package octez-libs
A package that contains multiple base libraries used by the Octez suite
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-18.1.tar.gz
sha256=aa2f5bc99cc4ca2217c52a1af2a2cdfd3b383208cb859ca2e79ca0903396ca1d
sha512=d68bb3eb615e3dcccc845fddfc9901c95b3c6dc8e105e39522ce97637b1308a7fa7aa1d271351d5933febd7476b2819e1694f31198f1f0919681f1f9cc97cb3a
doc/src/octez-libs.bls12-381-polynomial/evaluations.ml.html
Source file evaluations.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
(*****************************************************************************) (* *) (* MIT License *) (* Copyright (c) 2022 Nomadic Labs <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) module Fr = Bls12_381.Fr module Stubs = struct type fr = Fr.t type fr_array = Fr_carray.t (** [add res a b size_a size_b] writes the result of polynomial addition of [a] and [b] using the evaluation representation in [res], where - [a] is evaluated on [domain_a] of size [size_a] - [b] is evaluated on [domain_b] of size [size_b] requires: - [size a = size_a] - [size b = size_b] - [size res = min (size_a, size_b)] - [res], [a] and [b] are either pairwise disjoint or equal - [size_b mod size_a = 0] *) external add : fr_array -> fr_array -> fr_array -> int -> int -> unit = "caml_bls12_381_polynomial_polynomial_evaluations_add_stubs" [@@noalloc] (** [mul_arrays res eval_evallen_comp_power_powlen size_res nb_evals] writes the result of computing [p₁(gᶜ₁·x)ᵐ₁·p₂(gᶜ₂·x)ᵐ₂·…·pₖ(gᶜₖ·x)ᵐₖ] using the evaluation representation in [res], where - [eval_evallen_comp_power_powlen.[i] = (pᵢ, size_p_i, cᵢ, mᵢ, size_bits_m_i)] - a polynomial [pᵢ] is evaluated on [domain_p_i] of size [size_p_i] - [cᵢ] is a composition_gx; it computes [pᵢ(gᶜᵢ·x)] instead of [pᵢ(x)], where [g] is a primitive [size_p_i]-th root of unity - [mᵢ] is a power in [pᵢ(x)ᵐᵢ] - [size_bits_m_i] is the *exact* number of bits in [mᵢ] - [nb_evals] is a number of evaluations, i.e., [i = 1..nb_evals] requires: - [size res = size_res] - [size eval_evallen_comp_power_powlen = nb_evals] - [size p_i = size_p_i] - [size_bits m_i = size_bits_m_i] - [size_p_i mod size_res = 0] - [res] and [p_i] are disjoint *) external mul_arrays : fr_array -> (fr_array * int * int * Bytes.t * int) array -> int -> int -> unit = "caml_bls12_381_polynomial_polynomial_evaluations_mul_arrays_stubs" [@@noalloc] (** [linear_arrays res eval_evallen_coeff_comp add_constant size_res nb_evals] writes the result of computing [λ₁·p₁(gᶜ₁·x) + λ₂·p₂(gᶜ₂·x) + … + λₖ·pₖ(gᶜₖ·x) + add_constant] using the evaluation representation in [res], where - [eval_evallen_coeff_comp.[i] = (pᵢ, size_p_i, λᵢ, cᵢ)] - a polynomial [pᵢ] is evaluated on [domain_p_i] of size [size_p_i] - [cᵢ] is a composition_gx; it computes [pᵢ(gᶜᵢ·x)] instead of [pᵢ(x)], where [g] is a primitive [size_p_i]-th root of unity - [λᵢ] is a coefficient in [λᵢ·pᵢ(x)] - [nb_evals] is a number of evaluations, i.e., [i = 1..nb_evals] requires: - [size res = size_res] - [size eval_evallen_coeff_comp = nb_evals] - [size p_i = size_p_i] - [size_p_i mod size_res = 0] - [res] and [p_i] are disjoint *) external linear_arrays : fr_array -> (fr_array * int * fr * int) array -> fr -> int -> int -> unit = "caml_bls12_381_polynomial_polynomial_evaluations_linear_arrays_stubs" [@@noalloc] (** [fft_inplace p domain log log_degree] computes Fast Fourier Transform. It converts the coefficient representation of a polynomial [p] to the evaluation representation requires: - [size p = size domain] - [size domain = 2^log] - [domain = [one; g; ..; g^{n-1}]] where [g] is a primitive [n]-th root of unity and [n = 2^log] (as done by {!Domain.Stubs.compute_domain}) *) external fft_inplace : fr_array -> domain:fr_array -> log:int -> log_degree:int -> unit = "caml_bls12_381_polynomial_fft_inplace_on_stubs" (** [ifft_inplace p domain log] computes Inverse Fast Fourier Transform. It converts the evaluation representation of a polynomial [p] to the coefficient representation requires: - [size p = size domain] - [size domain = 2^log] - [domain = [one; g; ..; g^{n-1}]] where [g] is a primitive [n]-th root of unity and [n = 2^log] (as done by {!Domain.Stubs.compute_domain}) *) external ifft_inplace : fr_array -> domain:fr_array -> log:int -> unit = "caml_bls12_381_polynomial_ifft_inplace_on_stubs" [@@noalloc] (** [dft_inplace coefficients domain inverse length] computes the Fourier Transform. requires: - [size domain = size coefficients = length] - [length <= 2^10] - [length != 2^k] - if [inverse = true] then the inverse dft is performed - [domain = [one; g; ..; g^{n-1}]] where [g] is a primitive [n]-th root of unity (as done by {!Domain.Stubs.compute_domain}) *) external dft_inplace : fr_array -> fr_array -> bool -> int -> unit = "caml_bls12_381_polynomial_dft_stubs" [@@noalloc] (** [fft_prime_factor_algorithm_inplace coefficient (domain1, domain1_length) (domain2, domain2_length) inverse] computes the Fast Fourier Transform following {{: https://en.wikipedia.org/wiki/Prime-factor_FFT_algorithm }the Prime-factor FFT algorithm}. requires: - [size domain1 = domain1_length] - [size domain2 = domain2_length] - [size domain1] and [size domain2] to be coprime - if for some k [size domain1 != 2^k] then [size domain1 <= 2^10] - if for some k [size domain2 != 2^k] then [size domain2 <= 2^10] - [size coefficients = domain1_length * domain2_length] - if [inverse = true] then the inverse fft is performed - [domain = [one; g; ..; g^{n-1}]] where [g] is a primitive [n]-th root of unity (as done by {!Domain.Stubs.compute_domain}) *) external fft_prime_factor_algorithm_inplace : fr_array -> fr_array * int -> fr_array * int -> bool -> unit = "caml_bls12_381_polynomial_prime_factor_algorithm_fft_stubs" [@@noalloc] end module type Evaluations_sig = sig type scalar type polynomial type t [@@deriving repr] (** [init size f degree] initializes an evaluation of a polynomial of the given [degree]. *) val init : int -> (int -> scalar) -> degree:int -> t (** [of_array (d, e)] creates a value of type [t] from the evaluation representation of a polynomial [e] of degree [d], i.e, it converts an OCaml array to a C array *) val of_array : int * scalar array -> t (** [to_array] converts a C array to an OCaml array *) val to_array : t -> scalar array (** [string_of_eval e] returns the string representation of evaluation [e] *) val string_of_eval : t -> string type domain (** [of_domain d] converts [d] from type {!type:domain} to type {!type:t}. Note: [of_domain d] doesn't create a copy of [d] *) val of_domain : domain -> t (** [to_domain d] converts [d] from type {!type:t} to type {!type:domain}. Note: [to_domain d] doesn't create a copy of [d] *) val to_domain : t -> domain (** [zero] returns the evaluation representation of the zero polynomial *) val zero : t (** [is_zero p] checks whether a polynomial [p] is the zero polynomial *) val is_zero : t -> bool (** [degree] returns the degree of a polynomial. Returns [-1] for the zero polynomial *) val degree : t -> int (** [length e] returns the size of domain where a polynomial is evaluated, or equally, the size of a C array where evaluation [e] is stored *) val length : t -> int (** [create len] returns the evaluation representation of a zero polynomial of size [len] *) val create : int -> t (** [copy ?res a] returns a copy of evaluation [a]. The function writes the result in [res] if [res] has the correct size and allocates a new array for the result otherwise *) val copy : ?res:t -> t -> t (** [get p i] returns the [i]-th element of a given array [p] *) val get : t -> int -> scalar (** [get_inplace p i res] copies the [i]-th element of a given array [p] in res *) val get_inplace : t -> int -> scalar -> unit (** [mul_by_scalar] computes muliplication of a polynomial by a blst_fr element *) val mul_by_scalar : scalar -> t -> t (** [mul_c] computes [p₁(gᶜ₁·x)ᵐ₁·p₂(gᶜ₂·x)ᵐ₂·…·pₖ(gᶜₖ·x)ᵐₖ], where - [pᵢ = List.nth evaluations i] - [mᵢ = List.nth powers i] - [cᵢ = List.nth (fst composition_gx) i] - [n = snd composition_gx] is the order of generator, i.e., [gⁿ = 1] The function writes the result in [res] if [res] has the correct size (= min (size pᵢ)) and allocates a new array for the result otherwise Note: [res] and [pᵢ] are disjoint *) val mul_c : ?res:t -> evaluations:t list -> ?composition_gx:int list * int -> ?powers:int list -> unit -> t (** [linear_c] computes [λ₁·p₁(gᶜ₁·x) + λ₂·p₂(gᶜ₂·x) + … + λₖ·pₖ(gᶜₖ·x) + add_constant], where - [pᵢ = List.nth evaluations i] - [λᵢ = List.nth linear_coeffs i] - [cᵢ = List.nth (fst composition_gx) i] - [n = snd composition_gx] is the order of generator, i.e., [gⁿ = 1] The function writes the result in [res] if [res] has the correct size (= min (size pᵢ)) and allocates a new array for the result otherwise Note: [res] and [pᵢ] are disjoint *) val linear_c : ?res:t -> evaluations:t list -> ?linear_coeffs:scalar list -> ?composition_gx:int list * int -> ?add_constant:scalar -> unit -> t (** [linear_with_powers p s] computes [∑ᵢ sⁱ·p.(i)]. This function is more efficient than [linear] + [powers] for evaluations of the same size *) val linear_with_powers : t list -> scalar -> t (** [add ?res a b] computes polynomial addition of [a] and [b]. The function writes the result in [res] if [res] has the correct size (= min (size (a, b))) and allocates a new array for the result otherwise Note: [res] can be equal to either [a] or [b] *) val add : ?res:t -> t -> t -> t (** [equal a b] checks whether a polynomial [a] is equal to a polynomial [b] Note: [equal] is defined as restrictive equality, i.e., the same polynomial evaluated on different domains are said to be different *) val equal : t -> t -> bool (** [evaluation_fft domain p] converts the coefficient representation of a polynomial [p] to the evaluation representation. [domain] can be obtained using {!Domain.build} Note: - size of domain must be a power of two - degree of polynomial must be strictly less than the size of domain *) val evaluation_fft : domain -> polynomial -> t (** [interpolation_fft domain p] converts the evaluation representation of a polynomial [p] to the coefficient representation. [domain] can be obtained using {!Domain.build} Note: - size of domain must be a power of two - size of a polynomial must be equal to size of domain *) val interpolation_fft : domain -> t -> polynomial (* TODO DELETE *) val interpolation_fft2 : domain -> scalar array -> polynomial (** [dft domain polynomial] converts the coefficient representation of a polynomial [p] to the evaluation representation. [domain] can be obtained using {!Domain.build}. Computes the discrete Fourier transform in time O(n^2) where [n = size domain]. requires: - [size domain] to divide Bls12_381.Fr.order - 1 - [size domain != 2^k] - [degree polynomial < size domain] *) val dft : domain -> polynomial -> t (** [idft domain t] converts the evaluation representation of a polynomial [p] to the coefficient representation. [domain] can be obtained using {!Domain.build}. Computes the inverse discrete Fourier transform in time O(n^2) where [n = size domain]. requires: - [size domain] to divide Bls12_381.Fr.order - 1 - [size domain != 2^k] - [size domain = size t] *) val idft : domain -> t -> polynomial (** [evaluation_fft_prime_factor_algorithm domain1 domain2 p] converts the coefficient representation of a polynomial [p] to the evaluation representation. [domain] can be obtained using {!Domain.build}. See {{: https://en.wikipedia.org/wiki/Prime-factor_FFT_algorithm }the Prime-factor FFT algorithm}. requires: - [size domain1 * size domain2] to divide Bls12_381.Fr.order - 1 - [size domain1] and [size domain2] to be coprime - if for some k [size domain1 != 2^k] then [size domain1 <= 2^10] - if for some k [size domain2 != 2^k] then [size domain2 <= 2^10] - [degree polynomial < size domain1 * size domain2] *) val evaluation_fft_prime_factor_algorithm : domain1:domain -> domain2:domain -> polynomial -> t (** [interpolation_fft_prime_factor_algorithm domain1 domain2 t] converts the evaluation representation of a polynomial [p] to the coefficient representation. [domain] can be obtained using {!Domain.build}. See {{: https://en.wikipedia.org/wiki/Prime-factor_FFT_algorithm }the Prime-factor FFT algorithm}. requires: - [size domain1 * size domain2] to divide Bls12_381.Fr.order - 1 - [size domain1] and [size domain2] to be coprime - if for some k [size domain1 != 2^k] then [size domain1 <= 2^10] - if for some k [size domain2 != 2^k] then [size domain2 <= 2^10] - [size t = size domain1 * size domain2] *) val interpolation_fft_prime_factor_algorithm : domain1:domain -> domain2:domain -> t -> polynomial end module Evaluations_impl = struct module Domain_c = Domain.Stubs module Domain = Domain.Domain_unsafe module Polynomial_c = Polynomial.Stubs (* TODO remove *) module Polynomial = Polynomial.Polynomial_unsafe type scalar = Fr.t type polynomial = Polynomial.t (* degree & evaluations *) type t = int * Fr_carray.t [@@deriving repr] type domain = Domain.t let init size f ~degree = (degree, Fr_carray.init size f) let of_array (d, p) = if d < -1 then raise @@ Invalid_argument "make_evaluation: degree must be >= -1" ; if Array.length p <= d then raise @@ Invalid_argument "make_evaluation: array must be longer than degree" ; let res = Fr_carray.of_array p in (d, res) let to_array (_d, e) = Fr_carray.to_array e let to_carray (_, e) = e let string_of_eval (d, e) = Printf.sprintf "%d : [%s]" d Polynomial.(to_string (of_carray e)) let of_domain domain = let d = Domain.to_carray domain in (1, d) let allocate = Fr_carray.allocate let to_domain (_, eval) = Domain.of_carray eval let zero = (-1, allocate 1) let degree (d, _) = d let length (_, e) = Fr_carray.length e let create n = (-1, allocate n) let is_zero (d, _e) = (* if a degree is not included in the definition of evaluations, use Fr_carray.Stubs.is_zero e l *) d = -1 let allocate_for_res res length_result = match res with | Some (_, res) when Fr_carray.length res = length_result -> res | _ -> allocate length_result let copy ?res (d, e) = let len = Fr_carray.length e in let res = allocate_for_res res len in Fr_carray.blit e ~src_off:0 res ~dst_off:0 ~len ; (d, res) let get (_, eval) i = Fr_carray.get eval i let get_inplace (_, eval) i res = Fr_carray.get_inplace eval i res let mul_by_scalar lambda (d, e) = let len = Fr_carray.length e in let res = allocate len in Polynomial_c.mul_by_scalar res lambda e len ; (d, res) (* multiplies evaluations of all polynomials with name in poly_names, the resulting eval has the size of the smallest evaluation *) let mul_c ?res ~evaluations ?composition_gx ?powers () = let len_evaluations = List.length evaluations in let composition_gx = match composition_gx with | Some composition_gx -> composition_gx | None -> (List.init len_evaluations (fun _ -> 0), 1) in let powers = match powers with | Some powers -> powers | None -> List.init len_evaluations (fun _ -> 1) in let domain_len = snd composition_gx in assert (domain_len > 0) ; assert (len_evaluations > 0) ; assert (List.compare_length_with (fst composition_gx) len_evaluations = 0) ; assert (List.compare_length_with powers len_evaluations = 0) ; assert (List.for_all (fun power -> power > 0) powers) ; let length_result = List.fold_left min Int.max_int @@ List.map length evaluations in let res = allocate_for_res res length_result in if List.exists is_zero evaluations then ( Fr_carray.erase res length_result ; (-1, res)) else let degree_result = List.fold_left2 (fun acc d pow -> acc + (d * pow)) 0 (List.map degree evaluations) powers in if degree_result >= length_result then raise (Invalid_argument (Printf.sprintf "mul_evaluations : evaluation is too short (length=%d) for \ expected result size %d" length_result (degree_result + 1))) else let list_array = List.map2 (fun (evaluation, pow) composition -> let pow = Z.of_int pow in let pow_bytes = Z.to_bits pow |> Bytes.unsafe_of_string in let pow_len = Z.numbits pow in let l = length evaluation in let rescale_composition = composition * l / domain_len in (snd evaluation, l, rescale_composition, pow_bytes, pow_len)) (List.combine evaluations powers) (fst composition_gx) in let nb_evals = List.length evaluations in Stubs.mul_arrays res (Array.of_list list_array) length_result nb_evals ; (degree_result, res) let constant p c = for i = 0 to Fr_carray.length p - 1 do Fr_carray.set p c i done (* Adds evaluation of a1 × p1 + a2 × p2 in evaluations /!\ the degree may not be always accurate, the resulting degree may not be the max of the 2 polynomials degrees *) let linear_c ?res ~evaluations ?linear_coeffs ?composition_gx ?(add_constant = Fr.zero) () = let len_evaluations = List.length evaluations in let linear_coeffs = match linear_coeffs with | Some linear_coeffs -> linear_coeffs | None -> List.init len_evaluations (fun _ -> Fr.(copy one)) in let composition_gx = match composition_gx with | Some composition_gx -> composition_gx | None -> (List.init len_evaluations (fun _ -> 0), 1) in let domain_len = snd composition_gx in assert (domain_len > 0) ; assert (len_evaluations > 0) ; assert (List.compare_length_with linear_coeffs len_evaluations = 0) ; assert (List.compare_length_with (fst composition_gx) len_evaluations = 0) ; let list_eval_coeff_composition = List.map2 (fun (eval, coeff) composition -> let rescale_composition = composition * length eval / domain_len in (eval, coeff, rescale_composition)) (List.combine evaluations linear_coeffs) (fst composition_gx) |> List.filter (fun (eval, _, _) -> not (is_zero eval)) in match list_eval_coeff_composition with | [] -> let length_result = List.fold_left min Int.max_int @@ List.map length evaluations in let res = allocate_for_res res length_result in constant res add_constant ; let degree_result = if Fr.is_zero add_constant then -1 else 0 in (degree_result, res) | _ :: _ -> let length_result = List.fold_left min Int.max_int @@ List.map (fun (eval, _, _) -> length eval) list_eval_coeff_composition in let degree_result = List.fold_left max 0 @@ List.map (fun (eval, _, _) -> degree eval) list_eval_coeff_composition in (* TODO: check relation between length_result and degree_result? *) let nb_evals = List.length list_eval_coeff_composition in let array_eval_coeff_composition = List.map (fun (eval, linear_coeff, composition) -> (snd eval, length eval, linear_coeff, composition)) list_eval_coeff_composition |> Array.of_list in let res = allocate_for_res res length_result in Stubs.linear_arrays res array_eval_coeff_composition add_constant length_result nb_evals ; (degree_result, res) (* Adds 2 evaluations *) let add ?res e1 e2 = let d1 = fst e1 in let d2 = fst e2 in let l1 = length e1 in let l2 = length e2 in if d1 = -1 then let res = allocate_for_res res l2 in copy ~res:(d2, res) e2 else if d2 = -1 then let res = allocate_for_res res l1 in copy ~res:(d1, res) e1 else let deg_result = max d1 d2 in let length_result = min l1 l2 in let res = allocate_for_res res length_result in Stubs.add res (snd e1) (snd e2) l1 l2 ; (deg_result, res) let linear_with_powers evals coeff = let nb_evals = List.length evals in assert (nb_evals > 0) ; let eval_lenghts = List.map length evals in let eval0_length = List.hd eval_lenghts in let is_equal_size = List.for_all (Int.equal eval0_length) eval_lenghts in if is_equal_size then ( let length_result = eval0_length in let degree_result = List.fold_left max (-1) @@ List.map degree evals in if degree_result = -1 then create length_result else let res = allocate length_result in let evals = List.map (fun (_, e) -> (e, Fr_carray.length e)) evals |> Array.of_list in Polynomial_c.linear_with_powers res coeff evals nb_evals ; (degree_result, res)) else let coeffs = Fr_carray.powers nb_evals coeff |> Array.to_list in linear_c ~evaluations:evals ~linear_coeffs:coeffs () (*restrictive equality, the same polynomial evaluated on different domains are said to be different*) let equal (deg1, eval1) (deg2, eval2) = if deg1 <> deg2 || Fr_carray.(length eval1 <> length eval2) then false else Polynomial.(equal (of_carray eval1) (of_carray eval2)) let evaluation_fft_internal : Domain.t -> polynomial -> Fr_carray.t = fun domain poly -> let degree = Polynomial.degree poly in let log_degree = Z.log2up (Z.of_int (degree + 1)) in let domain = Domain.to_carray domain in let n_domain = Fr_carray.length domain in let poly = Polynomial.to_carray poly in let log = Z.(log2up @@ of_int n_domain) in if not (Helpers.is_power_of_two n_domain) then raise @@ Invalid_argument "Size of domain should be a power of 2." ; if not (degree < n_domain) then raise @@ Invalid_argument "Degree of poly should be strictly less than domain size." ; let res = allocate n_domain in Fr_carray.blit poly ~src_off:0 res ~dst_off:0 ~len:(degree + 1) ; Stubs.fft_inplace res ~domain ~log ~log_degree ; res let evaluation_fft : domain -> polynomial -> t = fun domain poly -> let d = Polynomial.degree poly in let domain_length = Domain.length domain in if d = -1 then (d, allocate domain_length) else let res = evaluation_fft_internal domain poly in (d, res) let interpolation_fft_internal : Domain.t -> Fr_carray.t -> polynomial = fun domain coefficients -> let domain = Domain.to_carray domain in let n_domain = Fr_carray.length domain in let log = Z.(log2up @@ of_int n_domain) in if not (Helpers.is_power_of_two n_domain) then raise @@ Invalid_argument "Size of domain should be a power of 2." ; let n_coefficients = Fr_carray.length coefficients in if not (n_coefficients = n_domain) then raise @@ Invalid_argument "Size of coefficients should be same as domain." ; Stubs.ifft_inplace coefficients ~domain ~log ; Polynomial.of_carray coefficients let interpolation_fft : domain -> t -> polynomial = fun domain (d, evaluation) -> if d = -1 then Polynomial.zero else let length_res = Domain.length domain in let rescaled_eval = allocate length_res in Domain_c.rescale rescaled_eval evaluation length_res (Fr_carray.length evaluation) ; interpolation_fft_internal domain rescaled_eval let interpolation_fft2 : Domain.t -> scalar array -> polynomial = fun domain coefficients -> interpolation_fft_internal domain (Fr_carray.of_array coefficients) let dft domain polynomial = let length = Domain.length domain in if length > 1 lsl 10 then raise @@ Invalid_argument "Domain size must be <= 2^10." ; if Helpers.is_power_of_two length then raise @@ Invalid_argument "Domain size must not be a power of two" ; let d = Polynomial.degree polynomial in let polynomial = Polynomial.to_carray polynomial in if not (d < length) then raise @@ Invalid_argument "Degree of poly should be strictly less than domain size." ; let evaluations = allocate length in Fr_carray.blit polynomial ~src_off:0 evaluations ~dst_off:0 ~len:(d + 1) ; Stubs.dft_inplace evaluations (Domain.to_carray domain) false length ; (d, evaluations) let idft domain (_, evaluations) = let length = Domain.length domain in if length > 1 lsl 10 then raise @@ Invalid_argument "Domain size must be <= 2^10." ; if Helpers.is_power_of_two length then raise @@ Invalid_argument "Domain size must not be a power of two" ; if not (length = Fr_carray.length evaluations) then raise @@ Invalid_argument "Size of coefficients should be same as domain." ; let coefficients = Fr_carray.copy evaluations in Stubs.dft_inplace coefficients (Domain.to_carray domain) true length ; Polynomial.of_carray coefficients let evaluation_fft_prime_factor_algorithm ~domain1 ~domain2 polynomial = let domain1_length = Domain.length domain1 in let domain2_length = Domain.length domain2 in if (not (Helpers.is_power_of_two domain1_length)) && domain1_length > 1 lsl 10 then raise @@ Invalid_argument "Domain of non power of 2 length must be <= 2^10." ; if (not (Helpers.is_power_of_two domain2_length)) && domain2_length > 1 lsl 10 then raise @@ Invalid_argument "Domain of non power of 2 length must be <= 2^10." ; if not Z.(gcd (of_int domain1_length) (of_int domain2_length) = one) then raise @@ Invalid_argument "Size of domains must be coprime." ; let n_domain = domain1_length * domain2_length in let d = Polynomial.degree polynomial in let coefficients = Polynomial.to_carray polynomial in if not (d < n_domain) then raise @@ Invalid_argument "Degree of poly should be strictly less than domain size." ; let res = allocate n_domain in if d = -1 then (d, res) else let domain1 = Domain.to_carray domain1 in let domain2 = Domain.to_carray domain2 in Fr_carray.blit coefficients ~src_off:0 res ~dst_off:0 ~len:(d + 1) ; Stubs.fft_prime_factor_algorithm_inplace res (domain1, domain1_length) (domain2, domain2_length) false ; (d, res) let interpolation_fft_prime_factor_algorithm ~domain1 ~domain2 (d, evaluations) = let domain1_length = Domain.length domain1 in let domain2_length = Domain.length domain2 in if (not (Helpers.is_power_of_two domain1_length)) && domain1_length > 1 lsl 10 then raise @@ Invalid_argument "Domain of non power of 2 length must be <= 2^10." ; if (not (Helpers.is_power_of_two domain2_length)) && domain2_length > 1 lsl 10 then raise @@ Invalid_argument "Domain of non power of 2 length must be <= 2^10." ; if not Z.(gcd (of_int domain1_length) (of_int domain2_length) = one) then raise @@ Invalid_argument "Size of domains must be coprime." ; let n_domain = domain1_length * domain2_length in let n_evaluations = Fr_carray.length evaluations in if not (n_evaluations = n_domain) then raise @@ Invalid_argument "Size of coefficients should be same as domain." ; if d = -1 then Polynomial.zero else let domain1 = Domain.to_carray domain1 in let domain2 = Domain.to_carray domain2 in let coefficients = Fr_carray.copy evaluations in Stubs.fft_prime_factor_algorithm_inplace coefficients (domain1, domain1_length) (domain2, domain2_length) true ; Polynomial.of_carray coefficients end module type Evaluations_unsafe_sig = sig include Evaluations_sig (** [to_carray t] converts [t] from type {!type:t} to type {!type:Fr_carray.t} Note: [to_carray t] doesn't create a copy of [t] *) val to_carray : t -> Fr_carray.t end module Evaluations_unsafe : Evaluations_unsafe_sig with type scalar = Bls12_381.Fr.t and type domain = Domain.t and type polynomial = Polynomial.t = Evaluations_impl include ( Evaluations_unsafe : Evaluations_sig with type t = Evaluations_unsafe.t and type scalar = Evaluations_unsafe.scalar and type domain = Evaluations_unsafe.domain and type polynomial = Evaluations_unsafe.polynomial)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>