package octez-internal-libs
A package that contains some libraries used by the Octez suite
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/octez-internal-libs.irmin_pack/inode.ml.html
Source file inode.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
(* * Copyright (c) 2018-2022 Tarides <contact@tarides.com> * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. *) open! Import include Inode_intf exception Max_depth of int module Make_internal (Conf : Conf.S) (H : Irmin.Hash.S) (Key : sig include Irmin.Key.S with type hash = H.t val unfindable_of_hash : hash -> t end) (Node : Irmin.Node.Generic_key.S with type hash = H.t and type contents_key = Key.t and type node_key = Key.t) = struct (** If [should_be_stable ~length ~root] is true for an inode [i], then [i] hashes the same way as a [Node.t] containing the same entries. *) let should_be_stable ~length ~root = if length = 0 then true else if not root then false else if length <= Conf.stable_hash then true else false module Node = struct include Node module H = Irmin.Hash.Typed (H) (Node) let hash = H.hash end (* Keep at most 50 bits of information. *) let max_depth = int_of_float (log (2. ** 50.) /. log (float Conf.entries)) module T = struct type hash = H.t [@@deriving irmin ~pp ~to_bin_string ~equal] type key = Key.t [@@deriving irmin ~pp ~equal] type node_key = Node.node_key [@@deriving irmin] type contents_key = Node.contents_key [@@deriving irmin] type step = Node.step [@@deriving irmin ~compare ~to_bin_string ~of_bin_string ~short_hash] type metadata = Node.metadata [@@deriving irmin ~equal] type value = Node.value [@@deriving irmin ~equal] module Metadata = Node.Metadata exception Dangling_hash = Node.Dangling_hash let raise_dangling_hash c hash = let context = "Irmin_pack.Inode." ^ c in raise (Dangling_hash { context; hash }) let unsafe_keyvalue_of_hashvalue = function | `Contents (h, m) -> `Contents (Key.unfindable_of_hash h, m) | `Node h -> `Node (Key.unfindable_of_hash h) let hashvalue_of_keyvalue = function | `Contents (k, m) -> `Contents (Key.to_hash k, m) | `Node k -> `Node (Key.to_hash k) end module Step = Irmin.Hash.Typed (H) (struct type t = T.step let t = T.step_t end) module Child_ordering : Child_ordering with type step := T.step = struct open T type key = bytes let log_entry = int_of_float (log (float Conf.entries) /. log 2.) let () = assert (log_entry >= 1); (* NOTE: the [`Hash_bits] mode is restricted to inodes with at most 1024 entries in order to simplify the implementation (see below). *) assert ((not (Conf.inode_child_order = `Hash_bits)) || log_entry <= 10); assert (Conf.entries = int_of_float (2. ** float log_entry)) let key = match Conf.inode_child_order with | `Hash_bits -> (* Bytes.unsafe_of_string usage: possibly safe TODO justify safety, or switch to use the safe Bytes.of_string *) fun s -> Bytes.unsafe_of_string (hash_to_bin_string (Step.hash s)) | `Seeded_hash | `Custom _ -> (* Bytes.unsafe_of_string usage: possibly safe TODO justify safety, or switch to use the safe Bytes.of_string *) fun s -> Bytes.unsafe_of_string (step_to_bin_string s) (* Assume [k = cryto_hash(step)] (see {!key}) and [Conf.entry] can can represented with [n] bits. Then, [hash_bits ~depth k] is the [n]-bits integer [i] with the following binary representation: [k(n*depth) ... k(n*depth+n-1)] When [n] is not a power of 2, [hash_bits] needs to handle unaligned reads properly. *) let hash_bits ~depth k = assert (Bytes.length k = Step.hash_size); (* We require above that the child indices have at most 10 bits to ensure that they span no more than 2 bytes of the step hash. The 3 byte case (with [1 + 8 + 1]) does not happen for 10-bit indices because 10 is even, but [2 + 8 + 1] would occur with 11-byte indices (e.g. when [depth=2]). *) let byte = 8 in let initial_bit_pos = log_entry * depth in let n = initial_bit_pos / byte in let r = initial_bit_pos mod byte in if n >= Step.hash_size then raise (Max_depth depth); if r + log_entry <= byte then (* The index is contained in a single character of the hash *) let i = Bytes.get_uint8 k n in let e0 = i lsr (byte - log_entry - r) in let r0 = e0 land (Conf.entries - 1) in r0 else (* The index spans two characters of the hash *) let i0 = Bytes.get_uint8 k n in let to_read = byte - r in let rest = log_entry - to_read in let mask = (1 lsl to_read) - 1 in let r0 = (i0 land mask) lsl rest in if n + 1 >= Step.hash_size then raise (Max_depth depth); let i1 = Bytes.get_uint8 k (n + 1) in let r1 = i1 lsr (byte - rest) in r0 + r1 let short_hash = Irmin.Type.(unstage (short_hash bytes)) let seeded_hash ~depth k = abs (short_hash ~seed:depth k) mod Conf.entries let index = match Conf.inode_child_order with | `Seeded_hash -> seeded_hash | `Hash_bits -> hash_bits | `Custom f -> f end module StepMap = struct include Map.Make (struct type t = T.step let compare = T.compare_step end) let of_list l = List.fold_left (fun acc (k, v) -> add k v acc) empty l end module Val_ref : sig open T type t [@@deriving irmin] type v = private Key of Key.t | Hash of hash Lazy.t val inspect : t -> v val of_key : key -> t val of_hash : hash Lazy.t -> t val promote_exn : t -> key -> unit val to_hash : t -> hash val to_lazy_hash : t -> hash Lazy.t val to_key_exn : t -> key val is_key : t -> bool end = struct open T (** Nodes that have been persisted to an underlying store are referenced via keys. Otherwise, when building in-memory inodes (e.g. via [Portable] or [of_concrete_exn]) lazily-computed hashes are used instead. If such values are persisted, the hash reference can be promoted to a key reference (but [Key] values are never demoted to hashes). NOTE: in future, we could reflect the case of this type in a type parameter and refactor the [layout] types below to get static guarantees that [Portable] nodes (with hashes for internal pointers) are not saved without first saving their children. *) type v = Key of Key.t | Hash of hash Lazy.t [@@deriving irmin ~pp_dump] type t = v ref let inspect t = !t let of_key k = ref (Key k) let of_hash h = ref (Hash h) let promote_exn t k = let existing_hash = match !t with | Key k' -> (* NOTE: it's valid for [k'] to not be strictly equal to [k], because of duplicate objects in the store. In this case, we preferentially take the newer key. *) Key.to_hash k' | Hash h -> Lazy.force h in if not (equal_hash existing_hash (Key.to_hash k)) then Fmt.failwith "Attempted to promote existing reference %a to an inconsistent key %a" pp_dump_v !t pp_key k; t := Key k let to_hash t = match !t with Hash h -> Lazy.force h | Key k -> Key.to_hash k let to_lazy_hash t = match !t with Hash h -> h | Key k -> lazy (Key.to_hash k) let is_key t = match !t with Key _ -> true | _ -> false let to_key_exn t = match !t with | Key k -> k | Hash h -> Fmt.failwith "Encountered unkeyed hash but expected key: %a" pp_hash (Lazy.force h) let t = let pre_hash_hash = Irmin.Type.(unstage (pre_hash hash_t)) in let pre_hash x f = match !x with | Key k -> pre_hash_hash (Key.to_hash k) f | Hash h -> pre_hash_hash (Lazy.force h) f in Irmin.Type.map ~pre_hash v_t (fun x -> ref x) (fun x -> !x) end (* Binary representation. Used in two modes: - with [key]s as pointers to child values, when encoding values to add to the underlying store (or decoding values read from the store) – interoperable with the [Compress]-ed binary representation. - with either [key]s or [hash]es as pointers to child values, when pre-computing the hash of a node with children that haven't yet been written to the store. *) module Bin = struct open T (** Distinguishes between the two possible modes of binary value. *) type _ mode = Ptr_key : key mode | Ptr_any : Val_ref.t mode type 'vref with_index = { index : int; vref : 'vref } [@@deriving irmin] type 'vref tree = { depth : int; length : int; entries : 'vref with_index list; } [@@deriving irmin] type 'vref v = Values of (step * value) list | Tree of 'vref tree [@@deriving irmin ~pre_hash] module V = Irmin.Hash.Typed (H) (struct type t = Val_ref.t v [@@deriving irmin] end) type 'vref t = { hash : H.t Lazy.t; root : bool; v : 'vref v } let t : type vref. vref Irmin.Type.t -> vref t Irmin.Type.t = fun vref_t -> let open Irmin.Type in let v_t = v_t vref_t in let pre_hash_v = pre_hash_v vref_t in let pre_hash x = pre_hash_v x.v in record "Bin.t" (fun hash root v -> { hash = Lazy.from_val hash; root; v }) |+ field "hash" H.t (fun t -> Lazy.force t.hash) |+ field "root" bool (fun t -> t.root) |+ field "v" v_t (fun t -> t.v) |> sealr |> like ~pre_hash let v ~hash ~root v = { hash; root; v } let hash t = Lazy.force t.hash let depth t = match t.v with | Values _ -> if t.root then Some 0 else None | Tree t -> Some t.depth end (* Compressed binary representation *) module Compress = struct open T type dict_key = int [@@deriving irmin] type pack_offset = int63 [@@deriving irmin] type name = Indirect of dict_key | Direct of step type address = Offset of pack_offset | Hash of H.t [@@deriving irmin] type ptr = { index : int; hash : address } [@@deriving irmin] type tree = { depth : int; length : int; entries : ptr list } [@@deriving irmin] type value = | Contents of name * address * metadata | Node of name * address let is_default = T.(equal_metadata Metadata.default) (* We distribute products over sums in the type representation of [value] in order to pack many possible cases into a single tag character in the encoded representation. - whether the referenced value is a [Node] or a [Contents] value; - in the [Contents] case, whether the associated metadata is [default] (in which case the serialised representation elides it), or if it is included; - whether the [name] of the entry is provided inline [Direct], or is stored in the dict and refernced via a dict key [Indirect]; - whether the [address] of the entry is a pack offset or a hash to be indexed *) let[@ocamlformat "disable"] value_t : value Irmin.Type.t = let module Payload = struct (* Different payload types that can appear after packed tags: *) let io = [%typ: dict_key * pack_offset] let ih = [%typ: dict_key * H.t] let do_ = [%typ: step * pack_offset] let dh = [%typ: step * H.t] (* As above but for contents values with non-default metadata: *) let x_io = [%typ: dict_key * pack_offset * metadata] let x_ih = [%typ: dict_key * H.t * metadata] let x_do = [%typ: step * pack_offset * metadata] let x_dh = [%typ: step * H.t * metadata] end in let open Irmin.Type in variant "Compress.value" (fun (* The ordering of these arguments determines which tags are assigned to the cases, so should not be changed: *) contents_io contents_x_io node_io contents_ih contents_x_ih node_ih contents_do contents_x_do node_do contents_dh contents_x_dh node_dh -> function | Node (Indirect n, Offset o) -> node_io (n, o) | Node (Indirect n, Hash h) -> node_ih (n, h) | Node (Direct n, Offset o) -> node_do (n, o) | Node (Direct n, Hash h) -> node_dh (n, h) | Contents (Indirect n, Offset o, m) -> if is_default m then contents_io (n, o) else contents_x_io (n, o, m) | Contents (Indirect n, Hash h, m) -> if is_default m then contents_ih (n, h) else contents_x_ih (n, h, m) | Contents (Direct n, Offset o, m) -> if is_default m then contents_do (n, o) else contents_x_do (n, o, m) | Contents (Direct n, Hash h, m) -> if is_default m then contents_dh (n, h) else contents_x_dh (n, h, m)) |~ case1 "contents-io" Payload.io (fun (n, o) -> Contents (Indirect n, Offset o, Metadata.default)) |~ case1 "contents-x-io" Payload.x_io (fun (n, i, m) -> Contents (Indirect n, Offset i, m)) |~ case1 "node-io" Payload.io (fun (n, i) -> Node (Indirect n, Offset i)) |~ case1 "contents-ih" Payload.ih (fun (n, h) -> Contents (Indirect n, Hash h, Metadata.default)) |~ case1 "contents-x-ih" Payload.x_ih (fun (n, h, m) -> Contents (Indirect n, Hash h, m)) |~ case1 "node-ih" Payload.ih (fun (n, h) -> Node (Indirect n, Hash h)) |~ case1 "contents-do" Payload.do_ (fun (n, i) -> Contents (Direct n, Offset i, Metadata.default)) |~ case1 "contents-x-do" Payload.x_do (fun (n, i, m) -> Contents (Direct n, Offset i, m)) |~ case1 "node-do" Payload.do_ (fun (n, i) -> Node (Direct n, Offset i)) |~ case1 "contents-dh" Payload.dh (fun (n, i) -> Contents (Direct n, Hash i, Metadata.default)) |~ case1 "contents-x-dh" Payload.x_dh (fun (n, i, m) -> Contents (Direct n, Hash i, m)) |~ case1 "node-dd" Payload.dh (fun (n, i) -> Node (Direct n, Hash i)) |> sealv type v = Values of value list | Tree of tree [@@deriving irmin ~encode_bin ~decode_bin ~size_of] let dynamic_size_of_v_encoding = match Irmin.Type.Size.of_encoding v_t with | Irmin.Type.Size.Dynamic f -> f | _ -> assert false type kind = Pack_value.Kind.t [@@deriving irmin ~encode_bin ~decode_bin ~size_of] type nonrec int = int [@@deriving irmin ~encode_bin ~decode_bin] let no_length = 0 let is_real_length length = not (length = 0) type v1 = { mutable length : int; v : v } [@@deriving irmin] (** [length] is the length of the binary encoding of [v]. It is not known right away. [length] is [no_length] when it isn't known. Calling [encode_bin] or [size_of] will make [length] known. *) (** [tagged_v] sits between [v] and [t]. It is a variant with the header binary encoded as the magic. *) type tagged_v = | V0_stable of v | V0_unstable of v | V1_root of v1 | V1_nonroot of v1 [@@deriving irmin] let encode_bin_tv_staggered ({ v; _ } as tv) kind f = match size_of_v v with | Some length -> tv.length <- length; encode_bin_kind kind f; encode_bin_int length f; encode_bin_v v f | None -> let buf = Buffer.create 1024 in encode_bin_v v (Buffer.add_string buf); let length = Buffer.length buf in tv.length <- length; encode_bin_kind kind f; encode_bin_int length f; f (Buffer.contents buf) let encode_bin_tv tv f = match tv with | V0_stable _ -> assert false | V0_unstable _ -> assert false | V1_root { length; v } when is_real_length length -> encode_bin_kind Pack_value.Kind.Inode_v2_root f; encode_bin_int length f; encode_bin_v v f | V1_nonroot { length; v } when is_real_length length -> encode_bin_kind Pack_value.Kind.Inode_v2_nonroot f; encode_bin_int length f; encode_bin_v v f | V1_root tv -> encode_bin_tv_staggered tv Pack_value.Kind.Inode_v2_root f | V1_nonroot tv -> encode_bin_tv_staggered tv Pack_value.Kind.Inode_v2_nonroot f let decode_bin_tv s off = let kind = decode_bin_kind s off in match kind with | Pack_value.Kind.Inode_v1_unstable -> let v = decode_bin_v s off in V0_unstable v | Inode_v1_stable -> let v = decode_bin_v s off in V0_stable v | Inode_v2_root -> let length = decode_bin_int s off in assert (is_real_length length); let v = decode_bin_v s off in V1_root { length; v } | Inode_v2_nonroot -> let length = decode_bin_int s off in assert (is_real_length length); let v = decode_bin_v s off in V1_nonroot { length; v } | Commit_v1 | Commit_v2 -> assert false | Contents -> assert false | Dangling_parent_commit -> assert false let size_of_tv = let of_encoding s off = let offref = ref off in let kind = decode_bin_kind s offref in let magic_len = 1 in match kind with | Pack_value.Kind.Inode_v1_unstable | Inode_v1_stable -> let vlen = dynamic_size_of_v_encoding s !offref in magic_len + vlen | Inode_v2_root | Inode_v2_nonroot -> let before = !offref in let vlen = decode_bin_int s offref in let after = !offref in let lenlen = after - before in magic_len + lenlen + vlen | Commit_v1 | Commit_v2 | Contents -> assert false | Dangling_parent_commit -> assert false in Irmin.Type.Size.custom_dynamic ~of_encoding () let tagged_v_t = Irmin.Type.like ~bin:(encode_bin_tv, decode_bin_tv, size_of_tv) tagged_v_t type t = { hash : H.t; tv : tagged_v } [@@deriving irmin] let v ~root ~hash v = let length = no_length in let tv = if root then V1_root { v; length } else V1_nonroot { v; length } in { hash; tv } (** The rule to determine the [is_root] property of a v0 [Value] is a bit convoluted, it relies on the fact that back then the following property was enforced: [Conf.stable_hash > Conf.entries]. When [t] is of tag [Values], then [t] is root iff [t] is stable. When [t] is stable, then [t] is a root, because: - Only 2 functions produce stable inodes: [stabilize] and [empty]. - Only the roots are output of [stabilize]. - An empty map can only be located at the root. When [t] is a root of tag [Value], then [t] is stable, because: - All the roots are output of [stabilize]. - When an unstable inode enters [stabilize], it becomes stable if it has at most [Conf.stable_hash] leaves. - A [Value] has at most [Conf.stable_hash] leaves because [Conf.entries <= Conf.stable_hash] is enforced. *) let is_root = function | { tv = V0_stable (Values _); _ } -> true | { tv = V0_unstable (Values _); _ } -> false | { tv = V0_stable (Tree { depth; _ }); _ } | { tv = V0_unstable (Tree { depth; _ }); _ } -> depth = 0 | { tv = V1_root _; _ } -> true | { tv = V1_nonroot _; _ } -> false end (** [Val_impl] defines the recursive structure of inodes. {3 Inode Layout} {4 Layout Types} The layout ['a layout] associated to an inode ['a t] defines certain properties of the inode: - When [Total], the inode is self contained and immutable. - When [Partial], chunks of the inode might be missing but they can be fetched from the backend when needed using the available [find] function stored in the layout. Mutable pointers act as cache. - When [Truncated], chunks of the inode might be missing. Those chunks are unreachable because the pointer to the backend is missing. The inode is immutable. {4 Layout Instantiation} The layout of an inode is determined from the module [Val], it depends on the way the inode was constructed: - When [Total], it originates from [Val.v] or [Val.empty]. - When [Partial], it originates from [Val.of_bin], which is only used by [Inode.find]. - When [Truncated], it either originates from an [Irmin.Type] deserialisation or from a proof. Almost all other functions in [Val_impl] are polymorphic regarding the layout of the manipulated inode. {4 Details on the [Truncated] Layout} The [Truncated] layout is identical to [Partial] except for the missing [find] function. On the one hand, when creating the root of a [Truncated] inode, the pointers to children inodes - if any - are set to the [Broken] tag, meaning that we know the hash to such children but we will have no way to load them in the future. On the other hand, when adding child to a [Truncated] inode, there is no such problem, the pointer is then set to the [Intact] tag. A tree of inode only made of [Intact] tags is similar to a [Total] layout. As of Irmin 2.4 (February 2022), inode deserialisation using Repr happens in [irmin/slice.ml] and [irmin/sync_ext.ml], and maybe some other places. At some point we might want to forbid such deserialisations and instead use something in the flavour of [Val.of_bin] to create [Partial] inodes. {3 Topmost Inode Ancestor} [Val_impl.t] is a recursive type, it is labelled with a [depth] integer that indicates the recursion depth. An inode with [depth = 0] corresponds to the root of a directory, its hash is the hash of the directory. A [Val.t] points to the topmost [Val_impl.t] of an inode tree. In most scenarios, that topmost inode has [depth = 0], but it is also legal for the topmost inode to be an intermediate inode, i.e. with [depth > 0]. The only way for an inode tree to have an intermediate inode as root is to fetch it from the backend by calling [Make_ext.find], using the hash of that inode. Write-only operations are not permitted when the root is an intermediate inode. *) module Val_impl = struct open T type _ layout = | Total : total_ptr layout | Partial : find -> partial_ptr layout | Truncated : truncated_ptr layout and find = expected_depth:int -> key -> partial_ptr t option and partial_ptr_target = | Dirty of partial_ptr t | Lazy of key | Lazy_loaded of partial_ptr t (** A partial pointer differentiates the [Dirty] and [Lazy_loaded] cases in order to remember that only the latter should be collected when [clear] is called. The child in [Lazy_loaded] can only emanate from the disk. It can be savely collected on [clear]. The child in [Dirty] can only emanate from a user modification, e.g. through the [add] or [to_concrete] functions. It shouldn't be collected on [clear] because it will be needed for [save]. *) and partial_ptr = { mutable target : partial_ptr_target } and total_ptr = Total_ptr of total_ptr t [@@unboxed] and truncated_ptr = | Broken of Val_ref.t (** Initially [Hash.t], then set to [Key.t] when we try to save the parent and successfully index the hash. *) | Intact of truncated_ptr t and 'ptr tree = { depth : int; length : int; entries : 'ptr option array } and 'ptr v = Values of value StepMap.t | Tree of 'ptr tree and 'ptr t = { root : bool; v : 'ptr v; v_ref : Val_ref.t; (** Represents what is known about [v]'s presence in a corresponding store. Will be a [hash] if [v] is purely in-memory, and a [key] if [v] has been written to / loaded from a store. *) } module Ptr = struct let val_ref : type ptr. ptr layout -> ptr -> Val_ref.t = function | Total -> fun (Total_ptr ptr) -> ptr.v_ref | Partial _ -> ( fun { target } -> match target with | Lazy key -> Val_ref.of_key key | Lazy_loaded { v_ref; _ } | Dirty { v_ref; _ } -> v_ref) | Truncated -> ( function Broken v -> v | Intact ptr -> ptr.v_ref) let key_exn : type ptr. ptr layout -> ptr -> key = function | Total -> fun (Total_ptr ptr) -> Val_ref.to_key_exn ptr.v_ref | Partial _ -> ( fun { target } -> match target with | Lazy key -> key | Lazy_loaded { v_ref; _ } | Dirty { v_ref; _ } -> Val_ref.to_key_exn v_ref) | Truncated -> ( function | Broken h -> Val_ref.to_key_exn h | Intact ptr -> Val_ref.to_key_exn ptr.v_ref) (** [force = false] will cause [target] to raise an exception when encountering a tag [Lazy] inside a [Partial] inode. This feature is used by [to_concrete] to make shallow the non-loaded inode branches. *) let target : type ptr. expected_depth:int -> cache:bool -> force:bool -> string -> ptr layout -> ptr -> ptr t = fun ~expected_depth ~cache ~force context layout -> match layout with | Total -> fun (Total_ptr t) -> t | Partial find -> ( function | { target = Dirty entry } | { target = Lazy_loaded entry } -> (* [target] is already cached. [cache] is only concerned with new cache entries, not the older ones for which the irmin users can discard using [clear]. *) entry | { target = Lazy key } as t -> ( if not force then raise_dangling_hash context (Key.to_hash key); match find ~expected_depth key with | None -> Fmt.failwith "%a: unknown inode key (%s)" pp_key key context | Some x -> if cache then t.target <- Lazy_loaded x; x)) | Truncated -> ( function | Intact entry -> entry | Broken vref -> let h = Val_ref.to_hash vref in raise_dangling_hash context h) let of_target : type ptr. ptr layout -> ptr t -> ptr = function | Total -> fun target -> Total_ptr target | Partial _ -> fun target -> { target = Dirty target } | Truncated -> fun target -> Intact target let of_key : type ptr. ptr layout -> key -> ptr = function | Total -> assert false | Partial _ -> fun key -> { target = Lazy key } | Truncated -> fun key -> Broken (Val_ref.of_key key) type ('input, 'output) cps = { f : 'r. 'input -> ('output -> 'r) -> 'r } [@@ocaml.unboxed] let save : type ptr. broken:(hash, key) cps -> save_dirty:(ptr t, key) cps -> clear:bool -> ptr layout -> ptr -> unit = fun ~broken ~save_dirty ~clear -> function (* Invariant: after returning, we can recover the key from the saved pointer (i.e. [key_exn] does not raise an exception). This is necessary in order to be able to serialise a parent inode (for export) after having saved its children. *) | Total -> fun (Total_ptr entry) -> save_dirty.f entry (fun key -> Val_ref.promote_exn entry.v_ref key) | Partial _ -> ( function | { target = Dirty entry } as box -> save_dirty.f entry (fun key -> if clear then box.target <- Lazy key else ( box.target <- Lazy_loaded entry; Val_ref.promote_exn entry.v_ref key)) | { target = Lazy_loaded entry } as box -> (* In this case, [entry.v_ref] is a [Hash h] such that [mem t (index t h) = true]. We "save" the entry in order to trigger the [index] lookup and recover the key, in order to meet the return invariant above. TODO: refactor this case to be more precise. *) save_dirty.f entry (fun key -> if clear then box.target <- Lazy key) | { target = Lazy _ } -> ()) | Truncated -> ( function (* TODO: this branch is currently untested: we never attempt to save a truncated node as part of the unit tests. *) | Intact entry -> save_dirty.f entry (fun key -> Val_ref.promote_exn entry.v_ref key) | Broken vref -> if not (Val_ref.is_key vref) then broken.f (Val_ref.to_hash vref) (fun key -> Val_ref.promote_exn vref key)) let clear : type ptr. iter_dirty:(ptr layout -> ptr t -> unit) -> ptr layout -> ptr -> unit = fun ~iter_dirty layout ptr -> match layout with | Partial _ -> ( match ptr with | { target = Lazy _ } -> () | { target = Dirty ptr } -> iter_dirty layout ptr | { target = Lazy_loaded ptr } as box -> (* Since a [Lazy_loaded] used to be a [Lazy], the key is always available. *) let key = Val_ref.to_key_exn ptr.v_ref in box.target <- Lazy key) | Total | Truncated -> () end let pred layout t = match t.v with | Tree i -> let key_of_ptr = Ptr.key_exn layout in Array.fold_left (fun acc -> function | None -> acc | Some ptr -> (None, `Inode (key_of_ptr ptr)) :: acc) [] i.entries | Values l -> StepMap.fold (fun s v acc -> let v = match v with | `Node _ as k -> (Some s, k) | `Contents (k, _) -> (Some s, `Contents k) in v :: acc) l [] let length_of_v = function | Values vs -> StepMap.cardinal vs | Tree vs -> vs.length let length t = length_of_v t.v let rec clear layout t = match t.v with | Tree i -> Array.iter (Option.iter (Ptr.clear ~iter_dirty:clear layout)) i.entries | Values _ -> () let nb_children t = match t.v with | Tree i -> Array.fold_left (fun i -> function None -> i | Some _ -> i + 1) 0 i.entries | Values vs -> StepMap.cardinal vs type cont = off:int -> len:int -> (step * value) Seq.node let rec seq_tree layout bucket_seq ~depth ~cache : cont -> cont = fun k ~off ~len -> assert (off >= 0); assert (len > 0); match bucket_seq () with | Seq.Nil -> k ~off ~len | Seq.Cons (None, rest) -> seq_tree layout rest ~depth ~cache k ~off ~len | Seq.Cons (Some i, rest) -> let trg = let expected_depth = depth + 1 in Ptr.target ~expected_depth ~cache ~force:true "seq_tree" layout i in let trg_len = length trg in if off - trg_len >= 0 then (* Skip a branch of the inode tree in case the user asked for a specific starting offset. Without this branch the algorithm would keep the same semantic because [seq_value] would handles the pagination value by value instead. *) let off = off - trg_len in seq_tree layout rest ~depth ~cache k ~off ~len else seq_v layout trg.v ~cache (seq_tree layout rest ~depth ~cache k) ~off ~len and seq_values layout value_seq : cont -> cont = fun k ~off ~len -> assert (off >= 0); assert (len > 0); match value_seq () with | Seq.Nil -> k ~off ~len | Cons (x, rest) -> if off = 0 then let len = len - 1 in if len = 0 then (* Yield the current value and skip the rest of the inode tree in case the user asked for a specific length. *) Seq.Cons (x, Seq.empty) else Seq.Cons (x, fun () -> seq_values layout rest k ~off ~len) else (* Skip one value in case the user asked for a specific starting offset. *) let off = off - 1 in seq_values layout rest k ~off ~len and seq_v layout v ~cache : cont -> cont = fun k ~off ~len -> assert (off >= 0); assert (len > 0); match v with | Tree t -> let depth = t.depth in seq_tree layout (Array.to_seq t.entries) ~depth ~cache k ~off ~len | Values vs -> seq_values layout (StepMap.to_seq vs) k ~off ~len let list_v layout v ~cache k ~off ~len = match v with | Tree _ -> let s () = seq_v layout v ~cache k ~off ~len in List.of_seq s | Values vs -> if off = 0 && len = Int.max_int then StepMap.bindings vs else let seq () = seq_values layout (StepMap.to_seq vs) k ~off ~len in List.of_seq seq let empty_continuation : cont = fun ~off:_ ~len:_ -> Seq.Nil let seq layout ?offset:(off = 0) ?length:(len = Int.max_int) ?(cache = true) t : (step * value) Seq.t = if off < 0 then invalid_arg "Invalid pagination offset"; if len < 0 then invalid_arg "Invalid pagination length"; if len = 0 then Seq.empty else fun () -> seq_v layout t.v ~cache empty_continuation ~off ~len let list layout ?offset:(off = 0) ?length:(len = Int.max_int) ?(cache = true) t : (step * value) list = if off < 0 then invalid_arg "Invalid pagination offset"; if len < 0 then invalid_arg "Invalid pagination length"; if len = 0 then [] else list_v layout t.v ~cache empty_continuation ~off ~len let seq_tree layout ?(cache = true) i : (step * value) Seq.t = let off = 0 in let len = Int.max_int in fun () -> seq_v layout (Tree i) ~cache empty_continuation ~off ~len let seq_v layout ?(cache = true) v : (step * value) Seq.t = let off = 0 in let len = Int.max_int in fun () -> seq_v layout v ~cache empty_continuation ~off ~len let to_bin_v : type ptr vref. ptr layout -> vref Bin.mode -> ptr v -> vref Bin.v = fun layout mode node -> Stats.incr_inode_to_binv (); match node with | Values vs -> let vs = StepMap.bindings vs in Bin.Values vs | Tree t -> let vref_of_ptr : ptr -> vref = match mode with | Bin.Ptr_any -> Ptr.val_ref layout | Bin.Ptr_key -> Ptr.key_exn layout in let _, entries = Array.fold_left (fun (i, acc) -> function | None -> (i + 1, acc) | Some ptr -> let vref = vref_of_ptr ptr in (i + 1, { Bin.index = i; vref } :: acc)) (0, []) t.entries in let entries = List.rev entries in Bin.Tree { depth = t.depth; length = t.length; entries } let is_root t = t.root let is_stable t = should_be_stable ~length:(length t) ~root:(is_root t) let to_bin layout mode t = let v = to_bin_v layout mode t.v in Bin.v ~root:(is_root t) ~hash:(Val_ref.to_lazy_hash t.v_ref) v type len = [ `Eq of int | `Ge of int ] [@@deriving irmin] module Concrete = struct type kinded_key = | Contents of contents_key | Contents_x of metadata * contents_key | Node of node_key [@@deriving irmin] type entry = { name : step; key : kinded_key } [@@deriving irmin] type 'a pointer = { index : int; pointer : hash; tree : 'a } [@@deriving irmin] type 'a tree = { depth : int; length : int; pointers : 'a pointer list } [@@deriving irmin] type t = Tree of t tree | Values of entry list | Blinded [@@deriving irmin] let to_entry (name, v) = match v with | `Contents (contents_key, m) -> if T.equal_metadata m Metadata.default then { name; key = Contents contents_key } else { name; key = Contents_x (m, contents_key) } | `Node node_key -> { name; key = Node node_key } let of_entry e = ( e.name, match e.key with | Contents key -> `Contents (key, Metadata.default) | Contents_x (m, key) -> `Contents (key, m) | Node key -> `Node key ) type error = [ `Invalid_hash of hash * hash * t | `Invalid_depth of int * int * t | `Invalid_length of len * int * t | `Duplicated_entries of t | `Duplicated_pointers of t | `Unsorted_entries of t | `Unsorted_pointers of t | `Blinded_root | `Too_large_values of t | `Empty ] [@@deriving irmin] let rec length = function | Values l -> `Eq (List.length l) | Tree t -> List.fold_left (fun acc p -> match (acc, length p.tree) with | `Eq x, `Eq y -> `Eq (x + y) | (`Eq x | `Ge x), (`Eq y | `Ge y) -> `Ge (x + y)) (`Eq 0) t.pointers | Blinded -> `Ge 0 let pp = Irmin.Type.pp_json t let pp_len ppf = function | `Eq e -> Fmt.pf ppf "%d" e | `Ge e -> Fmt.pf ppf "'at least %d'" e let pp_error ppf = function | `Invalid_hash (got, expected, t) -> Fmt.pf ppf "invalid hash for %a@,got: %a@,expecting: %a" pp t pp_hash got pp_hash expected | `Invalid_depth (got, expected, t) -> Fmt.pf ppf "invalid depth for %a@,got: %d@,expecting: %d" pp t got expected | `Invalid_length (got, expected, t) -> Fmt.pf ppf "invalid length for %a@,got: %a@,expecting: %d" pp t pp_len got expected | `Duplicated_entries t -> Fmt.pf ppf "duplicated entries: %a" pp t | `Duplicated_pointers t -> Fmt.pf ppf "duplicated pointers: %a" pp t | `Unsorted_entries t -> Fmt.pf ppf "entries should be sorted: %a" pp t | `Unsorted_pointers t -> Fmt.pf ppf "pointers should be sorted: %a" pp t | `Blinded_root -> Fmt.pf ppf "blinded root" | `Too_large_values t -> Fmt.pf ppf "A Values should have at most Conf.entries elements: %a" pp t | `Empty -> Fmt.pf ppf "concrete subtrees cannot be empty" end let to_concrete ~force (la : 'ptr layout) (t : 'ptr t) = let rec aux t = let h = Val_ref.to_hash t.v_ref in match t.v with | Tree tr -> ( h, Concrete.Tree { depth = tr.depth; length = tr.length; pointers = Array.fold_left (fun (i, acc) e -> match e with | None -> (i + 1, acc) | Some t -> let expected_depth = tr.depth + 1 in let pointer, tree = try aux (Ptr.target ~expected_depth ~cache:true ~force "to_concrete" la t) with Dangling_hash { hash; _ } -> (hash, Concrete.Blinded) in (i + 1, { Concrete.index = i; tree; pointer } :: acc)) (0, []) tr.entries |> snd |> List.rev; } ) | Values l -> ( h, Concrete.Values (List.map Concrete.to_entry (StepMap.bindings l)) ) in snd (aux t) exception Invalid_hash of hash * hash * Concrete.t exception Invalid_depth of int * int * Concrete.t exception Invalid_length of len * int * Concrete.t exception Empty exception Duplicated_entries of Concrete.t exception Duplicated_pointers of Concrete.t exception Unsorted_entries of Concrete.t exception Unsorted_pointers of Concrete.t exception Blinded_root exception Too_large_values of Concrete.t let hash_equal = Irmin.Type.(unstage (equal hash_t)) let of_concrete_exn : type a. depth:int -> a layout -> _ -> a t = fun ~depth la t -> let sort_entries = List.sort_uniq (fun x y -> compare x.Concrete.name y.Concrete.name) in let sort_pointers = List.sort_uniq (fun x y -> compare x.Concrete.index y.Concrete.index) in let check_entries t es = if es = [] then raise Empty; let s = sort_entries es in if List.compare_length_with es Conf.entries > 0 then raise (Too_large_values t); if List.compare_lengths s es <> 0 then raise (Duplicated_entries t); if s <> es then raise (Unsorted_entries t) in let check_pointers t ps = if ps = [] then raise Empty; let s = sort_pointers ps in if List.length s <> List.length ps then raise (Duplicated_pointers t); if s <> ps then raise (Unsorted_pointers t) in let hash v = Bin.V.hash (to_bin_v la Bin.Ptr_any v) in let rec aux depth t = match t with | Concrete.Blinded -> None | Concrete.Values l -> check_entries t l; Some (Values (StepMap.of_list (List.map Concrete.of_entry l))) | Concrete.Tree tr -> let entries = Array.make Conf.entries None in check_pointers t tr.pointers; List.iter (fun { Concrete.index; pointer; tree } -> match aux (depth + 1) tree with | None -> (* Child is blinded *) let ptr = match la with | Total -> assert false | Partial _ -> (* [of_concrete_exn (Partial _)] is only used in the context of portable inodes, [unfindable_of_hash] is fine. *) let k = Key.unfindable_of_hash pointer in Ptr.of_key la k | Truncated -> let v_ref = Val_ref.of_hash (Lazy.from_val pointer) in (Broken v_ref : a) in entries.(index) <- Some ptr | Some v -> let hash = hash v in if not (hash_equal hash pointer) then raise (Invalid_hash (hash, pointer, t)); let v_ref = Val_ref.of_hash (Lazy.from_val pointer) in let t = { v_ref; root = false; v } in entries.(index) <- Some (Ptr.of_target la t)) tr.pointers; if depth <> tr.depth then raise (Invalid_depth (depth, tr.depth, t)); let () = match Concrete.length t with | `Eq length -> if length <> tr.length then raise (Invalid_length (`Eq length, tr.length, t)) | `Ge length -> if length > tr.length then raise (Invalid_length (`Ge length, tr.length, t)) in Some (Tree { depth = tr.depth; length = tr.length; entries }) in let v = match aux depth t with None -> raise Blinded_root | Some v -> v in let length = length_of_v v in let hash = (* Compute the hash right away (not lazily) so that [hash_exn ~force:false] is possible on the result of [of_proof]. *) if should_be_stable ~length ~root:(depth = 0) then (* [seq_v] may call [find], even if some branches are blinded *) let node = Node.of_seq (seq_v la v) in Node.hash node else hash v in { v_ref = Val_ref.of_hash (Lazy.from_val hash); root = depth = 0; v } let of_concrete ~depth la t = try Ok (of_concrete_exn ~depth la t) with | Invalid_hash (x, y, z) -> Error (`Invalid_hash (x, y, z)) | Invalid_depth (x, y, z) -> Error (`Invalid_depth (x, y, z)) | Invalid_length (x, y, z) -> Error (`Invalid_length (x, y, z)) | Empty -> Error `Empty | Duplicated_entries t -> Error (`Duplicated_entries t) | Duplicated_pointers t -> Error (`Duplicated_pointers t) | Unsorted_entries t -> Error (`Unsorted_entries t) | Unsorted_pointers t -> Error (`Unsorted_pointers t) | Too_large_values t -> Error (`Too_large_values t) | Blinded_root -> Error `Blinded_root let hash t = Val_ref.to_hash t.v_ref let hash_exn ?(force = true) t = match Val_ref.inspect t.v_ref with | Key k -> Key.to_hash k | Hash h -> if Lazy.is_val h || force then Lazy.force h else raise Not_found let check_write_op_supported t = if not @@ is_root t then failwith "Cannot perform operation on non-root inode value." let stabilize_root layout t = let n = length t in (* If [t] is the empty inode (i.e. [n = 0]) then is is already stable *) if n > Conf.stable_hash then { t with root = true } else let v_ref = Val_ref.of_hash (lazy (let vs = seq layout ~cache:false t in Node.hash (Node.of_seq vs))) in { v_ref; v = t.v; root = true } let index ~depth k = if depth >= max_depth then raise (Max_depth depth); Child_ordering.index ~depth k (** This function shouldn't be called with the [Total] layout. In the future, we could add a polymorphic variant to the GADT parameter to enfoce that. *) let of_bin layout (t : key Bin.t) = let v = match t.Bin.v with | Bin.Values vs -> let vs = StepMap.of_list vs in Values vs | Tree t -> let entries = Array.make Conf.entries None in let ptr_of_key = Ptr.of_key layout in List.iter (fun { Bin.index; vref } -> entries.(index) <- Some (ptr_of_key vref)) t.entries; Tree { depth = t.Bin.depth; length = t.length; entries } in { v_ref = Val_ref.of_hash t.Bin.hash; root = t.Bin.root; v } let recompute_hash layout t = if is_stable t then let vs = seq layout ~cache:false t in Node.hash (Node.of_seq vs) else let v = to_bin_v layout Bin.Ptr_any t.v in let hash = Bin.V.hash v in hash let empty : 'a. 'a layout -> 'a t = fun _ -> let v_ref = Val_ref.of_hash (lazy (Node.hash (Node.empty ()))) in { root = false; v_ref; v = Values StepMap.empty } let values layout vs = let length = StepMap.cardinal vs in if length = 0 then empty layout else let v = Values vs in let v_ref = Val_ref.of_hash (lazy (Bin.V.hash (to_bin_v layout Bin.Ptr_any v))) in { v_ref; root = false; v } let tree layout is = let v = Tree is in let v_ref = Val_ref.of_hash (lazy (Bin.V.hash (to_bin_v layout Bin.Ptr_any v))) in { v_ref; root = false; v } let is_empty t = match t.v with Values vs -> StepMap.is_empty vs | Tree _ -> false let find_value ~cache layout t s = let key = Child_ordering.key s in let rec aux = function | Values vs -> ( try Some (StepMap.find s vs) with Not_found -> None) | Tree t -> ( let i = index ~depth:t.depth key in let x = t.entries.(i) in match x with | None -> None | Some i -> let expected_depth = t.depth + 1 in aux (Ptr.target ~expected_depth ~cache ~force:true "find_value" layout i) .v) in aux t.v let find ?(cache = true) layout t s = find_value ~cache layout t s let rec add layout ~depth ~copy ~replace parent s key v k = Stats.incr_inode_rec_add (); match parent.v with | Values vs -> let length = if replace then StepMap.cardinal vs else StepMap.cardinal vs + 1 in let parent = if length <= Conf.entries then values layout (StepMap.add s v vs) else let vs = StepMap.bindings (StepMap.add s v vs) in let empty = tree layout { length = 0; depth; entries = Array.make Conf.entries None } in let aux t (s', v) = let key' = Child_ordering.key s' in (add [@tailcall]) layout ~depth ~copy:false ~replace t s' key' v (fun x -> x) in List.fold_left aux empty vs in k parent | Tree tr -> ( assert (depth = tr.depth); let length = if replace then tr.length else tr.length + 1 in let entries = if copy then Array.copy tr.entries else tr.entries in let i = index ~depth key in match entries.(i) with | None -> let child = values layout (StepMap.singleton s v) in entries.(i) <- Some (Ptr.of_target layout child); let parent = tree layout { tr with length; entries } in k parent | Some ptr -> let child = let expected_depth = depth + 1 in (* [cache] is unimportant here as we've already called [find_value] for that path.*) Ptr.target ~expected_depth ~cache:true ~force:true "add" layout ptr in (add [@tailcall]) layout ~depth:(depth + 1) ~copy ~replace child s key v (fun child -> entries.(i) <- Some (Ptr.of_target layout child); let parent = tree layout { tr with length; entries } in k parent)) let add layout ~copy t s v = let k = Child_ordering.key s in match find_value ~cache:true layout t s with | Some v' when equal_value v v' -> t | Some _ -> add ~depth:0 layout ~copy ~replace:true t s k v Fun.id |> stabilize_root layout | None -> add ~depth:0 layout ~copy ~replace:false t s k v Fun.id |> stabilize_root layout let rec remove layout parent s key k = Stats.incr_inode_rec_remove (); match parent.v with | Values vs -> let parent = values layout (StepMap.remove s vs) in k parent | Tree tr -> ( let depth = tr.depth in let len = tr.length - 1 in if len <= Conf.entries then let vs = seq_tree layout tr in let vs = StepMap.of_seq vs in let vs = StepMap.remove s vs in let parent = values layout vs in k parent else let entries = Array.copy tr.entries in let i = index ~depth key in match entries.(i) with | None -> assert false | Some ptr -> let child = let expected_depth = depth + 1 in (* [cache] is unimportant here as we've already called [find_value] for that path.*) Ptr.target ~expected_depth ~cache:true ~force:true "remove" layout ptr in if length child = 1 then ( entries.(i) <- None; let parent = tree layout { depth; length = len; entries } in k parent) else (remove [@tailcall]) layout child s key (fun child -> entries.(i) <- Some (Ptr.of_target layout child); let parent = tree layout { tr with length = len; entries } in k parent)) let remove layout t s = let k = Child_ordering.key s in match find_value ~cache:true layout t s with | None -> t | Some _ -> remove layout t s k Fun.id |> stabilize_root layout let of_seq la l = let t = let rec aux_big seq inode = match seq () with | Seq.Nil -> inode | Seq.Cons ((s, v), rest) -> aux_big rest (add la ~copy:false inode s v) in let len = (* [StepMap.cardinal] is (a bit) expensive to compute, let's track the size of the map in a [ref] while doing [StepMap.update]. *) ref 0 in let rec aux_small seq map = match seq () with | Seq.Nil -> assert (!len <= Conf.entries); values la map | Seq.Cons ((s, v), rest) -> let map = StepMap.update s (function | None -> incr len; Some v | Some _ -> Some v) map in if !len = Conf.entries then aux_big rest (values la map) else aux_small rest map in aux_small l StepMap.empty in stabilize_root la t let save layout ~add ~index ~mem t = let clear = (* When set to [true], collect the loaded inodes as soon as they're saved. This parameter is not exposed yet. Ideally it would be exposed and be forwarded from [Tree.export ?clear] through [P.Node.add]. It is currently set to false in order to preserve behaviour *) false in let iter_entries = let broken h k = (* This function is called when we encounter a Broken pointer with Truncated layouts. *) match index h with | None -> Fmt.failwith "You are trying to save to the backend an inode deserialized \ using [Irmin.Type] that used to contain pointer(s) to inodes \ which are unknown to the backend. Hash: %a" pp_hash h | Some key -> (* The backend already knows this target inode, there is no need to traverse further down. This happens during the unit tests. *) k key in fun ~save_dirty arr -> let iter_ptr = Ptr.save ~broken:{ f = broken } ~save_dirty ~clear layout in Array.iter (Option.iter iter_ptr) arr in let rec aux ~depth t = match t.v with | Values _ -> ( [%log.debug "Inode.save values depth:%d" depth]; let unguarded_add hash = let value = (* NOTE: the choice of [Bin.mode] is irrelevant (and this conversion is always safe), since nodes of kind [Values _] contain no internal pointers. *) to_bin layout Bin.Ptr_key t in let key = add hash value in Val_ref.promote_exn t.v_ref key; key in match Val_ref.inspect t.v_ref with | Key key -> if mem key then key else unguarded_add (Key.to_hash key) | Hash hash -> unguarded_add (Lazy.force hash)) | Tree n -> [%log.debug "Inode.save tree depth:%d" depth]; let save_dirty t k = let key = match Val_ref.inspect t.v_ref with | Key key -> if mem key then key else aux ~depth:(depth + 1) t | Hash hash -> ( match index (Lazy.force hash) with | Some key -> if mem key then key else (* In this case, [index] has returned a key that is not present in the underlying store. This is permitted by the contract on index functions (and required by [irmin-pack.mem]), but never happens with the persistent {!Pack_store} backend (provided the store is not corrupted). *) aux ~depth:(depth + 1) t | None -> aux ~depth:(depth + 1) t) in Val_ref.promote_exn t.v_ref key; k key in iter_entries ~save_dirty:{ f = save_dirty } n.entries; let bin = (* Serialising with [Bin.Ptr_key] is safe here because just called [Ptr.save] on any dirty children (and we never try to save [Portable] nodes). *) to_bin layout Bin.Ptr_key t in let key = add (Val_ref.to_hash t.v_ref) bin in Val_ref.promote_exn t.v_ref key; key in aux ~depth:0 t let check_stable layout t = let rec check t any_stable_ancestor = let stable = is_stable t || any_stable_ancestor in match t.v with | Values _ -> true | Tree tree -> Array.for_all (function | None -> true | Some t -> let t = let expected_depth = tree.depth + 1 in Ptr.target ~expected_depth ~cache:true ~force:true "check_stable" layout t in (if stable then not (is_stable t) else true) && check t stable) tree.entries in check t (is_stable t) let contains_empty_map layout t = let rec check_lower t = match t.v with | Values l when StepMap.is_empty l -> true | Values _ -> false | Tree inodes -> Array.exists (function | None -> false | Some t -> let expected_depth = inodes.depth + 1 in Ptr.target ~expected_depth ~cache:true ~force:true "contains_empty_map" layout t |> check_lower) inodes.entries in check_lower t let is_tree t = match t.v with Tree _ -> true | Values _ -> false module Proof = struct type value = [ `Contents of hash * metadata | `Node of hash ] [@@deriving irmin] type t = [ `Blinded of hash | `Values of (step * value) list | `Inode of int * (int * t) list ] [@@deriving irmin] let weaken_step_value (step, v) = (step, hashvalue_of_keyvalue v) let strengthen_step_value (step, v) = (* Since proofs are used only in the context of portable, using this unsafe function is safe. *) (step, unsafe_keyvalue_of_hashvalue v) let rec proof_of_concrete : type a. hash Lazy.t -> Concrete.t -> (t -> a) -> a = fun h concrete k -> match concrete with | Blinded -> k (`Blinded (Lazy.force h)) | Values vs -> let l = List.map Concrete.of_entry vs |> List.map weaken_step_value in k (`Values l) | Tree tr -> let proofs = List.fold_left (fun acc (e : _ Concrete.pointer) -> let hash = Lazy.from_val e.pointer in proof_of_concrete hash e.tree (fun proof -> (e.index, proof) :: acc)) [] (List.rev tr.pointers) in k (`Inode (tr.length, proofs)) let hash_values ~depth l = let inode = values Truncated (StepMap.of_list l) in let t = match depth with 0 -> { inode with root = true } | _ -> inode in hash t let hash_inode ~depth ~length es = let entries = Array.make Conf.entries None in List.iter (fun (index, ptr) -> entries.(index) <- Some ptr) es; let v : truncated_ptr v = Tree { depth; length; entries } in Bin.V.hash (to_bin_v Truncated Bin.Ptr_any v) let rec concrete_of_proof : type a. depth:int -> t -> (hash -> Concrete.t -> a) -> a = fun ~depth proof k -> match proof with | `Blinded h -> k h Concrete.Blinded | `Values vs -> let vs = List.map strengthen_step_value vs in assert (List.compare_length_with vs Conf.entries <= 0); let hash = hash_values ~depth vs in let c = Concrete.Values (List.map Concrete.to_entry vs) in k hash c | `Inode (length, proofs) -> concrete_of_inode ~length ~depth proofs k and concrete_of_inode : type a. length:int -> depth:int -> (int * t) list -> (hash -> Concrete.t -> a) -> a = fun ~length ~depth proofs k -> let rec aux ps es = function | [] -> let c = Concrete.Tree { depth; length; pointers = ps } in let hash = hash_inode ~depth ~length es in k hash c | (index, proof) :: proofs -> concrete_of_proof ~depth:(depth + 1) proof (fun pointer tree -> let ps = { Concrete.tree; pointer; index } :: ps in let h = Val_ref.of_hash (Lazy.from_val pointer) in let es = (index, Broken h) :: es in aux ps es proofs) in aux [] [] (List.rev proofs) let proof_of_concrete h p = proof_of_concrete h p Fun.id let concrete_of_proof ~depth p = concrete_of_proof ~depth p (fun _ t -> t) let to_proof la t : t = let p = if is_stable t then (* To preserve the stable hash, the proof needs to contain all the underlying values. *) let bindings = seq la t |> Seq.map Concrete.to_entry |> List.of_seq |> List.fast_sort (fun x y -> compare_step x.Concrete.name y.Concrete.name) in Concrete.Values bindings else to_concrete ~force:false la t in proof_of_concrete (Val_ref.to_lazy_hash t.v_ref) p let of_proof (Partial _ as la) ~depth (proof : t) = match proof with | `Values vs when List.compare_length_with vs Conf.entries > 0 -> ( if depth <> 0 then None else (* [proof] is a big stable inode that was unshallowed and encoded in a [Values], it needs to be converted back to a [Tree] shallowed. *) let t = of_seq Total (List.map strengthen_step_value vs |> List.to_seq) in let hash = (* Compute the hash right away (not lazily) so that [hash_exn ~force:false] is possible on the result of [of_proof]. *) hash t in let v_ref = Val_ref.of_hash (Lazy.from_val hash) in match t.v with | Values _ -> assert false | Tree { depth; length; entries } -> let ptr_of_key = Ptr.of_key la in let entries = Array.map (function | None -> None | Some ptr -> let hash = Ptr.val_ref Total ptr |> Val_ref.to_hash in (* Since [of_proof] is only called in the context of Portable inodes, [unfindable_of_hash] is safe. *) let key = Key.unfindable_of_hash hash in Some (ptr_of_key key)) entries in let v = Tree { depth; length; entries } in let t = { v_ref; v; root = true } in Some t) | _ -> ( let c = concrete_of_proof ~depth proof in match of_concrete la ~depth c with | Ok v -> Some v | Error _ -> None) let of_concrete t = proof_of_concrete (lazy (failwith "blinded root")) t let to_concrete = concrete_of_proof ~depth:0 end module Snapshot = struct include T type kinded_hash = Contents of hash * metadata | Node of hash [@@deriving irmin] type entry = { step : string; hash : kinded_hash } [@@deriving irmin] type inode_tree = { depth : int; length : int; pointers : (int * hash) list; } [@@deriving irmin] type v = Inode_tree of inode_tree | Inode_value of entry list [@@deriving irmin] type inode = { v : v; root : bool } [@@deriving irmin] end let of_entry ~index e : step * Node.value = let step = match T.step_of_bin_string e.Snapshot.step with | Ok s -> s | Error (`Msg m) -> Fmt.failwith "step of bin error: %s" m in ( step, match e.hash with | Snapshot.Contents (hash, m) -> let key = index hash in `Contents (key, m) | Node hash -> let key = index hash in `Node key ) let of_inode_tree ~index layout tr = let entries = Array.make Conf.entries None in let ptr_of_key hash = let key = index hash in Ptr.of_key layout key in List.iter (fun (index, pointer) -> entries.(index) <- Some (ptr_of_key pointer)) tr.Snapshot.pointers; { depth = tr.depth; length = tr.length; entries } let of_snapshot ~index layout (v : Snapshot.inode) = let t = match v.v with | Inode_value vs -> values layout (StepMap.of_list (List.map (of_entry ~index) vs)) | Inode_tree tr -> tree layout (of_inode_tree ~index layout tr) in if v.root then stabilize_root layout t else t end module Raw = struct type hash = H.t [@@deriving irmin] type key = Key.t type t = T.key Bin.t [@@deriving irmin] type metadata = T.metadata [@@deriving irmin] type Pack_value.kinded += Node of t let to_kinded t = Node t let of_kinded = function Node n -> n | _ -> assert false let depth = Bin.depth exception Invalid_depth of { expected : int; got : int; v : t } let kind (t : t) = (* This is the kind of newly appended values, let's use v2 then *) if t.root then Pack_value.Kind.Inode_v2_root else Pack_value.Kind.Inode_v2_nonroot let repr_size = Mem.repr_size t (** [repr_size] undercounts the size of an inode by around this factor. A value of 4.5 was empirically observed by averaging the ratio between [Mem.reachable_bytes] and [repr_size] during a few runs of a trace replay. This value is rounded to 5 to prevent float-int conversion during weight calculation, at the expense of letting fewer objects into the LRU. *) let repr_size_adjustment = 5 let weight t = Pack_value.Deferred (fun () -> repr_size_adjustment * repr_size t) let hash t = Bin.hash t let step_to_bin = T.step_to_bin_string let step_of_bin = T.step_of_bin_string let encode_compress = Irmin.Type.(unstage (encode_bin Compress.t)) let decode_compress = Irmin.Type.(unstage (decode_bin Compress.t)) let length_header = function | Pack_value.Kind.Contents -> (* NOTE: the Node instantiation of the pack store must have access to the header format used by contents values in order to eagerly construct contents keys with length information during [key_of_offset]. *) Conf.contents_length_header | k -> Pack_value.Kind.length_header_exn k let decode_compress_length = match Irmin.Type.Size.of_encoding Compress.t with | Unknown | Static _ -> assert false | Dynamic f -> f let encode_bin : dict:(string -> int option) -> offset_of_key:(Key.t -> int63 option) -> hash -> t Irmin.Type.encode_bin = fun ~dict ~offset_of_key hash t -> Stats.incr_inode_encode_bin (); let step s : Compress.name = let str = step_to_bin s in if String.length str <= 3 then Direct s else match dict str with Some i -> Indirect i | None -> Direct s in let address_of_key key : Compress.address = match offset_of_key key with | Some off -> Compress.Offset off | None -> (* The key references an inode/contents that is not in the pack file. This is highly unusual but not forbidden. *) Compress.Hash (Key.to_hash key) in let ptr : T.key Bin.with_index -> Compress.ptr = fun n -> let hash = address_of_key n.vref in { index = n.index; hash } in let value : T.step * T.value -> Compress.value = function | s, `Contents (c, m) -> let s = step s in let v = address_of_key c in Compress.Contents (s, v, m) | s, `Node n -> let s = step s in let v = address_of_key n in Compress.Node (s, v) in (* List.map is fine here as the number of entries is small *) let v : T.key Bin.v -> Compress.v = function | Values vs -> Values (List.map value vs) | Tree { depth; length; entries } -> let entries = List.map ptr entries in Tree { Compress.depth; length; entries } in let t = Compress.v ~root:t.root ~hash (v t.v) in encode_compress t exception Exit of [ `Msg of string ] let decode_bin : dict:(int -> string option) -> key_of_offset:(int63 -> key) -> key_of_hash:(hash -> key) -> t Irmin.Type.decode_bin = fun ~dict ~key_of_offset ~key_of_hash t pos_ref -> Stats.incr_inode_decode_bin (); let i = decode_compress t pos_ref in let step : Compress.name -> T.step = function | Direct n -> n | Indirect s -> ( match dict s with | None -> raise_notrace (Exit (`Msg "dict")) | Some s -> ( match step_of_bin s with | Error e -> raise_notrace (Exit e) | Ok v -> v)) in let key : Compress.address -> T.key = function | Offset off -> key_of_offset off | Hash n -> key_of_hash n in let ptr : Compress.ptr -> T.key Bin.with_index = fun n -> let vref = key n.hash in { index = n.index; vref } in let value : Compress.value -> T.step * T.value = function | Contents (n, h, metadata) -> let name = step n in let hash = key h in (name, `Contents (hash, metadata)) | Node (n, h) -> let name = step n in let hash = key h in (name, `Node hash) in let t : Compress.tagged_v -> T.key Bin.v = fun tv -> let v = match tv with | V0_stable v -> v | V0_unstable v -> v | V1_root { v; _ } -> v | V1_nonroot { v; _ } -> v in match v with | Values vs -> Values (List.rev_map value (List.rev vs)) | Tree { depth; length; entries } -> let entries = List.map ptr entries in Tree { depth; length; entries } in let root = Compress.is_root i in let v = t i.tv in Bin.v ~root ~hash:(Lazy.from_val i.hash) v let decode_bin_length = decode_compress_length let decode_children_offsets ~entry_of_offset ~entry_of_hash t pos_ref = let i = decode_compress t pos_ref in let { Compress.tv; _ } = i in let v = match tv with | V0_stable v | V0_unstable v -> v | V1_root { v; _ } | V1_nonroot { v; _ } -> v in let entry_of_address = function | Compress.Offset offset -> entry_of_offset offset | Hash h -> entry_of_hash h in match v with | Values ls -> List.map (function | Compress.Contents (_, address, _) | Node (_, address) -> entry_of_address address) ls | Tree { entries; _ } -> List.map (function ({ hash; _ } : Compress.ptr) -> entry_of_address hash) entries module Snapshot = Val_impl.Snapshot let to_entry : T.step * Node.value -> Snapshot.entry = fun (name, v) -> let step = step_to_bin name in match v with | `Contents (contents_key, m) -> let h = Key.to_hash contents_key in { Snapshot.step; hash = Contents (h, m) } | `Node node_key -> let h = Key.to_hash node_key in { step; hash = Node h } (* The implementation of [of_snapshot] is in the module [Val]. This is because we cannot compute the hash of a root from [Bin]. *) let to_snapshot : t -> Snapshot.inode = fun t -> match t.v with | Bin.Tree tree -> let inode_tree = { Snapshot.depth = tree.depth; length = tree.length; pointers = List.map (fun { Bin.index; vref } -> let hash = Key.to_hash vref in (index, hash)) tree.entries; } in { v = Inode_tree inode_tree; root = t.root } | Values vs -> let vs = List.map to_entry vs in let v = Snapshot.Inode_value vs in { v; root = t.root } end module Snapshot = Val_impl.Snapshot let to_snapshot = Raw.to_snapshot type hash = T.hash type key = Key.t let pp_hash = T.pp_hash module Val_portable = struct include T module I = Val_impl type t = | Total of I.total_ptr I.t | Partial of I.partial_ptr I.layout * I.partial_ptr I.t | Truncated of I.truncated_ptr I.t type 'b apply_fn = { f : 'a. 'a I.layout -> 'a I.t -> 'b } [@@unboxed] let apply : t -> 'b apply_fn -> 'b = fun t f -> match t with | Total v -> f.f I.Total v | Partial (layout, v) -> f.f layout v | Truncated v -> f.f I.Truncated v type map_fn = { f : 'a. 'a I.layout -> 'a I.t -> 'a I.t } [@@unboxed] let map : t -> map_fn -> t = fun t f -> match t with | Total v -> let v' = f.f I.Total v in if v == v' then t else Total v' | Partial (layout, v) -> let v' = f.f layout v in if v == v' then t else Partial (layout, v') | Truncated v -> let v' = f.f I.Truncated v in if v == v' then t else Truncated v' let pred t = apply t { f = (fun layout v -> I.pred layout v) } let of_seq l = Stats.incr_inode_of_seq (); Total (I.of_seq Total l) let of_list l = of_seq (List.to_seq l) let seq ?offset ?length ?cache t = apply t { f = (fun layout v -> I.seq layout ?offset ?length ?cache v) } let list ?offset ?length ?cache t = apply t { f = (fun layout v -> I.list layout ?offset ?length ?cache v) } let empty () = of_list [] let is_empty t = apply t { f = (fun _ v -> I.is_empty v) } let find ?cache t s = apply t { f = (fun layout v -> I.find ?cache layout v s) } let add t s value = Stats.incr_inode_add (); let f layout v = I.check_write_op_supported v; I.add ~copy:true layout v s value in map t { f } let remove t s = Stats.incr_inode_remove (); let f layout v = I.check_write_op_supported v; I.remove layout v s in map t { f } let t : t Irmin.Type.t = let pre_hash_binv = Irmin.Type.(unstage (pre_hash (Bin.v_t Val_ref.t))) in let pre_hash_node = Irmin.Type.(unstage (pre_hash Node.t)) in let pre_hash x = let stable = apply x { f = (fun _ v -> I.is_stable v) } in if not stable then let bin = apply x { f = (fun layout v -> I.to_bin layout Bin.Ptr_any v) } in pre_hash_binv bin.v else let vs = (* If [x] is shallow, this [seq] call will perform IOs. *) seq x in pre_hash_node (Node.of_seq vs) in let module Ptr_any = struct let t = Irmin.Type.map (Bin.t Val_ref.t) (fun _ -> assert false) (fun x -> apply x { f = (fun layout v -> I.to_bin layout Bin.Ptr_any v) }) type nonrec t = t [@@deriving irmin ~equal ~compare ~pp] (* TODO(repr): add these to [ppx_repr] meta-deriving *) (* TODO(repr): why is there no easy way to get a decoder value to pass to [map ~json]? *) let encode_json = Irmin.Type.encode_json t let decode_json _ = failwith "TODO" end in Irmin.Type.map ~pre_hash ~pp:Ptr_any.pp ~json:(Ptr_any.encode_json, Ptr_any.decode_json) ~equal:Ptr_any.equal ~compare:Ptr_any.compare (Bin.t T.key_t) (fun bin -> Truncated (I.of_bin I.Truncated bin)) (fun x -> apply x { f = (fun layout v -> I.to_bin layout Bin.Ptr_key v) }) let hash_exn ?force t = apply t { f = (fun _ v -> I.hash_exn ?force v) } let save ?(allow_non_root = false) ~add ~index ~mem t = if Conf.forbid_empty_dir_persistence && is_empty t then failwith "Persisting an empty node is forbidden by the configuration of the \ irmin-pack store"; let f layout v = if not allow_non_root then I.check_write_op_supported v; I.save layout ~add ~index ~mem v in apply t { f } let of_raw (find' : expected_depth:int -> key -> key Bin.t option) v = Stats.incr_inode_of_raw (); let rec find ~expected_depth h = Option.map (I.of_bin layout) (find' ~expected_depth h) and layout = I.Partial find in Partial (layout, I.of_bin layout v) let recompute_hash t = apply t { f = (fun layout v -> I.recompute_hash layout v) } let to_raw t = apply t { f = (fun layout v -> I.to_bin layout Bin.Ptr_key v) } let stable t = apply t { f = (fun _ v -> I.is_stable v) } let length t = apply t { f = (fun _ v -> I.length v) } let clear t = apply t { f = (fun layout v -> I.clear layout v) } let nb_children t = apply t { f = (fun _ v -> I.nb_children v) } let index ~depth s = I.index ~depth (Child_ordering.key s) let integrity_check t = let f layout v = let check_stable () = let check () = I.check_stable layout v in let n = length t in if n > Conf.stable_hash then (not (stable t)) && check () else stable t && check () in let contains_empty_map_non_root () = let check () = I.contains_empty_map layout v in (* we are only looking for empty maps that are not at the root *) if I.is_tree v then check () else false in check_stable () && not (contains_empty_map_non_root ()) in apply t { f } let merge ~contents ~node : t Irmin.Merge.t = let merge = Node.merge ~contents ~node in let to_node t = of_seq (Node.seq t) in let of_node n = Node.of_seq (seq n) in Irmin.Merge.like t merge of_node to_node let with_handler f_env t = match t with | Total _ -> t | Truncated _ -> t | Partial ((I.Partial find as la), v) -> (* [f_env] works on [Val.t] while [find] in [Partial find] works on [Val_impl.t], hence the following wrapping (before applying [f_env]) and unwrapping (after [f_env]). *) let find_v ~expected_depth h = match find ~expected_depth h with | None -> None | Some v -> Some (Partial (la, v)) in let find = f_env find_v in let find_ptr ~expected_depth h = match find ~expected_depth h with | Some (Partial (_, v)) -> Some v | _ -> None in let la = I.Partial find_ptr in Partial (la, v) let head t = let f la (v : _ I.t) = if Val_impl.is_stable v then (* To preserve the stable hash, the proof needs to contain all the underlying values. *) let elts = I.seq la v |> List.of_seq |> List.fast_sort (fun (x, _) (y, _) -> compare_step x y) in `Node elts else match v.v with | I.Values n -> `Node (List.of_seq (StepMap.to_seq n)) | I.Tree v -> let entries = ref [] in for i = Array.length v.entries - 1 downto 0 do match v.entries.(i) with | None -> () | Some ptr -> let h = I.Ptr.val_ref la ptr |> Val_ref.to_hash in entries := (i, h) :: !entries done; `Inode (v.length, !entries) in apply t { f } end module Val = struct include Val_portable module Portable = struct include Val_portable type node_key = hash [@@deriving irmin] type contents_key = hash [@@deriving irmin] type value = [ `Contents of hash * metadata | `Node of hash ] [@@deriving irmin] let of_node t = t let of_list bindings = bindings |> List.map (fun (k, v) -> (k, unsafe_keyvalue_of_hashvalue v)) |> of_list let of_seq bindings = bindings |> Seq.map (fun (k, v) -> (k, unsafe_keyvalue_of_hashvalue v)) |> of_seq let seq ?offset ?length ?cache t = seq ?offset ?length ?cache t |> Seq.map (fun (k, v) -> (k, hashvalue_of_keyvalue v)) let add : t -> step -> value -> t = fun t s v -> add t s (unsafe_keyvalue_of_hashvalue v) let list ?offset ?length ?cache t = list ?offset ?length ?cache t |> List.map (fun (s, v) -> (s, hashvalue_of_keyvalue v)) let find ?cache t s = find ?cache t s |> Option.map hashvalue_of_keyvalue let merge = let promote_merge : hash option Irmin.Merge.t -> key option Irmin.Merge.t = fun t -> Irmin.Merge.like [%typ: key option] t (Option.map Key.to_hash) (Option.map Key.unfindable_of_hash) in fun ~contents ~node -> merge ~contents:(promote_merge contents) ~node:(promote_merge node) module Proof = I.Proof type proof = I.Proof.t [@@deriving irmin] let to_proof (t : t) : proof = apply t { f = (fun la v -> I.Proof.to_proof la v) } let of_proof ~depth (p : proof) = let find ~expected_depth:_ k = raise_dangling_hash "of_proof@find" (Key.to_hash k) in (* A [Partial] should be built instead of a [Truncated] because we need a [find] function that will be hooked by the proof env and that will raise the above exception in case of miss in the env. *) let la = I.Partial find in Option.map (fun v -> Partial (la, v)) (I.Proof.of_proof la ~depth p) type 'a find = expected_depth:int -> 'a -> t option let with_handler : (hash find -> hash find) -> t -> t = let to_hash : key find -> hash find = fun find ~expected_depth h -> find ~expected_depth (Key.unfindable_of_hash h) in let to_key : hash find -> key find = fun find ~expected_depth k -> find ~expected_depth (Key.to_hash k) in fun f_env t -> with_handler (fun find -> find |> to_hash |> f_env |> to_key) t let head t = match head t with | `Inode _ as x -> x | `Node l -> `Node (List.map Proof.weaken_step_value l) end let to_concrete t = apply t { f = (fun la v -> I.to_concrete ~force:true la v) } let of_concrete t = match I.of_concrete Truncated ~depth:0 t with | Ok t -> Ok (Truncated t) | Error _ as e -> e module Snapshot = I.Snapshot module Concrete = I.Concrete let of_snapshot t ~index find' = let rec find ~expected_depth h = match find' ~expected_depth h with | None -> None | Some v -> Some (I.of_bin layout v) and layout = I.Partial find in Partial (layout, I.of_snapshot layout t ~index) end end module Make (H : Irmin.Hash.S) (Key : Irmin.Key.S with type hash = H.t) (Node : Irmin.Node.Generic_key.S with type hash = H.t and type contents_key = Key.t and type node_key = Key.t) (Inter : Internal with type hash = H.t and type key = Key.t and type Snapshot.metadata = Node.metadata and type Val.step = Node.step) (Pack : Indexable.S with type hash = H.t and type key = Key.t and type value = Inter.Raw.t) = struct module Hash = H module Key = Key module Val = Inter.Val type 'a t = 'a Pack.t type key = Key.t [@@deriving irmin ~equal] type hash = Hash.t type value = Inter.Val.t let mem t k = Pack.mem t k let index t k = Pack.index t k exception Invalid_depth = Inter.Raw.Invalid_depth let pp_value = Irmin.Type.pp Inter.Raw.t let pp_invalid_depth ppf (expected, got, v) = Fmt.pf ppf "Invalid depth: got %d, expecting %d (%a)" got expected pp_value v let check_depth_opt ~expected_depth:expected = function | None -> () | Some v -> ( match Inter.Raw.depth v with | None -> () | Some got -> if got <> expected then raise (Invalid_depth { expected; got; v })) let unsafe_find ~check_integrity t k = match Pack.unsafe_find ~check_integrity t k with | None -> None | Some v -> let find ~expected_depth k = let v = Pack.unsafe_find ~check_integrity t k in check_depth_opt ~expected_depth v; v in let v = Val.of_raw find v in Some v let find t k = unsafe_find ~check_integrity:true t k |> Lwt.return let save ?allow_non_root t v = let add k v = Pack.unsafe_append ~ensure_unique:true ~overcommit:false t k v in Val.save ?allow_non_root ~add ~index:(Pack.index_direct t) ~mem:(Pack.unsafe_mem t) v let hash_exn = Val.hash_exn let add t v = Lwt.return (save t v) let equal_hash = Irmin.Type.(unstage (equal H.t)) let check_hash expected got = if equal_hash expected got then () else Fmt.invalid_arg "corrupted value: got %a, expecting %a" Inter.pp_hash expected Inter.pp_hash got let unsafe_add t k v = check_hash k (hash_exn v); Lwt.return (save t v) let batch = Pack.batch let close = Pack.close let decode_bin_length = Inter.Raw.decode_bin_length let protect_from_invalid_depth_exn f = Lwt.catch f (function | Invalid_depth { expected; got; v } -> let msg = Fmt.to_to_string pp_invalid_depth (expected, got, v) in Lwt.return (Error msg) | e -> Lwt.fail e) let integrity_check_inodes t k = protect_from_invalid_depth_exn @@ fun () -> find t k >|= function | None -> (* we are traversing the node graph, should find all values *) assert false | Some v -> if Inter.Val.integrity_check v then Ok () else let msg = Fmt.str "Problematic inode %a" (Irmin.Type.pp Inter.Val.t) v in Error msg end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>