package octez-libs

  1. Overview
  2. Docs
A package that contains multiple base libraries used by the Octez suite

Install

Dune Dependency

Authors

Maintainers

Sources

tezos-18.1.tar.gz
sha256=aa2f5bc99cc4ca2217c52a1af2a2cdfd3b383208cb859ca2e79ca0903396ca1d
sha512=d68bb3eb615e3dcccc845fddfc9901c95b3c6dc8e105e39522ce97637b1308a7fa7aa1d271351d5933febd7476b2819e1694f31198f1f0919681f1f9cc97cb3a

doc/octez-libs.plonk/Plonk/Main_protocol/index.html

Module Plonk.Main_protocolSource

aPlonK is a PlonK-based proving system. As such, it provides a way to create succinct cryptographic proofs about a given predicate, which can be then verified with a low computational cost.

In this system, a predicate is represented by an arithmetic circuit, i.e. a collection of arithmetic gates operating over a prime field, connected through wires holding scalars from this field. For example, the following diagram illustrates a simple circuit checking that the addition of two scalars (w1 and w2) is equal to w0. Here, the add gate can be seen as taking two inputs and producing an output, while the eq gate just takes two inputs and asserts they're equal.

          (w0)│      w1│         w2│
              │        └───┐   ┌───┘
              │          ┌─┴───┴─┐
              │          │  add  │
              │          └───┬───┘
              └──────┐   ┌───┘w3
                   ┌─┴───┴─┐
                   │  eq   │
                   └───────┘

The wires of a circuit are called prover inputs, since the prover needs an assignment of all wires to produce a proof. The predicate also declares a subset of the wires called verifier inputs. In our example, wire w0 is the only verifier input, which is indicated by the parenthesis. A proof for a given w0 would prove the following statement: ∃ w1, w2, w3: w3 = w1 + w2 ∧ w0 = w3 This means that the verifier only needs a (typically small) subset of the inputs alongside the (succinct) proof to check the validity of the statement.

A more interesting example would be to replace the add gate by a more complicated hash circuit. This would prove the knowledge of the pre-image of a hash.

A simplified view of aPlonk's API consists of the following three functions:

    val setup : circuit -> srs ->
      (prover_public_parameters, verifier_public_parameters)

    val prove : prover_public_parameters -> prover_inputs ->
      private_inputs -> proof

    val verify : verifier_public_parameters -> verifier_inputs ->
      proof -> bool

In addition to the prove and verify, the interface provides a function to setup the system. The setup function requires a Structured Reference String. Two large SRSs were generated by the ZCash and Filecoin projects and are both used in aPlonK. Notice also that the circuit is used during setup only and, independently from its size, the resulting verifier_public_parameters will be a succinct piece of data that will be posted on-chain to allow verification and they are bound to the specific circuit that generated them. The prover_public_parameters's size is linear in the size of the circuit.

include module type of struct include Main_protocol_intf end
Sourcemodule Make_impl (PP : Polynomial_protocol.S) : sig ... end
include sig ... end
Sourceexception Rest_not_null of string
Sourceexception Entry_not_in_table of string
Sourcemodule Input_commitment : sig ... end
Sourceval scalar_t : scalar Repr.t
Sourceval scalar_encoding : scalar Data_encoding.t
Sourcetype circuit_map = (Circuit.t * int) SMap.t
Sourceval prover_public_parameters_t : prover_public_parameters Repr.t
Sourceval verifier_public_parameters_t : verifier_public_parameters Repr.t
Sourceval verifier_public_parameters_encoding : verifier_public_parameters Data_encoding.t
Sourceval proof_t : proof Repr.t
Sourceval proof_encoding : proof Data_encoding.t
Sourcetype circuit_prover_input = Make(Polynomial_protocol).circuit_prover_input = {
  1. witness : scalar array;
  2. input_commitments : Input_commitment.t list;
}
Sourceval circuit_prover_input_t : circuit_prover_input Repr.t
Sourcetype prover_inputs = circuit_prover_input list SMap.t
Sourceval prover_inputs_t : prover_inputs Repr.t
Sourcetype public_inputs = Plonk.Bls.Scalar.t array list
Sourceval public_inputs_t : public_inputs Repr.t
Sourcetype verifier_inputs = (public_inputs * Input_commitment.public list list) SMap.t
Sourceval verifier_inputs_t : verifier_inputs Repr.t
Sourceval input_commit : ?size:int -> ?shift:int -> prover_public_parameters -> scalar array -> Input_commitment.t
Sourceval update_prover_public_parameters : Bytes.t -> prover_public_parameters -> prover_public_parameters
Sourceval update_verifier_public_parameters : Bytes.t -> verifier_public_parameters -> verifier_public_parameters
Sourceval verify : verifier_public_parameters -> inputs:verifier_inputs -> proof -> bool
Sourcemodule Internal_for_tests : sig ... end
OCaml

Innovation. Community. Security.