package octez-internal-libs
A package that contains some libraries used by the Octez suite
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/octez-internal-libs.irmin/node.ml.html
Source file node.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
(* * Copyright (c) 2013 Louis Gesbert <louis.gesbert@ocamlpro.com> * Copyright (c) 2013-2022 Thomas Gazagnaire <thomas@gazagnaire.org> * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. *) open! Import include Node_intf let src = Logs.Src.create "irmin.node" ~doc:"Irmin trees/nodes" module Log = (val Logs.src_log src : Logs.LOG) (* Add [merge] to a [Core] implementation. *) module Of_core (S : Core) = struct include S (* Merges *) let all_contents t = let kvs = S.list t in List.fold_left (fun acc -> function k, `Contents c -> (k, c) :: acc | _ -> acc) [] kvs let all_succ t = let kvs = S.list t in List.fold_left (fun acc -> function k, `Node n -> (k, n) :: acc | _ -> acc) [] kvs (* [Merge.alist] expects us to return an option. [C.merge] does that, but we need to consider the metadata too... *) let merge_metadata merge_contents = (* This gets us [C.t option, S.Val.Metadata.t]. We want [(C.t * S.Val.Metadata.t) option]. *) let explode = function | None -> (None, S.Metadata.default) | Some (c, m) -> (Some c, m) in let implode = function None, _ -> None | Some c, m -> Some (c, m) in Merge.like [%typ: (S.contents_key * S.metadata) option] (Merge.pair merge_contents S.Metadata.merge) explode implode let merge_contents merge_key = Merge.alist S.step_t (Type.pair S.contents_key_t S.metadata_t) (fun _step -> merge_metadata merge_key) let merge_node merge_key = Merge.alist S.step_t S.node_key_t (fun _step -> merge_key) (* FIXME: this is very broken; do the same thing as [Tree.merge] instead. *) let merge ~contents ~node = let explode t = (all_contents t, all_succ t) in let implode (contents, succ) = let xs = List.rev_map (fun (s, c) -> (s, `Contents c)) contents in let ys = List.rev_map (fun (s, n) -> (s, `Node n)) succ in S.of_list (xs @ ys) in let merge = Merge.pair (merge_contents contents) (merge_node node) in Merge.like S.t merge explode implode end module Irmin_hash = Hash (* A [Make] implementation providing the subset of [S] that can be implemented over abstract [key] types. *) module Make_core (Hash : Hash.S) (Path : sig type step [@@deriving irmin] end) (Metadata : Metadata.S) (Contents_key : Key.S with type hash = Hash.t) (Node_key : Key.S with type hash = Hash.t) = struct module Metadata = Metadata type contents_key = Contents_key.t [@@deriving irmin] type node_key = Node_key.t [@@deriving irmin] type step = Path.step [@@deriving irmin] type metadata = Metadata.t [@@deriving irmin ~equal] type hash = Hash.t [@@deriving irmin] type 'key contents_entry = { name : Path.step; contents : 'key } [@@deriving irmin] type 'key contents_m_entry = { metadata : Metadata.t; name : Path.step; contents : 'key; } [@@deriving irmin] module StepMap = Map.Make (struct type t = Path.step [@@deriving irmin ~compare] end) type 'h node_entry = { name : Path.step; node : 'h } [@@deriving irmin] type entry = | Node of node_key node_entry | Contents of contents_key contents_entry | Contents_m of contents_key contents_m_entry (* Invariant: the [_hash] cases are only externally reachable via [Portable.of_node]. *) | Node_hash of Hash.t node_entry | Contents_hash of Hash.t contents_entry | Contents_m_hash of Hash.t contents_m_entry [@@deriving irmin] type t = entry StepMap.t type value = [ `Contents of contents_key * metadata | `Node of node_key ] type weak_value = [ `Contents of hash * metadata | `Node of hash ] [@@deriving irmin] (* FIXME: special-case the default metadata in the default signature? *) let value_t = let open Type in variant "value" (fun n c x -> function | `Node h -> n h | `Contents (h, m) -> if equal_metadata m Metadata.default then c h else x (h, m)) |~ case1 "node" node_key_t (fun k -> `Node k) |~ case1 "contents" contents_key_t (fun h -> `Contents (h, Metadata.default)) |~ case1 "contents-x" (pair contents_key_t Metadata.t) (fun (h, m) -> `Contents (h, m)) |> sealv let to_entry (k, (v : value)) = match v with | `Node h -> Node { name = k; node = h } | `Contents (h, m) -> if equal_metadata m Metadata.default then Contents { name = k; contents = h } else Contents_m { metadata = m; name = k; contents = h } let inspect_nonportable_entry_exn : entry -> step * value = function | Node n -> (n.name, `Node n.node) | Contents c -> (c.name, `Contents (c.contents, Metadata.default)) | Contents_m c -> (c.name, `Contents (c.contents, c.metadata)) | Node_hash _ | Contents_hash _ | Contents_m_hash _ -> (* Not reachable after [Portable.of_node]. See invariant on {!entry}. *) assert false let step_of_entry : entry -> step = function | Node { name; _ } | Node_hash { name; _ } | Contents { name; _ } | Contents_m { name; _ } | Contents_hash { name; _ } | Contents_m_hash { name; _ } -> name let weak_of_entry : entry -> step * weak_value = function | Node n -> (n.name, `Node (Node_key.to_hash n.node)) | Node_hash n -> (n.name, `Node n.node) | Contents c -> (c.name, `Contents (Contents_key.to_hash c.contents, Metadata.default)) | Contents_m c -> (c.name, `Contents (Contents_key.to_hash c.contents, c.metadata)) | Contents_hash c -> (c.name, `Contents (c.contents, Metadata.default)) | Contents_m_hash c -> (c.name, `Contents (c.contents, c.metadata)) let of_seq l = Seq.fold_left (fun acc x -> StepMap.add (fst x) (to_entry x) acc) StepMap.empty l let of_list l = of_seq (List.to_seq l) let seq_entries ~offset ?length (t : t) = let take seq = match length with None -> seq | Some n -> Seq.take n seq in StepMap.to_seq t |> Seq.drop offset |> take let seq ?(offset = 0) ?length ?cache:_ (t : t) = seq_entries ~offset ?length t |> Seq.map (fun (_, e) -> inspect_nonportable_entry_exn e) let list ?offset ?length ?cache:_ t = List.of_seq (seq ?offset ?length t) let find_entry ?cache:_ (t : t) s = StepMap.find_opt s t let find ?cache (t : t) s = Option.map (fun e -> snd (inspect_nonportable_entry_exn e)) (find_entry ?cache t s) let empty = Fun.const StepMap.empty let is_empty e = StepMap.is_empty e let length e = StepMap.cardinal e let clear _ = () let equal_entry_opt = Type.(unstage (equal (option entry_t))) let add_entry t k e = StepMap.update k (fun e' -> if equal_entry_opt (Some e) e' then e' else Some e) t let add t k v = let e = to_entry (k, v) in add_entry t k e let remove t k = StepMap.remove k t let of_entries es = List.to_seq es |> Seq.map (fun e -> (step_of_entry e, e)) |> StepMap.of_seq let entries e = List.rev_map (fun (_, e) -> e) (StepMap.bindings e) module Hash_preimage = struct type entry = | Node_hash of Hash.t node_entry | Contents_hash of Hash.t contents_entry | Contents_m_hash of Hash.t contents_m_entry [@@deriving irmin] type t = entry list [@@deriving irmin ~pre_hash] type t_not_prefixed = t [@@deriving irmin ~pre_hash] let pre_hash = Type.(unstage (pre_hash t)) (* Manually add a prefix to default nodes, in order to prevent hash collision between contents and nodes (see https://github.com/mirage/irmin/issues/1304). Prefixing the contents is not enough to prevent the collision: the prehash of a node starts with the number of its children, which can coincide with the prefix of the content's prehash. *) let pre_hash x f = f "N"; pre_hash x f end let pre_hash pre_hash t f = let entries : Hash_preimage.t = StepMap.to_seq t |> Seq.map (fun (_, v) -> match v with (* Weaken keys to hashes *) | Node { name; node } -> Hash_preimage.Node_hash { name; node = Node_key.to_hash node } | Contents { name; contents } -> Contents_hash { name; contents = Contents_key.to_hash contents } | Contents_m { metadata; name; contents } -> Contents_m_hash { metadata; name; contents = Contents_key.to_hash contents } | Node_hash { name; node } -> Node_hash { name; node } | Contents_hash { name; contents } -> Contents_hash { name; contents } | Contents_m_hash { metadata; name; contents } -> Contents_m_hash { metadata; name; contents }) |> Seq.fold_left (fun xs x -> x :: xs) [] in pre_hash entries f let t = let pre_hash = pre_hash Hash_preimage.pre_hash in Type.map ~pre_hash Type.(list entry_t) of_entries entries let t_not_prefixed = let pre_hash = pre_hash Hash_preimage.pre_hash_t_not_prefixed in Type.map ~pre_hash Type.(list entry_t) of_entries entries let with_handler _ t = t let head_entries t = let l = seq_entries ~offset:0 t |> List.of_seq in `Node l let head t = let (`Node l) = head_entries t in let l = List.map (fun (_, e) -> inspect_nonportable_entry_exn e) l in `Node l module Ht = Irmin_hash.Typed (Hash) (struct type nonrec t = t [@@deriving irmin] end) let hash_exn ?force:_ = Ht.hash end module Portable = struct module Of_core (X : sig type hash include Core with type hash := hash and type contents_key = hash and type node_key = hash end) = struct include X let of_node t = t type proof = [ `Blinded of hash | `Values of (step * value) list | `Inode of int * (int * proof) list ] [@@deriving irmin] let to_proof (t : t) : proof = `Values (seq t |> List.of_seq) let of_proof ~depth (t : proof) = assert (depth = 0); match t with | `Blinded _ | `Inode _ -> None | `Values e -> Some (of_list e) end module Of_node (X : S) = struct include Of_core (X) include X end module type S = Portable end module Make_generic_key (Hash : Hash.S) (Path : sig type step [@@deriving irmin] end) (Metadata : Metadata.S) (Contents_key : Key.S with type hash = Hash.t) (Node_key : Key.S with type hash = Hash.t) = struct module Core = Make_core (Hash) (Path) (Metadata) (Contents_key) (Node_key) include Core include Of_core (Core) module Portable = struct module Core = struct include Core type contents_key = hash [@@deriving irmin] type node_key = hash [@@deriving irmin] type value = weak_value [@@deriving irmin] let to_entry name = function | `Node node -> Node_hash { name; node } | `Contents (contents, metadata) -> if equal_metadata metadata Metadata.default then Contents_hash { name; contents } else Contents_m_hash { name; contents; metadata } let of_seq s = Seq.fold_left (fun acc (name, v) -> StepMap.add name (to_entry name v) acc) StepMap.empty s let of_list s = of_seq (List.to_seq s) let add t name v = let entry = to_entry name v in add_entry t name entry let find ?cache t s = Option.map (fun e -> snd (weak_of_entry e)) (find_entry ?cache t s) let seq ?(offset = 0) ?length ?cache:_ (t : t) = seq_entries ~offset ?length t |> Seq.map (fun (_, e) -> weak_of_entry e) let list ?offset ?length ?cache t = List.of_seq (seq ?offset ?length ?cache t) let head t = let (`Node l) = head_entries t in let l = List.map (fun (_, e) -> weak_of_entry e) l in `Node l end include Of_core (Core) include Portable.Of_core (Core) end exception Dangling_hash of { context : string; hash : hash } type nonrec hash = hash [@@deriving irmin ~pp] let () = Printexc.register_printer (function | Dangling_hash { context; hash } -> Some (Fmt.str "%s: encountered dangling hash %a" context pp_hash hash) | _ -> None) end module Make_generic_key_v2 (Hash : Hash.S) (Path : sig type step [@@deriving irmin] end) (Metadata : Metadata.S) (Contents_key : Key.S with type hash = Hash.t) (Node_key : Key.S with type hash = Hash.t) = struct include Make_generic_key (Hash) (Path) (Metadata) (Contents_key) (Node_key) let t = t_not_prefixed module Portable = struct include Portable let t = t_not_prefixed end end module Make (Hash : Hash.S) (Path : sig type step [@@deriving irmin] end) (Metadata : Metadata.S) = struct module Key = Key.Of_hash (Hash) include Make_generic_key (Hash) (Path) (Metadata) (Key) (Key) end module Store_generic_key (C : Contents.Store) (S : Indexable.S) (H : Hash.S with type t = S.hash) (V : S_generic_key with type t = S.value and type contents_key = C.Key.t and type node_key = S.Key.t) (M : Metadata.S with type t = V.metadata) (P : Path.S with type step = V.step) = struct module Val = struct include V type hash = H.t end module Contents = C module Key = S.Key module Hash = Hash.Typed (H) (Val) module Path = P module Metadata = M type 'a t = 'a C.t * 'a S.t type value = S.value type key = Key.t type hash = Hash.t let mem (_, t) = S.mem t let find (_, t) = S.find t let add (_, t) = S.add t let unsafe_add (_, t) = S.unsafe_add t let index (_, t) h = S.index t h let batch (c, s) f = C.batch c (fun n -> S.batch s (fun s -> f (n, s))) let close (c, s) = let* () = C.close c in let+ () = S.close s in () let rec merge t = let merge_key = Merge.v [%typ: Key.t option] (fun ~old x y -> Merge.(f (merge t)) ~old x y) in let merge = Val.merge ~contents:C.(merge (fst t)) ~node:merge_key in let read = function | None -> Lwt.return (Val.empty ()) | Some k -> ( find t k >|= function None -> Val.empty () | Some v -> v) in let add v = if Val.is_empty v then Lwt.return_none else add t v >>= Lwt.return_some in Merge.like_lwt [%typ: Key.t option] merge read add end module Generic_key = struct module type S = S_generic_key module type Maker = Maker_generic_key module type Core = Core module Make = Make_generic_key module Store = Store_generic_key module Make_v2 = Make_generic_key_v2 end module Store (C : Contents.Store) (S : Content_addressable.S with type key = C.key) (H : Hash.S with type t = S.key) (V : S with type t = S.value and type hash = S.key) (M : Metadata.S with type t = V.metadata) (P : Path.S with type step = V.step) = struct module S = Indexable.Of_content_addressable (H) (S) include Store_generic_key (C) (S) (H) (V) (M) (P) end module Graph (S : Store) = struct module Path = S.Path module Contents_key = S.Contents.Key module Metadata = S.Metadata type step = Path.step [@@deriving irmin] type metadata = Metadata.t [@@deriving irmin] type contents_key = Contents_key.t [@@deriving irmin] type node_key = S.Key.t [@@deriving irmin] type path = Path.t [@@deriving irmin] type 'a t = 'a S.t type value = [ `Contents of contents_key * metadata | `Node of node_key ] let empty t = S.add t (S.Val.empty ()) let list t n = [%log.debug "steps"]; S.find t n >|= function None -> [] | Some n -> S.Val.list n module U = struct type t = unit [@@deriving irmin] end module Graph = Object_graph.Make (Contents_key) (S.Key) (U) (U) let edges t = List.rev_map (function _, `Node n -> `Node n | _, `Contents (c, _) -> `Contents c) (S.Val.list t) let pp_key = Type.pp S.Key.t let pp_keys = Fmt.(Dump.list pp_key) let pp_path = Type.pp S.Path.t let equal_val = Type.(unstage (equal S.Val.t)) let pred t = function | `Node k -> ( S.find t k >|= function None -> [] | Some v -> edges v) | _ -> Lwt.return_nil let closure t ~min ~max = [%log.debug "closure min=%a max=%a" pp_keys min pp_keys max]; let min = List.rev_map (fun x -> `Node x) min in let max = List.rev_map (fun x -> `Node x) max in let+ g = Graph.closure ~pred:(pred t) ~min ~max () in List.fold_left (fun acc -> function `Node x -> x :: acc | _ -> acc) [] (Graph.vertex g) let ignore_lwt _ = Lwt.return_unit let iter t ~min ~max ?(node = ignore_lwt) ?(contents = ignore_lwt) ?edge ?(skip_node = fun _ -> Lwt.return_false) ?(skip_contents = fun _ -> Lwt.return_false) ?(rev = true) () = let min = List.rev_map (fun x -> `Node x) min in let max = List.rev_map (fun x -> `Node x) max in let node = function | `Node x -> node x | `Contents c -> contents c | `Branch _ | `Commit _ -> Lwt.return_unit in let edge = Option.map (fun edge n pred -> match (n, pred) with | `Node src, `Node dst -> edge src dst | _ -> Lwt.return_unit) edge in let skip = function | `Node x -> skip_node x | `Contents c -> skip_contents c | _ -> Lwt.return_false in Graph.iter ~pred:(pred t) ~min ~max ~node ?edge ~skip ~rev () let v t xs = S.add t (S.Val.of_list xs) let find_step t node step = [%log.debug "contents %a" pp_key node]; S.find t node >|= function None -> None | Some n -> S.Val.find n step let find t node path = [%log.debug "read_node_exn %a %a" pp_key node pp_path path]; let rec aux node path = match Path.decons path with | None -> Lwt.return_some (`Node node) | Some (h, tl) -> ( find_step t node h >>= function | (None | Some (`Contents _)) as x -> Lwt.return x | Some (`Node node) -> aux node tl) in aux node path let err_empty_path () = invalid_arg "Irmin.node: empty path" let map_one t node f label = [%log.debug "map_one %a" Type.(pp Path.step_t) label]; let old_key = S.Val.find node label in let* old_node = match old_key with | None | Some (`Contents _) -> Lwt.return (S.Val.empty ()) | Some (`Node k) -> ( S.find t k >|= function None -> S.Val.empty () | Some v -> v) in let* new_node = f old_node in if equal_val old_node new_node then Lwt.return node else if S.Val.is_empty new_node then let node = S.Val.remove node label in if S.Val.is_empty node then Lwt.return (S.Val.empty ()) else Lwt.return node else let+ k = S.add t new_node in S.Val.add node label (`Node k) let map t node path f = [%log.debug "map %a %a" pp_key node pp_path path]; let rec aux node path = match Path.decons path with | None -> Lwt.return (f node) | Some (h, tl) -> map_one t node (fun node -> aux node tl) h in let* node = S.find t node >|= function None -> S.Val.empty () | Some n -> n in aux node path >>= S.add t let add t node path n = [%log.debug "add %a %a" pp_key node pp_path path]; match Path.rdecons path with | Some (path, file) -> map t node path (fun node -> S.Val.add node file n) | None -> ( match n with | `Node n -> Lwt.return n | `Contents _ -> failwith "TODO: Node.add") let rdecons_exn path = match Path.rdecons path with | Some (l, t) -> (l, t) | None -> err_empty_path () let remove t node path = let path, file = rdecons_exn path in map t node path (fun node -> S.Val.remove node file) let value_t = S.Val.value_t end module V1 (N : Generic_key.S with type step = string) = struct module K (H : Type.S) = struct let h = Type.string_of `Int64 type t = H.t [@@deriving irmin ~to_bin_string ~of_bin_string] let size_of = Type.Size.using to_bin_string (Type.Size.t h) let encode_bin = let encode_bin = Type.(unstage (encode_bin h)) in fun e k -> encode_bin (to_bin_string e) k let decode_bin = let decode_bin = Type.(unstage (decode_bin h)) in fun buf pos_ref -> let v = decode_bin buf pos_ref in match of_bin_string v with | Ok v -> v | Error (`Msg e) -> Fmt.failwith "decode_bin: %s" e let t = Type.like t ~bin:(encode_bin, decode_bin, size_of) end module Node_key = K (struct type t = N.node_key let t = N.node_key_t end) module Contents_key = K (struct type t = N.contents_key let t = N.contents_key_t end) module Metadata = N.Metadata type step = N.step type node_key = Node_key.t [@@deriving irmin] type contents_key = Contents_key.t [@@deriving irmin] type metadata = N.metadata [@@deriving irmin] type hash = N.hash [@@deriving irmin] type value = N.value type t = { n : N.t; entries : (step * value) list } exception Dangling_hash = N.Dangling_hash let import n = { n; entries = N.list n } let export t = t.n let with_handler _ t = t let hash_exn ?force t = N.hash_exn ?force t.n let head t = N.head t.n let of_seq entries = let n = N.of_seq entries in let entries = List.of_seq entries in { n; entries } let of_list entries = let n = N.of_list entries in { n; entries } let seq ?(offset = 0) ?length ?cache:_ t = let take seq = match length with None -> seq | Some n -> Seq.take n seq in List.to_seq t.entries |> Seq.drop offset |> take let list ?offset ?length ?cache t = List.of_seq (seq ?offset ?length ?cache t) let empty () = { n = N.empty (); entries = [] } let is_empty t = t.entries = [] let length e = N.length e.n let clear _ = () let find ?cache t k = N.find ?cache t.n k let add t k v = let n = N.add t.n k v in if t.n == n then t else { n; entries = N.list n } let remove t k = let n = N.remove t.n k in if t.n == n then t else { n; entries = N.list n } let v1_step = Type.string_of `Int64 let step_to_bin_string = Type.(unstage (to_bin_string v1_step)) let step_of_bin_string = Type.(unstage (of_bin_string v1_step)) let step_t : step Type.t = let to_string p = step_to_bin_string p in let of_string s = step_of_bin_string s |> function | Ok x -> x | Error (`Msg e) -> Fmt.failwith "Step.of_string: %s" e in Type.(map (string_of `Int64)) of_string to_string let is_default = Type.(unstage (equal N.metadata_t)) Metadata.default let value_t = let open Type in record "node" (fun contents metadata node -> match (contents, metadata, node) with | Some c, None, None -> `Contents (c, Metadata.default) | Some c, Some m, None -> `Contents (c, m) | None, None, Some n -> `Node n | _ -> failwith "invalid node") |+ field "contents" (option Contents_key.t) (function | `Contents (x, _) -> Some x | _ -> None) |+ field "metadata" (option metadata_t) (function | `Contents (_, x) when not (is_default x) -> Some x | _ -> None) |+ field "node" (option Node_key.t) (function | `Node n -> Some n | _ -> None) |> sealr let t : t Type.t = Type.map Type.(list ~len:`Int64 (pair step_t value_t)) of_list list let merge ~contents ~node = let merge = N.merge ~contents ~node in let f ~old x y = let old = Merge.map_promise (fun old -> old.n) old in let+ r = Merge.f merge ~old x.n y.n in match r with Ok r -> Ok (import r) | Error e -> Error e in Merge.v t f end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>