_true exit_validity >* let* b_tx = get_checks_wire in Bool.assert_false b_tx | Types.P.Credit tx -> let* tx = input ~kind:`Public @@ Encodings.(credit_encoding ~safety).input tx in let tx = Encodings.((credit_encoding ~safety).decode) tx in Num.assert_eq_const (coerce tx.header.op_code) (expected_op_code t) >* Bool.assert_true exit_validity >* let* b_tx = get_checks_wire in Bool.assert_false b_tx | Types.P.Debit tx -> let* tx = input ~kind:`Public @@ Encodings.(debit_encoding ~safety).input tx in let tx = Encodings.((debit_encoding ~safety).decode) tx in Num.assert_eq_const (coerce tx.header.op_code) (expected_op_code t) >* Bool.assert_false exit_validity >* let* b_tx = get_checks_wire in Bool.assert_false b_tx let transfer_circuit ~op_code ~old_root ~old_next_pos ~rollup_id ~generator (tx : transfer_u) (tx_s : transfer_storage_u) = (* The validation of a transaction is done through a series of boolean checks and assertions. The assertions are important to stop malicious validators from censoring transactions. Given that the circuit can only determine the validity of a Tx from the src/dst accounts provided by the prover, it is important to make sure that these values are correct (through the Merkle proofs) and in the right positions. Thus, the Merkle proofs must always be valid. This has two consecuences: 1. The positions present in a Tx must always be in range. 2. We add more constraints, as we need to check that the leaves used for the proofs of the new state correspond to their expected values. *) Num.assert_eq_const (coerce tx.header.op_code) op_code >* (* ---------- Assert the init src leaf is in the init tree ---------- *) assert_tree_proofs tx_s.src.account.before tx_s.src.leaf.before tx_s.src.account.proof.path tx_s.src.leaf.path old_root >* (* ---------- Assert the init dst leaf is in the tmp tree ---------- *) assert_tree_proofs tx_s.dst.account.before tx_s.dst.leaf.before tx_s.dst.account.proof.path tx_s.dst.leaf.path tx_s.src.account.proof.root >* (* ---------- Assert the new src leaf is in the tmp tree ---------- *) assert_tree_proofs tx_s.src.account.after tx_s.src.leaf.after tx_s.src.account.proof.path tx_s.src.leaf.path tx_s.src.account.proof.root >* (* ---------- Assert the new dst leaf is in the new tree ---------- *) assert_tree_proofs tx_s.dst.account.after tx_s.dst.leaf.after tx_s.dst.account.proof.path tx_s.dst.leaf.path tx_s.dst.account.proof.root >* (* ------------------- Assert positions --------------------- Leaves contain their position to check that the proof's path actually corresponds to the correct leaf. *) assert_equal (coerce tx.payload.msg.src) (coerce tx_s.src.leaf.before.pos) >* assert_equal (coerce tx.payload.msg.dst) (coerce tx_s.dst.leaf.before.pos) (* ----------------- Check rollup id ----------------------- *) >* with_bool_check (equal rollup_id tx.header.rollup_id) >* (* ----------------- Check ticket ids ---------------------- If the amount is in tez (or the dst balance is 0), then we don't enforce this *) let* is_tez = Num.is_eq_const tx.payload.msg.amount.id Constants.tez_id in let* dst_bal_is_0 = Num.is_zero @@ coerce tx_s.dst.leaf.before.ticket.amount in let* equal_src = equal tx.payload.msg.amount.id tx_s.src.leaf.before.ticket.id in with_bool_check (Bool.bor is_tez equal_src) >* let* is_tez_or_bal_0 = Bool.bor is_tez dst_bal_is_0 in let* equal_dst = equal tx.payload.msg.amount.id tx_s.dst.leaf.before.ticket.id in with_bool_check (Bool.bor is_tez_or_bal_0 equal_dst) >* (* ----------------- Check new leaves -----------------------*) let* z = Num.zero in let* ticket_amount = Bool.ifthenelse is_tez z (coerce tx.payload.msg.amount.amount) in let ticket_amount = Bounded_u.make_unsafe ~bound:Constants.Bound.max_amount ticket_amount in let* new_ticket_amnt_src = Bounded_u.sub_left tx_s.src.leaf.before.ticket.amount ticket_amount in let new_ticket_src = {id = tx_s.src.leaf.before.ticket.id; amount = new_ticket_amnt_src} in let new_leaf_src = {tx_s.src.leaf.before with ticket = new_ticket_src} in let* new_ticket_amnt_dst = Bounded_u.add_left tx_s.dst.leaf.before.ticket.amount ticket_amount in let* new_ticket_id_dst = Bool.ifthenelse is_tez tx_s.dst.leaf.before.ticket.id tx.payload.msg.amount.id in let new_ticket_dst = {id = new_ticket_id_dst; amount = new_ticket_amnt_dst} in let new_leaf_dst = {tx_s.dst.leaf.before with ticket = new_ticket_dst} in check_eq_leaf new_leaf_src tx_s.src.leaf.after >* check_eq_leaf new_leaf_dst tx_s.dst.leaf.after >* (* ----------------- Check new accounts -----------------------*) let* tez_transfer_amount = Bool.ifthenelse is_tez (coerce tx.payload.msg.amount.amount) z in let tez_transfer_amount = Bounded_u.make_unsafe ~bound:Constants.Bound.max_amount tez_transfer_amount in let* tez_amount = Bounded_u.add_left tez_transfer_amount tx.payload.msg.fee in let* new_tez_bal_src = Bounded_u.sub_left tx_s.src.account.before.tez_balance tez_amount in let new_acc_src = { tx_s.src.account.before with tez_balance = new_tez_bal_src; cnt = tx.payload.msg.cnt; (* This value has already been checked in the Merkle proof, see README *) tickets_root = tx_s.src.account.after.tickets_root; } in let* new_tez_bal_dst = Bounded_u.add_left tx_s.dst.account.before.tez_balance tez_transfer_amount in let new_acc_dst = { tx_s.dst.account.before with tickets_root = tx_s.dst.account.after.tickets_root; tez_balance = new_tez_bal_dst; } in check_eq_account new_acc_src tx_s.src.account.after >* check_eq_account new_acc_dst tx_s.dst.account.after >* (* ---------------------- Check counter ----------------------- *) let* expected_cnt = Bounded_u.succ tx_s.src.account.before.cnt in with_bool_check (equal (coerce expected_cnt) (coerce tx.payload.msg.cnt)) >* (* ---------------------- Check price = 0 ----------------------- *) with_bool_check (Num.is_zero @@ coerce tx.header.price.amount) >* (* Check pk_dst <> gen (used as dummy pk to note closed accounts) Checking that the x coordinates of pk_dst and generator are different is enough as we do not want both points with the generator x coordinate to be used as public key. *) let x_pk = of_pair tx_s.dst.account.before.pk |> fst in let x_g = of_pair generator |> fst in let* diff = Num.add x_pk ~qr:S.mone x_g in with_bool_check (Num.is_not_zero diff) >* (* Building signature message ---------- Verify signature ---------- *) let* msg = hash_op (`Transfer tx) in (* Building signature proof *) with_bool_check (Schnorr.verify ~compressed:true ~g:generator ~msg ~pk:tx_s.src.account.before.pk ~signature:tx.payload.signature ()) >* let* b_tx = get_checks_wire in let* expected_fee = Bool.ifthenelse b_tx (coerce tx.payload.msg.fee) z in let* root_next = Bool.ifthenelse b_tx tx_s.dst.account.proof.root old_root in assert_equal b_tx tx_s.valid >* ret ( root_next, old_next_pos, Bounded_u.make_unsafe ~bound:Constants.Bound.max_fee expected_fee ) let predicate_op ?(public = true) ~old_root ~old_next_pos ~new_root ~new_next_pos ~fee ~exit_validity ~rollup_id (t : Types.P.tx) (t_storage : Types.P.tx_storage) = (* bounded encoding safety *) let safety = Encodings.Bounded_e.Unsafe in let* old_root = input ~kind:`Public @@ Input.scalar old_root in let* old_next_pos = input ~kind:`Public @@ Encodings.(pos_encoding ~safety).input old_next_pos in let* new_root = input ~kind:`Public @@ Input.scalar new_root in let* new_next_pos = input ~kind:`Public @@ Encodings.(pos_encoding ~safety).input new_next_pos in let* fee = input ~kind:`Public @@ Encodings.((fee_encoding ~safety).input) fee in let fee = Encodings.((fee_encoding ~safety).decode) fee in let* exit_validity = input ~kind:`Public @@ Input.bool exit_validity in let* rollup_id = input ~kind:`Public @@ Encodings.(tezos_zkru_encoding.input) rollup_id in match (t, t_storage) with | Transfer tx, Transfer tx_s -> let kind = if public then `Public else `Private in let* tx = input ~kind @@ Encodings.((transfer_encoding ~safety).input) tx in let tx = Encodings.((transfer_encoding ~safety).decode) tx in let* tx_s = input @@ Encodings.(transfer_storage_encoding.input) tx_s in let tx_s = Encodings.(transfer_storage_encoding.decode) tx_s in let* generator = Plompiler_Curve.(input_point @@ affine_to_point Curve.one) in let* root_next, next_pos_next, computed_fee = transfer_circuit ~op_code:(expected_op_code t) ~old_root ~old_next_pos ~rollup_id ~generator tx tx_s in assert_equal root_next new_root >* assert_equal next_pos_next new_next_pos >* assert_equal (coerce computed_fee) (coerce fee) | Create tx, Create tx_s -> assert public ; let* tx = input ~kind:`Public @@ Encodings.((create_encoding ~safety).input) tx in let tx = Encodings.((create_encoding ~safety).decode) tx in let* tx_s = input @@ Encodings.(create_storage_encoding.input) tx_s in let tx_s = Encodings.(create_storage_encoding.decode) tx_s in let* generator = Plompiler_Curve.(input_point @@ affine_to_point Curve.one) in Num.assert_eq_const (coerce tx.header.op_code) (expected_op_code t) >* let* dst_account_before_s = hash_account tx_s.dst.account.before in let* dst_account_after_s = hash_account tx_s.dst.account.after in let* next_empty_account_s = hash_account tx_s.next_empty.account.before in assert_merkle_proof dst_account_before_s tx_s.dst.account.proof.path old_root >* assert_merkle_proof dst_account_after_s tx_s.dst.account.proof.path tx_s.dst.account.proof.root >* assert_merkle_proof next_empty_account_s tx_s.next_empty.account.proof.path old_root (* [tx_s.next_empty.after] is ignored, as that account doesn't change *) >* (* Assert that the position used is the old_next_pos This value has already been checked in the Merkle proof, see README *) assert_equal old_next_pos (coerce tx_s.dst.leaf.after.pos) >* assert_equal new_next_pos (coerce tx_s.next_empty.leaf.before.pos) >* (* Assert new_next_pos is "default" *) let x_pk = of_pair tx_s.next_empty.account.before.pk |> fst in let x_g = of_pair generator |> fst in let* diff = Num.add x_pk ~qr:S.mone x_g in with_bool_check (Num.is_zero diff) >* (* Check initial account is "default" *) let x_pk = of_pair tx_s.dst.account.before.pk |> fst in let x_g = of_pair generator |> fst in let* diff = Num.add x_pk ~qr:S.mone x_g in with_bool_check (Num.is_zero diff) (* Compare with expected account *) >* let new_acc_dst = {tx_s.dst.account.before with pk = tx.payload.msg.pk} in check_eq_account new_acc_dst tx_s.dst.account.after (* ----------------- Check rollup id -----------------------*) >* with_bool_check (equal rollup_id tx.header.rollup_id) >* (* -- Check price = fee and that fee is the expected value -- *) with_bool_check (Num.is_eq_const tx.header.price.id Constants.tez_id) >* with_bool_check (equal (coerce tx.header.price.amount) (coerce tx.payload.msg.fee)) >* with_bool_check (Num.is_eq_const (coerce tx.payload.msg.fee) (S.of_z Constants.create_fee)) >* (* ---------- Verify signature ---------- *) (* Building signature message *) (* TODO: We could hash it as Hash(pk_x, pk_y, fee) := Anemoi(pk_x, pk_y + 2 * fee) *) let* msg = hash_op (`Create tx) in (* Building signature proof *) with_bool_check (Schnorr.verify ~compressed:true ~g:generator ~msg ~pk:tx.payload.msg.pk ~signature:tx.payload.signature ()) >* let* b_tx = get_checks_wire in let* z = Num.zero in let* expected_fee = Bool.ifthenelse b_tx (coerce tx.payload.msg.fee) z in assert_equal (coerce fee) expected_fee >* let* root_next = Bool.ifthenelse b_tx tx_s.dst.account.proof.root old_root in assert_equal b_tx tx_s.valid >* let* not_valid = Bool.bnot b_tx in assert_equal not_valid exit_validity >* assert_equal root_next new_root | Credit tx, Credit tx_s -> assert public ; let* tx = input ~kind:`Public @@ Encodings.(credit_encoding ~safety).input tx in let tx = Encodings.(credit_encoding ~safety).decode tx in let* tx_s = input @@ Encodings.(credit_storage_encoding.input) tx_s in let tx_s = Encodings.(credit_storage_encoding.decode) tx_s in let* generator = Plompiler_Curve.(input_point @@ affine_to_point Curve.one) in assert_equal old_next_pos new_next_pos >* Num.assert_eq_const (coerce tx.header.op_code) (expected_op_code t) >* (* ---------- Assert the init dst leaf is in the init tree ---------- *) assert_tree_proofs tx_s.dst.account.before tx_s.dst.leaf.before tx_s.dst.account.proof.path tx_s.dst.leaf.path old_root >* (* ---------- Assert the new dst leaf is in the new tree ---------- *) assert_tree_proofs tx_s.dst.account.after tx_s.dst.leaf.after tx_s.dst.account.proof.path tx_s.dst.leaf.path tx_s.dst.account.proof.root >* (* Leaves contain their position to check that the proof's path actually corresponds to the correct leaf. *)(* ------------------- Assert positions --------------------- *) assert_equal (coerce tx.payload.dst) (coerce tx_s.dst.leaf.before.pos) (* Assert fee is equal to 0 *) >* Bool.assert_false (unsafe_bool_of_scalar @@ coerce fee) (* ----------------- Check rollup id -----------------------*) >* with_bool_check (equal rollup_id tx.header.rollup_id) (* ----------------- Check ticket ids ---------------------- *) (* You can credit to any position with a balance of 0 *) >* let* is_tez = Num.is_eq_const tx.payload.amount.id Constants.tez_id in let* eq_id = equal tx.payload.amount.id tx_s.dst.leaf.before.ticket.id in let* is_tez_or_eq_id = Bool.bor is_tez eq_id in let* bal_0 = Num.is_zero (coerce tx_s.dst.leaf.before.ticket.amount) in with_bool_check (Bool.bor is_tez_or_eq_id bal_0) >* (* ----------------- Check new leaf and acc ---------------------- *) let* z = Num.zero in let* ticket_amount = Bool.ifthenelse is_tez z (coerce tx.payload.amount.amount) in let ticket_amount = Bounded_u.make_unsafe ~bound:Constants.Bound.max_amount ticket_amount in let* new_ticket_amnt_dst = Bounded_u.add_left tx_s.dst.leaf.before.ticket.amount ticket_amount in let* new_ticket_id_dst = Bool.ifthenelse is_tez tx_s.dst.leaf.before.ticket.id tx.payload.amount.id in let new_ticket_dst = {id = new_ticket_id_dst; amount = new_ticket_amnt_dst} in let new_leaf_dst = {tx_s.dst.leaf.before with ticket = new_ticket_dst} in let* tez_credit_amount = Bool.ifthenelse is_tez (coerce tx.payload.amount.amount) z in let tez_credit_amount = Bounded_u.make_unsafe ~bound:Constants.Bound.max_amount tez_credit_amount in let* new_tez_bal_dst = Bounded_u.add_left tx_s.dst.account.before.tez_balance tez_credit_amount in let new_acc_dst = { tx_s.dst.account.before with tez_balance = new_tez_bal_dst; cnt = tx.payload.cnt; tickets_root = tx_s.dst.account.after.tickets_root; } in check_eq_leaf new_leaf_dst tx_s.dst.leaf.after >* check_eq_account new_acc_dst tx_s.dst.account.after >* (* ---------------------- Check counter ----------------------- *) let* expected_cnt = Bounded_u.succ tx_s.dst.account.before.cnt in with_bool_check (equal (coerce expected_cnt) (coerce tx.payload.cnt)) >* (* Check pk_dst <> gen (used as dummy pk to note closed accounts) *) (* Checking that the x coordinates of pk_dst and generator are different is enough as we do not want both points with the generator x coordinate to be used as public key. *) let x_pk = of_pair tx_s.dst.account.before.pk |> fst in let x_g = of_pair generator |> fst in let* diff = Num.add x_pk ~qr:S.mone x_g in with_bool_check (Num.is_not_zero diff) >* (* ---------- Check price = amount ---------- *) with_bool_check (equal tx.header.price.id tx.payload.amount.id) >* with_bool_check (equal (coerce tx.header.price.amount) (coerce tx.payload.amount.amount)) >* let* b_tx = get_checks_wire in let* root_next = Bool.ifthenelse b_tx tx_s.dst.account.proof.root old_root in assert_equal b_tx tx_s.valid >* let* not_valid = Bool.bnot b_tx in assert_equal not_valid exit_validity >* assert_equal root_next new_root | Debit tx, Debit tx_s -> assert public ; let* tx = input ~kind:`Public @@ Encodings.(debit_encoding ~safety).input tx in let tx = Encodings.(debit_encoding ~safety).decode tx in let* tx_s = input @@ Encodings.(debit_storage_encoding.input) tx_s in let tx_s = Encodings.(debit_storage_encoding.decode) tx_s in let* generator = Plompiler_Curve.(input_point @@ affine_to_point Curve.one) in assert_equal old_next_pos new_next_pos >* Num.assert_eq_const (coerce tx.header.op_code) (expected_op_code t) >* (* ---------- Assert the init src leaf is in the init tree ---------- *) assert_tree_proofs tx_s.src.account.before tx_s.src.leaf.before tx_s.src.account.proof.path tx_s.src.leaf.path old_root >* (* ---------- Assert the new src leaf is in the new tree ---------- *) assert_tree_proofs tx_s.src.account.after tx_s.src.leaf.after tx_s.src.account.proof.path tx_s.src.leaf.path tx_s.src.account.proof.root >* (* Leaves contain their position to check that the proof's path actually corresponds to the correct leaf. *)(* ------------------- Assert positions --------------------- *) assert_equal (coerce tx.payload.msg.src) (coerce tx_s.src.leaf.before.pos) (* Assert fee is equal to 0 *) >* Bool.assert_false (unsafe_bool_of_scalar @@ coerce fee) (* ----------------- Check rollup id -----------------------*) >* with_bool_check (equal rollup_id tx.header.rollup_id) (* ----------------- Check ticket ids ---------------------- *) >* let* is_tez = Num.is_eq_const tx.payload.msg.amount.id Constants.tez_id in let* eq_id = equal tx.payload.msg.amount.id tx_s.src.leaf.before.ticket.id in with_bool_check (Bool.bor is_tez eq_id) >* (* ----------------- Check new leaves -----------------------*) let* z = Num.zero in let* ticket_amount = Bool.ifthenelse is_tez z (coerce tx.payload.msg.amount.amount) in let ticket_amount = Bounded_u.make_unsafe ~bound:Constants.Bound.max_amount ticket_amount in let* new_ticket_amnt_src = Bounded_u.sub_left tx_s.src.leaf.before.ticket.amount ticket_amount in let new_ticket_src = {id = tx.payload.msg.amount.id; amount = new_ticket_amnt_src} in let new_leaf_src = {tx_s.src.leaf.before with ticket = new_ticket_src} in let* tez_debit_amount = Bool.ifthenelse is_tez (coerce tx.payload.msg.amount.amount) z in let tez_debit_amount = Bounded_u.make_unsafe ~bound:Constants.Bound.max_amount tez_debit_amount in let* new_tez_bal_src = Bounded_u.sub_left tx_s.src.account.before.tez_balance tez_debit_amount in let new_acc_src = { tx_s.src.account.before with tez_balance = new_tez_bal_src; cnt = tx.payload.msg.cnt; tickets_root = tx_s.src.account.after.tickets_root; } in check_eq_leaf new_leaf_src tx_s.src.leaf.after >* check_eq_account new_acc_src tx_s.src.account.after >* (* ---------------------- Check counter ----------------------- *) let* expected_cnt = Bounded_u.succ tx_s.src.account.before.cnt in with_bool_check (equal (coerce expected_cnt) (coerce tx.payload.msg.cnt)) >* (* ---------- Check price = amount ---------- *) with_bool_check (equal tx.header.price.id tx.payload.msg.amount.id) >* with_bool_check (equal (coerce tx.header.price.amount) (coerce tx.payload.msg.amount.amount)) >* (* ---------- Verify signature ---------- *) (* Building signature message *) let* msg = hash_op (`Debit tx) in (* Building signature proof *) with_bool_check (Schnorr.verify ~compressed:true ~g:generator ~msg ~pk:tx_s.src.account.before.pk ~signature:tx.payload.signature ()) >* let* b_tx = get_checks_wire in let* root_next = Bool.ifthenelse b_tx tx_s.src.account.proof.root old_root in assert_equal b_tx tx_s.valid >* assert_equal b_tx exit_validity >* assert_equal root_next new_root | _ -> assert false let predicate_private_batch ~old_root ~old_next_pos ~new_root ~new_next_pos ~fees ~rollup_id (ops : Types.P.transfer list) (ops_s : Types.P.transfer_storage list) = assert (List.compare_lengths ops ops_s = 0) ; let safety = Encodings.Bounded_e.Unsafe in let* old_root = input ~kind:`Public @@ Input.scalar old_root in let* old_next_pos = input ~kind:`Public @@ Encodings.(pos_encoding ~safety).input old_next_pos in let* new_root = input ~kind:`Public @@ Input.scalar new_root in let* new_next_pos = input ~kind:`Public @@ Encodings.(pos_encoding ~safety).input new_next_pos in let* fees = input ~kind:`Public @@ Encodings.((amount_encoding ~safety).input) fees in let fees = Encodings.((amount_encoding ~safety).decode) fees in let* rollup_id = input ~kind:`Public @@ Encodings.(tezos_zkru_encoding.input) rollup_id in let* ops = mapM (fun tx -> input @@ Encodings.((transfer_encoding ~safety).input tx)) ops in let ops = List.map Encodings.((transfer_encoding ~safety).decode) ops in let* ops_s = mapM (fun tx_s -> input @@ Encodings.(transfer_storage_encoding.input tx_s)) ops_s in let ops_s = List.map Encodings.(transfer_storage_encoding.decode) ops_s in let* generator = Plompiler_Curve.(input_point @@ affine_to_point Curve.one) in let op_code = S.zero in let* z = Num.zero in let z = Bounded_u.make_unsafe ~bound:Constants.Bound.max_amount z in let* computed_root, computed_fees = fold2M (fun (computed_root, computed_fees) op op_s -> let* computed_root, _, fee = transfer_circuit ~op_code ~old_root:computed_root ~old_next_pos ~rollup_id ~generator op op_s in (* TODO: should we bound check every time? Or just at the end *) let* computed_fees = Bounded_u.add_left ~unsafe:true computed_fees fee in ret (computed_root, computed_fees)) (old_root, z) ops ops_s in assert_equal computed_root new_root >* assert_equal old_next_pos new_next_pos >* assert_equal (coerce computed_fees) (coerce fees) end (* for each proof, pi = [old_root, old_next_pos, new_root, new_next_pos, fees, rollup_id] public pi are the first old_root, the last next_root, the last fees, the last rollup_id - for all proofs, next old_root must be equal to current next_root - for all proofs, rollup_id must be the same - for each proof, fees is the sum of its transactions fees - for all proofs, old_next_pos & new_next_pos must be the same *) module PI_parameters_predicate_private_batch = struct module L = LibCircuit (* accumulator type for the fold_left in check_pi *) type acc = { root : L.scalar L.repr; pos : L.scalar L.repr; total_fees : L.scalar L.repr; } let inner_elt pi_list = match pi_list with | [old_root; old_next_pos; new_root; new_next_pos; fees; rollup_id] -> (old_root, old_next_pos, new_root, new_next_pos, fees, rollup_id) | _ -> failwith "invalid inner_pi format." let outer_elt pi_list = match pi_list with | [old_root; new_root; total_fees; rollup_id] -> (old_root, new_root, total_fees, rollup_id) | _ -> failwith "invalid outer_pi format." let nb_inner = 6 let nb_outer = 4 (* /!\ Note that this function assumes that the first proof is not turned off by the switches (ie the first switch is true) ; If the first proof is turned off, this function will NOT return the expected result *) let check ~switches ~outer ~inner = let open L in let init, first_root, init_rollup_id = let first_root, _old_next_pos, new_root, new_next_pos, fees, rollup_id = inner_elt (List.hd inner) in ( ({root = new_root; pos = new_next_pos; total_fees = fees}, []), first_root, rollup_id ) in let old_root, new_root, total_fees, outer_rollup_id = outer_elt outer in let* acc, inner_checks = fold2M (fun (acc, checks) pi_list switch -> let* n_switch = Bool.bnot switch in let old_root, old_next_pos, new_root, new_next_pos, fees, rollup_id = inner_elt pi_list in let* check_old_pos = let* res = equal acc.pos old_next_pos in Bool.bor n_switch res in let* check_roots = let* res = equal acc.root old_root in Bool.bor n_switch res in let* check_id = let* res = equal outer_rollup_id rollup_id in Bool.bor n_switch res in let* total_fees = let* fees = Num.mul (scalar_of_bool switch) fees in Num.add acc.total_fees fees in let checks = [check_old_pos; check_roots; check_id] @ checks in let* root = Bool.ifthenelse switch new_root acc.root in let* pos = Bool.ifthenelse switch new_next_pos acc.pos in ret ({root; pos; total_fees}, checks)) init (List.tl inner) (List.tl switches) in let* check_fees = equal total_fees acc.total_fees in let* check_first_root = equal old_root first_root in let* check_last_root = equal new_root acc.root in let* check_fst_rollup_id = equal outer_rollup_id init_rollup_id in Bool.band_list ([check_fees; check_first_root; check_last_root; check_fst_rollup_id] @ inner_checks) let outer_of_inner inner = let old_root, _, _, _, first_fees, rollup_id = inner_elt (List.hd inner) in let new_root, total_fees = List.fold_left (fun (_, acc_fees) pi -> let _, _, new_root, _, fees, _ = inner_elt pi in let acc_fees = Plonk.Bls.Scalar.(acc_fees + fees) in (new_root, acc_fees)) (old_root, first_fees) (List.tl inner) in [old_root; new_root; total_fees; rollup_id] end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>