package octez-internal-libs
A package that contains some libraries used by the Octez suite
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/octez-internal-libs.irmin/proof.ml.html
Source file proof.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
(* * Copyright (c) 2013-2022 Thomas Gazagnaire <thomas@gazagnaire.org> * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. *) open! Import include Proof_intf module Make (C : Type.S) (H : Type.S) (S : sig type step [@@deriving irmin] end) (M : Type.S) = struct type contents = C.t [@@deriving irmin] type hash = H.t [@@deriving irmin] type step = S.step [@@deriving irmin] type metadata = M.t [@@deriving irmin] type kinded_hash = [ `Contents of hash * metadata | `Node of hash ] [@@deriving irmin] type 'a inode = { length : int; proofs : (int * 'a) list } [@@deriving irmin] type 'a inode_extender = { length : int; segments : int list; proof : 'a } [@@deriving irmin] type tree = | Contents of contents * metadata | Blinded_contents of hash * metadata | Node of (step * tree) list | Blinded_node of hash | Inode of inode_tree inode | Extender of inode_tree inode_extender [@@deriving irmin] and inode_tree = | Blinded_inode of hash | Inode_values of (step * tree) list | Inode_tree of inode_tree inode | Inode_extender of inode_tree inode_extender [@@deriving irmin] type elt = | Contents of contents | Node of (step * kinded_hash) list | Inode of hash inode | Inode_extender of hash inode_extender [@@deriving irmin] type stream = elt Seq.t [@@deriving irmin] type 'a t = { before : kinded_hash; after : kinded_hash; state : 'a } [@@deriving irmin] let before t = t.before let after t = t.after let state t = t.state let v ~before ~after state = { after; before; state } end type bad_stream_exn = | Stream_too_long of { context : string; reason : string } | Stream_too_short of { context : string; reason : string } | Proof_mismatch of { context : string; reason : string } exception Bad_proof of { context : string } exception Bad_stream of bad_stream_exn let bad_proof_exn context = raise (Bad_proof { context }) let bad_stream_too_long context reason = raise (Bad_stream (Stream_too_long { context; reason })) let bad_stream_too_short context reason = raise (Bad_stream (Stream_too_short { context; reason })) let bad_stream_exn context reason = raise (Bad_stream (Proof_mismatch { context; reason })) let bad_stream_exn_fmt s fmt = Fmt.kstr (bad_stream_exn ("Proof.Env." ^ s)) fmt let bad_stream_too_short_fmt s fmt = Fmt.kstr (bad_stream_too_short ("Proof.Env." ^ s)) fmt module Env (B : Backend.S) (P : S with type contents := B.Contents.Val.t and type hash := B.Hash.t and type step := B.Node.Val.step and type metadata := B.Node.Val.metadata) = struct module H = B.Hash module Hashes = struct include Hashtbl.Make (struct type t = H.t let hash = H.short_hash let equal = Type.(unstage (equal H.t)) end) let of_list l = of_seq (List.to_seq l) let to_list t = List.of_seq (to_seq t) let t elt_t = Type.map [%typ: (H.t * elt) list] of_list to_list end type mode = Produce | Serialise | Deserialise | Consume [@@deriving irmin] type kind = Set | Stream [@@deriving irmin] module Set = struct type produce = { nodes : B.Node.Val.t Hashes.t; contents : B.Contents.Val.t Hashes.t; } [@@deriving irmin] type deserialise = { nodes : B.Node_portable.t Hashes.t; contents : B.Contents.Val.t Hashes.t; } [@@deriving irmin] type t = | Produce of produce | Serialise of produce | Deserialise of deserialise | Consume of deserialise [@@deriving irmin] let producer () = Produce { contents = Hashes.create 13; nodes = Hashes.create 13 } let deserialiser () = Deserialise { contents = Hashes.create 13; nodes = Hashes.create 13 } end module Stream = struct let ref_t v = Type.map v ref ( ! ) type produce = { set : unit Hashes.t; singleton_inodes : (int * H.t) Hashes.t; rev_elts : (H.t * P.elt) list ref; rev_elts_size : int ref; } [@@deriving irmin] type consume = { nodes : B.Node_portable.t Hashes.t; contents : B.Contents.Val.t Hashes.t; stream : P.elt Seq.t ref; } [@@deriving irmin] type t = Produce of produce | Consume of consume [@@deriving irmin] let producer () = let set = Hashes.create 13 in let singleton_inodes = Hashes.create 13 in let rev_elts = ref [] in let rev_elts_size = ref 0 in Produce { set; singleton_inodes; rev_elts; rev_elts_size } let consumer stream = let nodes = Hashes.create 13 in let contents = Hashes.create 13 in let stream = ref stream in Consume { nodes; contents; stream } let push { rev_elts; rev_elts_size; _ } h_elt index = incr rev_elts_size; rev_elts := List.insert_exn !rev_elts index h_elt end type v = Empty | Set of Set.t | Stream of Stream.t [@@deriving irmin] type t = v ref let t = Type.map v_t ref ( ! ) let empty () : t = ref Empty let is_empty t = !t = Empty let copy ~into t = into := !t type hash = H.t [@@deriving irmin ~equal ~pp] let rec forward_lookup h singleton_inodes : (int * hash) list option = match Hashes.find_opt singleton_inodes h with | None -> None | Some (i', h') -> ( match forward_lookup h' singleton_inodes with | None -> Some [ (i', h') ] | Some l -> Some ((i', h') :: l)) let apply_extenders ~length singleton_inodes skips proofs = let rec accumulate_segments ~(acc : int Reversed_list.t) h = function | [] -> (Reversed_list.rev acc, h) | (i', h') :: rest -> accumulate_segments ~acc:(i' :: acc) h' rest in let inode = P.Inode { length; proofs } in match proofs with | [ (i, h) ] -> ( match forward_lookup h singleton_inodes with | None -> inode | Some ls -> ( let () = (* Push all hashes except the last one into [skips] *) match List.rev ((i, h) :: ls) with | [] | [ _ ] -> failwith "idk" | _ :: tl -> List.iter (fun (_, h) -> Hashes.add skips h ()) tl in let i, h = accumulate_segments ~acc:[ i ] h ls in match i with | [] | [ _ ] -> assert false | segments -> P.Inode_extender { length; segments; proof = h })) | _ -> inode let post_processing singleton_inodes (stream : (hash * P.elt) list) : P.elt list = let skips = Hashes.create 13 in (* [skips] are the elements of the [stream] that are included in the extenders, they will be removed from the final stream. *) let rec aux rev_elts = function | [] -> List.rev rev_elts | (h, elt) :: rest -> if Hashes.mem skips h then aux rev_elts rest else let elt' : P.elt = match (elt : P.elt) with | P.Inode { length; proofs } -> apply_extenders ~length singleton_inodes skips proofs | Node ls -> Node ls | Contents c -> Contents c | Inode_extender _ -> assert false in aux (elt' :: rev_elts) rest in aux [] stream let to_stream t = match !t with | Stream (Produce { rev_elts; singleton_inodes; _ }) -> List.rev !rev_elts |> post_processing singleton_inodes |> List.to_seq | _ -> assert false let is_empty_stream t = match !t with | Stream (Consume { stream; _ }) -> ( (* Peek the sequence but do not advance the ref *) match !stream () with Seq.Nil -> true | _ -> false) | _ -> false let set_mode t (kind : kind) mode = match kind with | Set -> ( match (!t, mode) with | Empty, Produce -> t := Set Set.(producer ()) | Empty, Deserialise -> t := Set Set.(deserialiser ()) | Set (Produce set), Serialise -> t := Set Set.(Serialise set) | Set (Deserialise set), Consume -> t := Set Set.(Consume set) | _ -> assert false) | Stream -> ( match (!t, mode) with | Empty, Produce -> t := Stream (Stream.producer ()) | _ -> assert false) let with_set_consume f = let t = ref Empty in set_mode t Set Deserialise; let stop_deserialise () = set_mode t Set Consume in let+ res = f t ~stop_deserialise in t := Empty; res let with_set_produce f = let t = ref Empty in set_mode t Set Produce; let start_serialise () = set_mode t Set Serialise in let+ res = f t ~start_serialise in t := Empty; res let with_stream_produce f = let t = ref Empty in set_mode t Stream Produce; let to_stream () = to_stream t in let+ res = f t ~to_stream in t := Empty; res let with_stream_consume stream f = let t = Stream (Stream.consumer stream) |> ref in let is_empty () = is_empty_stream t in let+ res = f t ~is_empty in t := Empty; res module Contents_hash = Hash.Typed (H) (B.Contents.Val) let check_contents_integrity v h = let h' = Contents_hash.hash v in if not (equal_hash h' h) then bad_stream_exn_fmt "check_contents_integrity" "got %a expected %a" pp_hash h' pp_hash h let check_node_integrity v h = let h' = try B.Node_portable.hash_exn ~force:false v with Not_found -> (* [v] is out of [of_proof], it is supposed to have its hash available without IOs. If these IOs were to occur, it would corrupt the stream being read. *) assert false in if not (equal_hash h' h) then bad_stream_exn_fmt "check_node_integrity" "got %a expected %a" pp_hash h' pp_hash h let dehydrate_stream_node v = (* [v] is fresh out of the node store, meaning that if it is represented recursively it is still in a shallow state. [head v] might trigger IOs. It is fine because [v] is already wrapped with [with_handler]. *) match B.Node.Val.head v with | `Node l -> let l = List.map (function | step, `Contents (k, m) -> (step, `Contents (B.Contents.Key.to_hash k, m)) | step, `Node k -> (step, `Node (B.Node.Key.to_hash k))) l in P.Node l | `Inode (length, proofs) -> P.Inode { length; proofs } let rehydrate_stream_node ~depth (elt : P.elt) h = let bad_stream_exn_fmt = bad_stream_exn_fmt "rehydrate_stream_node" in match elt with | Contents _ -> bad_stream_exn_fmt "found contents at depth %d when looking for node with hash %a" depth pp_hash h | Node l -> ( match B.Node_portable.of_proof ~depth (`Values l) with | Some v -> v | None -> bad_stream_exn_fmt "could not deserialise Node at depth %d when looking for hash %a" depth pp_hash h) | Inode { length; proofs } -> let proofs = List.map (fun (i, h) -> (i, `Blinded h)) proofs in let inode = `Inode (length, proofs) in let v = match B.Node_portable.of_proof ~depth inode with | Some v -> v | None -> bad_stream_exn_fmt "could not deserialise Inode at depth %d when looking for hash \ %a" depth pp_hash h in v | Inode_extender { length; segments; proof } -> let elt = List.fold_left (fun acc i -> `Inode (length, [ (i, acc) ])) (`Blinded proof) (List.rev segments) in let v = match B.Node_portable.of_proof ~depth elt with | Some v -> v | None -> bad_stream_exn_fmt "could not deserialise Inode at depth %d when looking for hash \ %a" depth pp_hash h in v let rehydrate_stream_contents (elt : P.elt) h = let err k = bad_stream_exn_fmt "find_contents" "found %s when looking Contents with hash %a" k pp_hash h in match elt with | Node _ -> err "Node" | Inode _ -> err "Inode" | Inode_extender _ -> err "Inode" | Contents v -> v let find_contents t h = match !t with | Empty -> None | Set (Produce set) -> (* Sharing of contents is not strictly needed during this phase. It could be disabled. *) Hashes.find_opt set.contents h | Set (Serialise set) -> (* This is needed in order to differenciate between blinded contents from others. *) Hashes.find_opt set.contents h | Set (Deserialise _) -> (* This phase only fills the env, it should search for anything *) assert false | Set (Consume set) -> (* Use the Env to feed the values during consume *) Hashes.find_opt set.contents h | Stream (Produce _) -> (* There is no need for sharing with stream proofs *) None | Stream (Consume { contents; stream; _ }) -> ( (* Use the Env to feed the values during consume *) match Hashes.find_opt contents h with | Some v -> Some v | None -> ( match !stream () with | Seq.Nil -> bad_stream_too_short_fmt "find_contents" "empty stream when looking for hash %a" pp_hash h | Cons (elt, rest) -> let v = rehydrate_stream_contents elt h in check_contents_integrity v h; stream := rest; Hashes.add contents h v; Some v)) let add_contents_from_store t h v = match !t with | Empty -> () | Set (Produce set) -> (* Registering in [set] for traversal during [Serialise]. *) assert (not (Hashes.mem set.contents h)); Hashes.add set.contents h v | Set (Serialise _) -> (* There shouldn't be new contents during this phase *) assert false | Set (Deserialise _) -> (* This phase has no repo pointer *) assert false | Set (Consume _) -> (* This phase has no repo pointer *) assert false | Stream (Produce ({ set; _ } as cache)) -> (* Registering when seen for the first time *) if not @@ Hashes.mem set h then ( Hashes.add set h (); let h_elt : hash * P.elt = (h, Contents v) in Stream.push cache h_elt 0) | Stream (Consume _) -> (* This phase has no repo pointer *) assert false let add_contents_from_proof t h v = match !t with | Set (Deserialise set) -> (* Using [replace] because there could be several instances of this contents in the proof, we will not share as this is not strictly needed. *) Hashes.replace set.contents h v | Empty -> (* Happens during [hash_of_proof_state] *) () | _ -> assert false let find_node t h = match !t with | Empty -> None | Set (Produce set) -> (* This is needed in order to achieve sharing on inode's pointers. In other words, each node present in the [before] tree should have a single [P.Node.Val.t] representative that will witness all the lazy inode loadings. *) Hashes.find_opt set.nodes h | Set (Serialise set) -> (* This is needed in order to follow loaded paths in the [before] tree. *) Hashes.find_opt set.nodes h | Set (Deserialise _) -> (* This phase only fills the env, it should search for anything *) assert false | Set (Consume _) -> (* This phase looks for portable nodes *) None | Stream (Produce _) -> (* There is no need for sharing with stream proofs *) None | Stream (Consume _) -> (* This phase looks for portable nodes *) None let find_recpnode t _find ~expected_depth h = assert (expected_depth > 0); match !t with | Stream (Consume { nodes; stream; _ }) -> ( (* Use the Env to feed the values during consume *) match Hashes.find_opt nodes h with | Some v -> Some v | None -> ( match !stream () with | Seq.Nil -> bad_stream_too_short_fmt "find_recnode" "empty stream when looking for hash %a" pp_hash h | Cons (v, rest) -> let v = rehydrate_stream_node ~depth:expected_depth v h in (* There is no need to apply [with_handler] here because there is no repo pointer in this inode. *) check_node_integrity v h; stream := rest; Hashes.add nodes h v; Some v)) | _ -> assert false let find_pnode t h = match !t with | Set (Consume set) -> (* [set] has been filled during deserialise. Using it to provide values during consume. *) Hashes.find_opt set.nodes h | Stream (Consume { nodes; stream; _ }) -> ( (* Use the Env to provide the values during consume. Since all hashes are unique in [stream], [nodes] provides a hash-based sharing. *) match Hashes.find_opt nodes h with | Some v -> Some v | None -> ( match !stream () with | Seq.Nil -> bad_stream_too_short_fmt "find_node" "empty stream when looking for hash %a" pp_hash h | Cons (v, rest) -> (* Shorten [stream] before calling [head] as it might itself perform reads. *) stream := rest; let v = (* [depth] is 0 because this context deals with root nodes *) rehydrate_stream_node ~depth:0 v h in let v = (* Call [with_handler] before [head] because the later might perform reads *) B.Node_portable.with_handler (find_recpnode t) v in let (_ : [ `Node of _ | `Inode of _ ]) = (* At produce time [dehydrate_stream_node] called [head] which might have performed IOs. If it did then we must consume the stream accordingly right now in order to preserve stream ordering. *) B.Node_portable.head v in check_node_integrity v h; Hashes.add nodes h v; Some v)) | _ -> None let add_recnode_from_store t find ~expected_depth k = assert (expected_depth > 0); match !t with | Stream (Produce ({ set; singleton_inodes; _ } as cache)) -> ( (* Registering when seen for the first time, there is no need for sharing. *) match find ~expected_depth k with | None -> None | Some v -> let h = B.Node.Key.to_hash k in if not @@ Hashes.mem set h then ( Hashes.add set h (); let elt = dehydrate_stream_node v in let () = match elt with | P.Inode { proofs = [ bucket ]; _ } -> Hashes.add singleton_inodes h bucket | _ -> () in Stream.push cache (h, elt) 0); Some v) | _ -> assert false let add_node_from_store t h v = match !t with | Empty -> v | Set (Produce set) -> (* Registering in [set] for sharing during [Produce] and traversal during [Serialise]. This assertion is guarenteed because [add_node_from_store] is guarded by a call to [find_node] in tree. *) assert (not (Hashes.mem set.nodes h)); Hashes.add set.nodes h v; v | Set (Serialise _) -> (* There shouldn't be new nodes during this phase *) assert false | Set (Deserialise _) -> (* This phase has no repo pointer *) assert false | Set (Consume _) -> (* This phase has no repo pointer *) assert false | Stream (Produce ({ set; rev_elts_size; singleton_inodes; _ } as cache)) -> (* Registering when seen for the first time and wrap its [find] function. Since there is no sharing during the production of streamed proofs, the hash may already have been seened. *) let new_hash = not @@ Hashes.mem set h in let v = (* In all case [v] should be wrapped. If [not new_hash] then wrap it for future IOs on it. If [new_hash] then it additionally should be wrapped before calling [dehydrate_stream_node] as this call may trigger IOs. *) B.Node.Val.with_handler (add_recnode_from_store t) v in if new_hash then ( Hashes.add set h (); let len0 = !rev_elts_size in let elt = dehydrate_stream_node v in let len1 = !rev_elts_size in let delta = (* [delta] is the number of reads that were performed by [dehydrate_stream_node]. *) len1 - len0 in let () = match elt with | P.Inode { proofs = [ bucket ]; _ } -> Hashes.add singleton_inodes h bucket | _ -> () in (* if [delta = 0] then push the pair at the head of the list. if [delta > 0] then insert it before the calls that it triggered. *) Stream.push cache (h, elt) delta); v | Stream (Consume _) -> (* This phase has no repo pointer *) assert false let add_pnode_from_proof t h v = match !t with | Set (Deserialise set) -> (* Using [replace] because there could be several instances of this node in the proof, we will not share as this is not strictly needed. All the occurences of this node in the proof are expected to have the same blinded/visible coverage (i.e. the same node proof). *) Hashes.replace set.nodes h v | Empty -> (* Happens during [hash_of_proof_state] *) () | _ -> assert false end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>